Oxidative Dearomatization of 3-Substituted Indoles with Sulfonium Salts: Direct Access to 3-Hydroxyoxindoles

Srimanta Manna^a*, Sudipta Baur^{#a}, Amitava Harza^{#a} and Joydev K. Laha^a

^a.Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Punjab 160062, India. Email: srimanta@niper.ac.in

Supporting Information Placeholder

[#]Both authors contribute equally.

Table of Content

General information	2
General Procedure for the synthesis of hydroxyoxyindole derivatives	3
Optimization of reaction conditions	4
Characterization data	5
Mechanistic experiment	25
Unsuccessful Attempts	29
Green chemistry metrics calculation & comparison with previous works	30
NMR spectra of synthesized compounds	35
References	72

General information

Unless noted otherwise, all reagents and solvents were purchased from commercial sources and used as received. The glassware to be used in the reaction was thoroughly washed and dried in an oven and the experiments were carried out with the required precautions. Chemicals were purchased from BLD Pharma, Chempure, Spectrochem and TCI, solvent were purchased from Chempure Pvt. Ltd. and Spectrochem Pvt. Ltd.

Reactions were monitored by TLC, which was performed with 0.2 mm Merck pre-coated silica gel 60 F254 Aluminium sheets. TLC plates were visualized with UV light and column chromatography was performed using silica gel (60-120, 100-200, or 230-400 mesh).

¹H NMR, ¹³C NMR, and HRMS data. High-Resolution Mass Spectra (HRMS) were obtained using the Electron spin ionization (ESI) technique and as a TOF mass analyzer on a 6200 series TOF/6500 series Q-TOF (11.0.230.2). ¹H and ¹³C spectra were recorded on Jeol 500, 600 MHz, and 125, 150 MHz NMR spectrometers in CDCl₃ and DMSO-d₆ with residual undeuterated solvent using TMS as an internal standard. Chemical shifts (δ) are given in ppm and *J* values are given in Hz, pattern was designated as s, singlet; bs, broad singlet; d, doublet; dd, doublet of doublet; dt, triplet of doublet; t, triplet; m, multiplet. General Procedure for the synthesis of 3-Hydroxy-3-alkyl-2-oxyindole derivatives

Procedure A

To a screw cap reaction tube charged with a magnetic stir-bar, substrate **1** (0.25 mmol) and bromoacetonitrile (0.75 mmol) were added. Then, 2.5 mL DMSO was added. The reaction mixture was kept at 30 °C and stirred vigorously for completion of the reaction (24h). Then the reaction mixture was diluted with 20 mL of water and extracted with 3*20 mL of EtOAc. Afterward, the extracted organic layer was dried over Na₂SO₄ and concentrated and the product was purified by column chromatography using silica gel (100-200 mesh) and EtOAc / Hexane as eluent.

Procedure B

To a screw cap reaction tube charged with a magnetic stir-bar, substrate **1** (0.25 mmol) and bromoacetonitrile (0.75 mmol) were added. Then, 2.5 mL DMSO was added. The reaction mixture was kept at 60 °C and stirred vigorously for completion of the reaction (12h). Then the reaction mixture was diluted with 20 mL of water and extracted with 3*20 mL of EtOAc. Afterward, the extracted organic layer was dried over Na₂SO₄ and concentrated and the product was purified by column chromatography using silica gel (100-200 mesh) and EtOAc / Hexane as eluent.

Table 1: Optimization of reaction conditions^a

Entry	Alkyl halide (x equiv)	Additive (x)	Solvent	Yield (%)
1	BrCH ₂ CN (3 equiv)	-	DMSO	73
2	BrCH ₂ CN (2 equiv)	-	DMSO	52
3	BrCH ₂ CN (3 equiv)	Et ₃ N (2	DMSO	55
		equiv)		
4	BrCH ₂ CN (3 equiv)	NaHCO₃ (2	DMSO	0
		equiv)		
5	BrCH ₂ CN (3 equiv)	FeCl ₃ (0.2	DMSO	49
		equiv)		
6	BrCH ₂ CN (3 equiv)	-	20 equiv DMSO + 1	10
			mL PhCl	
7b	BrCH ₂ CN (3 equiv)	-	PhCl	30
8 ^b	BrCH ₂ CN (3 equiv)	-	CH_2CI_2	20
9	BrCH ₂ CN (3 equiv)	-	CH₃CN	0
10	BrCH ₂ CN (3 equiv)	-	DMF	0
11	BrCH ₂ CN (3 equiv)	-	DMF: H ₂ 0 = 1:1	0
12	BrCH ₂ CN (3 equiv)	-	EtOH	0
13	4-BrPhCH ₂ Br (3 equiv)	-	DMSO	66
14	<i>n</i> C₄H ₉ Br (3 equiv)	-	DMSO	0
15	BrC(Me) ₂ CO ₂ ^t Bu (3 equiv)		DMSO	46
16	BrCH ₂ CO ₂ ^t Bu (3 equiv)		DMSO	70
17	BrCF ₂ CO ₂ Et (3 equiv)		DMSO	43
18	BrCH ₂ CH=CH ₂ (3 equiv)		DMSO	65
19 ^c	BrCH ₂ CN (3 equiv)		DMSO	40
20 ^d	BrCH ₂ CN (3 equiv)		DMSO (dry)	0
21 ^e	BrCH ₂ CN (3 equiv)		DMSO (1 mL)	64
22 ^f	BrCH ₂ CN (3 equiv)		DMSO	82

^aReaction conditions: **1** (0.25 mmol), BrCH₂CN (x mmol), wet DMSO (2 mL), 30 °C, 24 h. ^b20 equiv. of DMSO was used as a reagent. ^cReaction was performed at 0 °C instead of 30 °C. ^dReaction was carried out with dry DMSO and 4Å MS (150 mg), 36 h. Isolated yield was given. ^e1 mL DMSO was used. ^fN-Methy-3-methylindole was used.

Characterization data

3-Hydroxy-1,3-dimethylindolin-2-one (2a)

Compound **2a** was obtained by using the general procedure **A** from 1,3-dimethyl-1H-indole (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (30:70 v/v); yellow solid with 82 % yield (36.2 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.34 (d, J = 7.3 Hz, 1H), 7.30 (t, J = 7.7 Hz, 1H), 7.05 (t, J = 7.4 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 5.92 (s,1H), 3.10 (s, 3H), 1.38 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.8, 142.6, 132.9, 128.9, 123.0, 122.3, 108.5, 72.3, 25.8, 24.5 ppm.

Rf: 0.28 (EtOAc/Hexane (40:60 v/v)

The spectral data are consistent with those reported in the literature¹

3-Hexyl-3-hydroxy-1-methylindolin-2-one (2b)

Compound **2b** was obtained by using the general procedure **A** from 3-hexyl-1-methyl-1Hindole (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (25:75 v/v); white solid with 54% yield (33.4 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.30 (dd, *J* = 9.3, 7.6 Hz, 2H), 7.04 (t, *J* = 7.4 Hz, 1H), 6.97 (d, *J* = 7.7 Hz, 1H), 5.88 (s, 1H), 3.09 (s, 3H), 1.82 – 1.73 (m, 2H), 1.19 – 1.08 (m, 6H), 1.01 – 0.92 (m, 1H), 0.92 – 0.84 (m, 1H), 0.79 (t, *J* = 7.0 Hz, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.5, 143.2, 131.5, 128.9, 123.4, 122.2, 108.3, 75.4, 37.7, 30.9, 28.7, 25.7, 22.6, 21.9, 13.8 ppm.

Rf: 0.3 (EtOAc/Hexane (30:70 v/v)

HRMS: calc. for [M+H]⁺ C₁₅H₂₁N₂O₂: 248.1651 found: 248.1652.

3-Hexyl-3-hydroxy-5-methoxy-1-methylindolin-2-one (2c)

Compound **2c** was obtained by using the general procedure **A** from 3-hexyl-5-methoxy-1methyl-1H-indole (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (25:75 v/v); white solid with 48% yield (33.0 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 6.91 (d, *J* = 2.2 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 1H), 6.85 (dd, *J* = 8.4, 2.3 Hz, 1H), 5.88 (s, 1H), 3.73 (s, 3H), 3.06 (s, 3H), 1.82 – 1.70 (m, 2H), 1.21 – 1.06 (m, 6H), 0.98 – 0.90 (m, 1H), 0.90 – 0.83 (m, 1H), 0.79 (t, *J* = 7.0 Hz, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.2, 155.5, 136.6, 132.8, 113.0, 110.7, 108.7, 75.8, 55.5, 37.7, 30.9, 28.7, 25.8, 22.6, 21.9, 13.8 ppm.

Rf: 0.27 (EtOAc/Hexane (30:70 v/v)

HRMS: calc. for [M+H]⁺ C₁₆H₂₄NO₃: 278.1756 found: 278.1775.

5-Chloro-3-hydroxy-1,3-dimethylindolin-2-one (2d)

Compound **2d** was obtained by using the general procedure **A** from 5-chloro-1,3-dimethyl-1H-indole (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (25:75 v/v); white solid with 77% yield (61.5 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.39 (d, *J* = 1.9 Hz, 1H), 7.36 (dd, *J* = 8.3, 2.0 Hz, 1H), 7.02 (d, *J* = 8.3 Hz, 1H), 6.06 (s, 1H), 3.10 (s, 3H), 1.39 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.4, 141.5, 134.9, 128.7, 126.5, 110.1, 72.5, 25.9, 24.1 ppm Rf: 0.29 (EtOAc/Hexane (30:70 v/v)

The spectral data are consistent with those reported in the literature.²

1-Butyl-3-hydroxy-3-methylindolin-2-one (2f)

Compound **2f** was obtained by using the general procedure **B** from 1-butyl-3-methyl-1Hindole (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); white solid with 45% yield (24.7 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.34 (d, *J* = 6.5 Hz, 1H), 7.28 (t, *J* = 7.7 Hz, 1H), 7.05 – 7.00 (m, 2H), 5.93 (s, 1H), 3.65 – 3.59 (m, 2H), 1.59 – 1.50 (m, 2H), 1.37 (s, 3H), 1.33 – 1.26 (m, 2H), 0.89 (t, *J* = 7.4 Hz, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.8, 141.9, 133.1, 128.9, 123.2, 122.1, 108.7, 72.3, 38.7, 29.0, 24.7, 19.5, 13.7 ppm.

Rf: 0.39 (EtOAc/Hexane (20:80 v/v)

The spectral data are consistent with those reported in the literature.³

1-Benzyl-3-hydroxy-3-methylindolin-2-one (2g)

Compound **2g** was obtained by using the general procedure **B** from 1-benzyl-3-methyl-1Hindole (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); white solid with 70% yield (44.3 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.37 (d, J = 7.2 Hz, 1H), 7.35 – 7.30 (m, 4H), 7.29 – 7.24 (m, 1H), 7.20 (t, J = 7.7 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 6.84 (d, J = 7.8 Hz, 1H), 6.09 (s, 1H), 4.86 (s, 2H), 1.44 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 178.0, 141.5, 136.4, 132.9, 128.8, 128.6, 127.3, 127.1, 123.2, 122.5, 109.1, 72.5, 42.4, 24.7 ppm.

Rf: 0.37 (EtOAc/Hexane (30:70 v/v)

The spectral data are consistent with those reported in the literature.⁴

1-Cyclopentyl-3-hydroxy-3-methylindolin-2-one (2h)

Compound **2h** was obtained by using the general procedure **B** from 1-cyclopentyl-3-methyl-1H-indole (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); dense liquid with 52% yield (30.0 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.35 (d, *J* = 6.7 Hz, 1H), 7.27 (td, *J* = 7.8, 1.2 Hz, 1H), 7.03 (t, *J* = 7.3 Hz, 2H), 5.90 (s, 1H), 4.63 (p, *J* = 8.8 Hz, 1H), 1.98 (m, 2H), 1.93 – 1.85 (m, 2H), 1.85 – 1.77 (m, 2H), 1.64 (m, 2H), 1.35 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.8, 141.1, 133.3, 128.8, 123.4, 121.9, 109.6, 72.1, 51.6, 27.4, 27.1, 24.7 ppm.

Rf: 0.28 (EtOAc/Hexane (30:70 v/v)

HRMS: calc. for [M+H]⁺ C₁₄H₁₈NO₂: 232.1338 found: 232.1343.

3-Hydroxy-3-methyl-1-(2-methylallyl)indolin-2-one (2i)

Compound **2i** was obtained by using the general procedure **B** from 3-methyl-1-(2-methylallyl)-1H-indole (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); white solid with 52% yield (28.25 mg). ¹H NMR (600 MHz, DMSO-D₆) δ 7.36 (d, *J* = 6.9 Hz, 1H), 7.25 (t, *J* = 7.7 Hz 1H), 7.04 (t, *J* = 7.3 Hz, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.01 (s, 1H), 4.86 (s, 1H), 4.78 (s, 1H), 4.18 (dd, *J* = 41.5, 16.4 Hz, 2H), 1.69 (s, 3H), 1.41 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.7, 141.7, 139.2, 132.8, 128.8, 123.1, 122.3, 111.5, 109.2,
72.3, 44.5, 24.8, 19.8 ppm.

Rf: 0.28 (EtOAc/Hexane (30:70 v/v)

HRMS: calc. for [M+H]⁺ C₁₃H₁₆NO₂: 218.1181 found: 218.1174.

3-Hydroxy-3-methyl-1-(prop-2-yn-1-yl)indolin-2-one (2j)

Compound **2j** was obtained by using the general procedure **B** from 3-methyl-1-(prop-2-yn-1-yl)-1H-indole (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); white solid with 39% yield (20.0 mg).

¹**H NMR (600 MHz, DMSO-D**₆) δ 7.38 (d, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 6.6 Hz, 1H), 7.11 – 7.04 (m, 2H), 6.07 (s, 1H), 4.49 (qd, *J* = 17.9, 2.5 Hz, 2H), 3.27 (t, *J* = 2.4 Hz, 1H), 1.39 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.0, 140.6, 132.8, 128.9, 123.2, 122.7, 109.2, 78.1, 74.4,
72.4, 28.6, 24.6 ppm.

Rf: 0.35 (EtOAc/Hexane (30:70 v/v)

HRMS: calc. for [M+H]⁺ C₁₂H₁₂NO₂: 202.0868 found: 202.0863.

3-Hydroxy-1-(2-hydroxyethyl)-3-methylindolin-2-one (2k)

Compound **2k** was obtained by using the general procedure **B** from 2-(3-methyl-1H-indol-1yl)ethan-1-ol (0.25 mmol).The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); white solid with 38% yield (19.0 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.33 (d, *J* = 7.2 Hz, 1H), 7.28 (t, *J* = 0.7 Hz, 1H), 7.03 (m, 2H), 5.89 (s, 1H), 4.82 (t, *J* = 5.6 Hz, 1H), 3.76 – 3.69 (m, 1H), 3.67 – 3.61 (m, 1H), 3.60 – 3.54 (m, 2H), 1.38 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.9, 142.4, 132.9, 128.8, 123.0, 122.0, 109.0, 72.3, 58.1, 41.9, 24.6 ppm.

Rf: 0.32 (EtOAc/Hexane (30:70 v/v)

HRMS: calc. for [M+H]⁺ C₁₁H₁₄NO₃: 209.0974 found: 209.0976.

1-(4-Chlorobutyl)-3-hydroxy-3-methylindolin-2-one (2I)

Compound **2I** was obtained by using the general procedure **B** from 1-(4-chlorobutyl)-3methyl-1H-indole (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (30:70 v/v); white solid with 62% yield (39.25 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.36 – 7.33 (m, 1H), 7.29 (td, *J* = 7.7, 1.0 Hz, 1H), 7.06 – 7.01 (m, 2H), 5.95 (s, 1H), 3.72 – 3.61 (m, 3H), 3.57 (t, *J* = 6.6 Hz, 1H), 1.82 (dd, *J* = 8.5, 6.8 Hz, 1H), 1.77 – 1.67 (m, 3H), 1.37 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.9, 141.7, 133.1, 128.9, 123.2, 122.3, 108.7, 72.3, 45.0, 38.2, 29.3, 24.6, 24.3 ppm.

Rf: 0.34 (EtOAc/Hexane (40:60 v/v)

HRMS: calc. for [M+H]⁺ C₁₃H₁₇CINO₂: 254.0948 found: 254.0950.

3-Hydroxy-3-methylindolin-2-one (2m)

Compound **2m** was obtained by using the general procedure **A** from 3-methylindole (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); yellow solid (29.8 mg) with 73% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.20 (s,1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.18 (t, *J* = 7.3 Hz, 1H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 5.84 (s, 1H), 1.35 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 179.7, 141.1, 133.6, 128.8, 123.4, 121.6, 109.6, 72.6, 24.5 ppm

Rf: 0.37 (EtOAc/Hexane (50:50 v/v)

The spectral data are consistent with those reported in the literature.⁴

3-Ethyl-3-hydroxyindolin-2-one (2n)

Compound **2n** was obtained by using the general procedure **A** from 3-ethyl-1H-indole (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (24 mg) with 54% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.21 (s, 1H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.19 (td, *J* = 7.7, 1.2 Hz, 1H), 6.96 (td, *J* = 7.5, 0.8 Hz, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 5.81 (s, 1H), 1.85 – 1.67 (m, 2H), 0.61 (t, *J* = 7.5 Hz, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 179.3, 141.9, 131.8, 128.8, 123.8, 121.6, 109.4, 76.2, 30.6,
7.5 ppm.

Rf: 0.39 (EtOAc/Hexane (50:50 v/v)

The spectral data are consistent with those reported in the literature.⁴

HO n-Hex

3-Hexyl-3-hydroxyindolin-2-one (2o)

Compound **2o** was obtained by using the general procedure **B** from 3-hexyl-1H-indole (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); white solid with 63% yield. ¹H NMR (600 MHz, DMSO-D₆) δ 10.19 (s, 1H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.18 (td, *J* = 7.6, 0.9 Hz, 1H), 6.95 (t, *J* = 7.4 Hz, 1H), 6.79 (d, *J* = 7.7 Hz, 1H), 5.80 (s, 1H), 1.79 – 1.69 (m, 2H), 1.21 – 1.09 (m, 6H), 1.02 (m, 1H), 0.89 (m, 1H), 0.79 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C NMR (151 MHz, DMSO-D₆) δ 179.4, 141.8, 132.2, 128.8, 123.8, 121.5, 109.4, 75.7, 37.7,

31.0, 28.7, 22.6, 21.9, 13.9 ppm.

Rf: 0.35 (EtOAc/Hexane (30:70 v/v)

The spectral data are consistent with those reported in the literature.⁵

3-Benzyl-3-hydroxyindolin-2-one (2p)

Compound **2p** was obtained by using the general procedure **A** from 3-benzyl-1H-indole (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); white solid (24.5mg) with 41% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.03 (s,1H), 7.12 – 7.06 (m, 5H), 6.92 – 6.87 (m, 3H), 6.59 (d, J = 7.5 Hz, 1H), 6.10 (s, 1H), 3.15 (d, J = 12.7 Hz, 1H), 2.99 (d, J = 12.7 Hz, 1H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 178.8, 141.7, 135.1, 130.9, 130.1, 128.8, 127.5, 126.3, 124.6, 121.2, 109.3, 76.6, 43.4 ppm.

Rf: 0.34 (EtOAc/Hexane (30:70 v/v)

The spectral data are consistent with those reported in the literature.⁴

$$HO CO_2Et$$

ethyl 2-(3-hydroxy-2-oxoindolin-3-yl)acetate (2q)

Compound **2q** was obtained by using the general procedure **A** from ethyl 2-(1H-indol-3yl)acetate (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (22.32) with 38% yield.

¹**H NMR (600 MHz, DMSO-D**₆) δ 10.27 (s, 1H), 7.30 (d, *J* = 7.1 Hz, 1H), 7.19 (td, *J* = 7.7, 1.2 Hz, 1H), 6.93 (td, *J* = 7.5, 0.9 Hz, 1H), 6.78 (d, *J* = 7.7 Hz, 1H), 6.13 (s, 1H), 3.87 – 3.75 (m, 2H), 2.95 (d, *J* = 2.2 Hz, 2H), 0.92 (t, *J* = 7.1 Hz, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 177.9, 168.5, 142.6, 130.8, 129.3, 124.1, 121.3, 109.5, 72.7, 59.8, 41.7, 13.6 ppm.

Rf: 0.37 (EtOAc/Hexane (50:50 v/v)

The spectral data are consistent with those reported in the literature.⁶

5-Chloro-3-hydroxy-3-methylindolin-2-one (2r)

Compound **2r** was obtained by using the general procedure **B** from 5-chloro-3-methyl-1Hindole (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (35.5 mg) with 72% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.35 (s, 1H), 7.33 (d, J = 2.1 Hz, 1H), 7.24 (dd, J = 8.2, 2.2 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 5.99 (s, 1H), 1.36 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 179.3, 139.9, 135.7, 128.6, 125.7, 123.7, 111.1, 72.8, 24.2 ppm.

Rf: 0.38 (EtOAc/Hexane (50:50 v/v)

The spectral data are consistent with those reported in the literature.⁴

5-fluoro-3-hydroxy-3-methylindolin-2-one (2s)

Compound **2s** was obtained by using the general procedure **A** from 5-chloro-1,3-dimethyl-1Hindole (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (35:65 v/v); white solid with 62% yield (28.05 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 10.24 (s, 1H), 7.16 (dd, J = 8.1, 2.7 Hz, 1H), 7.05 – 6.98 (m, 1H), 6.79 (dd, J = 8.4, 4.3 Hz, 1H), 5.98 (s, 1H), 1.36 (s, 1H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 179.6, 158.9, 137.2, 135.4, 115.0, 111.3, 110.4, 72.9, 24.3 ppm.

¹⁹**F NMR (565 MHz, DMS0-D**₆) δ -121.74, -121.76, -121.76, -121.77, -121.78 ppm.

Rf: 0.28 (EtOAc/Hexane (40:60 v/v)

The spectral data are consistent with those reported in the literature.⁷

ylmethyl)benzenesulfonamide (2t)

Compound **2t** was obtained by using the general procedure **A** from *N*-(2-(1H-indol-3-yl)ethyl)-4-methyl-*N*-(naphthalen-1-ylmethyl)benzenesulfonamide (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (86.26 mg) with 71% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.13 (s, 1H), 8.30 (d, J = 8.1 Hz, 1H), 7.95 (d, J = 7.2 Hz, 1H), 7.88 (dd, J = 6.8, 2.8 Hz, 1H), 7.71 (d, J = 7.9 Hz, 2H), 7.56 (dq, J = 13.5, 6.8 Hz, 2H), 7.46 (d, J = 7.8 Hz, 2H), 7.38 (d, J = 6.8 Hz, 2H), 7.15 (ddd, J = 8.2, 5.4, 3.4 Hz, 1H), 6.90 (d, J = 5.6 Hz, 2H), 6.69 (d, J = 7.7 Hz, 1H), 5.80 (s, 1H), 4.69 (q, J = 14.3 Hz, 2H), 3.00 (m, 1H), 2.82 (m, 1H), 2.43 (s, 3H), 1.51 (dd, J = 11.5, 5.8 Hz, 2H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.3, 143.5, 141.2, 135.5, 133.3, 131.2, 131.1, 129.9, 129.0, 128.6, 127.6, 127.1, 126.3, 125.9, 125.3, 123.7, 123.7, 121.6, 109.5, 73.8, 50.2, 42.1, 35.7, 21.0 ppm.

Rf: 0.39 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C₂₈H₂₇N₂O₄S: 487.1692 found: 487.1708.

N-(2-Bromo-5-fluorobenzyl)-N-(2-(3-hydroxy-2-oxoindolin-3-yl)ethyl)-4-

methylbenzenesulfonamide (2u)

Compound **2u** was obtained by using the general procedure **A** from *N*-(2-(1H-indol-3-yl)ethyl)-*N*-(2-bromo-5-fluorobenzyl)-4-methylbenzenesulfonamide (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (92 mg) with 69% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.24 (s, 1H), 7.65 (d, J = 8.2 Hz, 3H), 7.43 (d, J = 8.0 Hz, 2H), 7.17 (dtd, J = 22.8, 8.1, 5.8 Hz, 3H), 7.09 (d, J = 7.3 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.7 Hz, 1H), 5.96 (s, 1H), 4.30 (s, 2H), 3.23 – 3.09 (m, 1H), 3.06 (m, 1H), 2.41 (s, 3H), 1.75 (dt, J = 11.6, 5.5 Hz, 2H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.4, 162.3, 160.6, 143.7, 141.2, 138.4, 135.5, 134.4, 134.4, 131.3, 130.0, 129.1, 127.0, 123.7, 121.7, 116.8, 116.7, 116.5, 109.7, 73.7, 51.5, 43.3, 35.9, 21.0 ppm.

¹⁹**F NMR (565 MHz, DMSO-D**₆) δ -113.81, -113.82, -113.83, -113.85 ppm.

Rf: 0.38 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C₂₄H₂₃FN₂O₄S: 533.0546 found: 533.0541

N-Benzyl-N-(2-(3-hydroxy-2-oxoindolin-3-yl)ethyl)-4-methylbenzenesulfonamide (2v)

Compound **2v** was obtained by using the general procedure **A** N-(2-(1H-indol-3-yl)ethyl)-Nbenzyl-4-methylbenzenesulfonamide (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (77.36 mg) with 71% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.20 (s, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.41 (d, J = 8.1 Hz, 2H), 7.30 (dd, J = 8.0, 6.3 Hz, 2H), 7.28 – 7.25 (m, 1H), 7.23 – 7.20 (m, 2H), 7.19 (td, J = 7.6, 1.2 Hz, 1H), 7.06 (d, J = 7.3 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 7.7 Hz, 1H), 5.91 (s, 1H), 4.25 (d, J = 11.2 Hz, 2H), 3.11 – 3.00 (m, 1H), 2.95 – 2.86 (m, 1H), 2.41 (s, 3H), 1.71 (dt, J = 10.6, 4.8 Hz, 2H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.4, 143.3, 141.3, 136.6, 136.5, 131.3, 129.9, 129.1, 128.4, 128.0, 127.5, 126.8, 123.7, 121.7, 109.6, 73.8, 50.9, 42.0, 41.3, 35.5, 20.9 ppm.

Rf: 0.39 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C₂₄H₂₅N₂O₄S: 437.1457 found: 437.1458.

N-(4-Bromobenzyl)-*N*-(2-(3-hydroxy-2-oxoindolin-3-yl)ethyl)ethanesulfonamide (2w)

Compound **2w** was obtained by using the general procedure **A** *N*-(2-(1H-indol-3-yl)ethyl)-*N*-(4-bromobenzyl)ethanesulfonamide (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid with 63% yield. ¹**H NMR (600 MHz, DMSO-D**₆) δ 10.26 (s, 1H), 7.52 (d, J = 8.1 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 7.20 - 7.16 (m, 2H), 6.95 (t, J = 7.5 Hz, 1H), 6.77 (d, J = 7.7 Hz, 1H), 5.98 (s, 1H), 4.28 (s, 2H), 3.10 (dqd, J = 14.6, 7.8, 7.2, 3.0 Hz, 3H), 3.05 - 2.97 (m, 1H), 1.92 (dd, J = 10.0, 6.6 Hz, 2H), 1.19 (t, J = 7.3 Hz, 3H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.5, 141.3, 136.6, 131.4, 131.3, 130.2, 129.1, 123.9, 121.7, 120.6, 109.7, 73.9, 49.6, 45.8, 41.5, 35.9, 7.9 ppm.

Rf: 0.39 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C₁₉H₂₂⁷⁹BrN₂O₄S: 453.0484 found: 453.0480

N-(4-Bromobenzyl)-5-chloro-N-(2-(3-hydroxy-2-oxoindolin-3-yl)ethyl)thiophene-2-

sulfonamide (2x)

Compound **2x** was obtained by using the general procedure **A** N-(2-(1H-indol-3-yl)ethyl)-N-(4bromobenzyl)-5-chlorothiophene-2-sulfonamide (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (82.65 mg) with 61% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.25 (s, 1H), 7.55 (d, J = 4.1 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 4.0 Hz, 1H), 7.19 (dd, J = 8.0, 6.5 Hz, 3H), 7.11 (d, J = 7.3 Hz, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.76 (d, J = 7.7 Hz, 1H), 5.98 (s, 1H), 4.27 (q, J = 15.3 Hz, 2H), 3.21 – 3.11 (m, 1H), 3.10 – 2.94 (m, 1H), 1.78 (td, J = 7.5, 6.3, 3.5 Hz, 2H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.4, 141.2, 137.4, 135.7, 135.2, 132.3, 131.4, 131.3, 130.2, 129.1, 128.5, 123.7, 121.7, 120.8, 109.7, 73.7, 50.6, 42.9, 35.7 ppm

Rf: 0.35 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C₂₁H₁₉⁷⁹BrClN₂O₄S: 540.9580 found: 540.9651

2-((4-Bromobenzyl)(2-(3-hydroxy-2-oxoindolin-3-yl)ethyl)amino)acetonitrile (2y)

Compound **2y** was obtained by using the general procedure **A** (6 Eq. of $BrCH_2CN$ was taken) *N*-(4-bromobenzyl)-2-(1H-indol-3-yl)ethan-1-amine (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (65 mg) with 65% yield. ¹H NMR (600 MHz, DMSO-D₆) δ 10.23 (s, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.22 (d, J = 7.4 Hz, 1H), 7.19 (td, J = 7.7, 1.3 Hz, 1H), 7.15 (d, J = 8.3 Hz, 2H), 6.93 (t, J = 7.5 Hz, 1H), 6.78 (d, J = 7.7 Hz, 1H), 5.93 (s, 1H), 3.59 (d, J = 17.7 Hz, 1H), 3.53 – 3.47 (m, 2H), 3.40 (d, J = 13.7 Hz, 1H), 2.40 – 2.31 (m, 3H), 2.00 (m, 1H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.9, 141.7, 136.8, 131.5, 131.2, 130.7, 128.9, 123.9, 121.6, 120.3, 115.6, 109.6, 74.4, 57.3, 47.9, 41.2, 34.8 ppm.

Rf: 0.36 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C19H18BrN3O2: 400.0582 found: 400.0591

N-(2-(3-Hydroxy-2-oxoindolin-3-yl)ethyl)-4-methyl-*N*-(prop-2-yn-1-yl)benzenesulfonamide (2z)

Compound **2z** was obtained by using the general procedure **A** N-(2-(1H-indol-3-yl)ethyl)-4methyl-N-(prop-2-yn-1-yl)benzenesulfonamide (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (60 mg) with 62% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.29 (s, 1H), 7.59 (d, J = 8.2 Hz, 2H), 7.38 (d, J = 8.0 Hz, 2H), 7.28 – 7.14 (m, 2H), 6.99 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.03 (s, 1H), 4.06 (s, 2H), 3.24 – 3.10 (m, 2H), 2.38 (s, 3H), 1.97 (m, 2H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.5, 143.4, 141.4, 135.5, 131.6, 129.6, 129.1, 127.2, 123.8, 121.7, 109.7, 77.4, 76.1, 73.9, 41.4, 36.5, 35.7, 20.9 ppm.

Rf: 0.37 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for $[M+H]^+ C_{20}H_{21}N_2O_4S$: 385.1144 found: 385.1152

4-Chloro-N-(2-(3-hydroxy-2-oxoindolin-3-yl)ethyl)benzamide (2aa)

Compound **2aa** was obtained by using the general procedure **A** *N*-(2-(1H-indol-3-yl)ethyl)-4chlorobenzamide (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (43.25 mg) with 53% yield. ¹**H NMR (600 MHz, DMSO-D₆)** δ 10.31 (s, 1H), 8.43 (s, 1H), 7.77 (d, *J* = 8.3 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 7.2 Hz, 1H), 7.21 (t, *J* = 7.5 Hz, 1H), 6.98 (t, *J* = 7.3 Hz, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.01 (s, 1H), 3.19 (dd, *J* = 14.2, 6.4 Hz, 2H), 2.15 – 1.85 (m, 2H) ppm ¹³**C NMR (151 MHz, DMSO-D₆)** δ 179.0, 164.9, 141.5, 135.8, 133.2, 131.9, 129.0, 128.3, 124.0,

121.7, 109.7, 74.5, 37.1, 34.4 ppm

Rf: 0.38 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C₁₇H₁₆ClN₂O₃: 331.0771 found: 331.0843.

N-(2-(3-Hydroxy-2-oxoindolin-3-yl)ethyl)-4-methylbenzenesulfonamide (2ab)

Compound **2ab** was obtained by using the general procedure **A** N-(2-(1H-indol-3-yl)ethyl)-4methylbenzenesulfonamide (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (52 mg) with 60% yield.

¹**H NMR (600 MHz, DMSO-D**₆) δ 10.25 (s, 1H), 7.59 (d, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 5.6 Hz, 1H), 7.37 (d, *J* = 8.0 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.15 (d, *J* = 7.3 Hz, 1H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.78 (d, *J* = 7.7 Hz, 1H), 5.97 (s, 1H), 2.78 – 2.65 (m, 2H), 2.38 (s, 3H), 1.83 (m, 2H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.6, 142.6, 141.3, 137.3, 131.6, 129.6, 129.1, 126.5, 123.8, 121.7, 109.7, 73.9, 42.1, 37.3, 20.9 ppm.

Rf: 0.39 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C₁₇H₁₉N₂O₄S: 347.0987 found: 347.1061.

2-(3-Hydroxy-3-methyl-2-oxoindolin-1-yl)ethyl 2-(4-isobutylphenyl)propanoate (2ac)

Compound **2ac** was obtained by using the general procedure **B** from 2-(3-methyl-1*H*-indol-1yl)ethyl 2-(4-isobutylphenyl)propanoate (0.25 mmol). The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (30:70 v/v); dense liquid with 55% yield (54.3 mg).

¹H NMR (600 MHz, DMSO-D₆) δ 7.34 (d, *J* = 7.1 Hz, 1H), 7.27 (t, *J* = 7.7 Hz, 1H), 7.09 – 6.99 (m, 6H), 5.95 (s, 1H), 4.37 – 4.22 (m, 1H), 4.21 – 4.08 (m, 1H), 3.95 (m, 1H), 3.83 (m, 1H), 3.59 (dq, *J* = 14.2, 7.1 Hz, 1H), 2.38 (d, *J* = 7.2 Hz, 2H), 1.78 (dp, *J* = 13.2, 6.6 Hz, 1H), 1.32 (d, *J* = 9.4 Hz, 3H), 1.29 (d, *J* = 7.2 Hz, 1.51H), 1.23 (d, *J* = 7.2 Hz, 1.53H), 0.84 (d, *J* = 1.7 Hz, 3H), 0.83 (d, *J* = 1.7 Hz, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 178.1, 173.8, 141.7, 139.7, 137.5, 137.5, 132.9, 129.0, 128.9, 127.0, 123.2, 122.3, 108.8, 72.3, 61.3, 44.2, 44.1, 38.3, 29.6, 24.6, 22.2, 18.3 ppm.

Rf: 0.35 (EtOAc/Hexane (40:60 v/v)

HRMS: calc. for [M+H]⁺ C₂₄H₂₉NO₄: 396.2175 found: 396.2179.

2-(3-Hydroxy-3-methyl-2-oxoindolin-1-yl)ethyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2methyl-1H-indol-3-yl)acetate (2ad)

Compound **2ad** was obtained by using the general procedure **B** from 2-(3-methyl-1H-indol-1yl)ethyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (0.25 mmol).The reaction was carried out at 60 °C for 12 hours. The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (30:70 v/v); yellowish solid (86.5 mg) with 65% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 7.70 – 7.60 (m, 4H), 7.33 (d, *J* = 6.7 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.03 (t, *J* = 7.1 Hz, 2H), 6.99 (d, *J* = 2.3 Hz, 1H), 6.93 (d, *J* = 9.0 Hz, 1H), 6.71 (dd, *J* = 9.0, 2.4 Hz, 1H), 5.96 (s, 1H), 4.28 (m, 2H), 3.97 (m, 1H), 3.91 – 3.84 (m, 1H), 3.74 (s, 3H), 3.65 (dd, *J* = 32.0, 16.8 Hz, 2H), 2.10 (s, 3H), 1.33 (s, 3H) ppm.

¹³C NMR (151 MHz, DMS0-D₆) δ 178.2, 170.4, 167.8, 155.6, 141.6, 137.6, 135.5, 134.1, 132.9, 131.2, 130.5, 130.2, 129.1, 128.8, 123.2, 122.3, 114.6, 112.3, 111.5, 108.6, 101.6, 72.3, 61.2, 55.4, 38.4, 29.1, 24.5, 13.1 ppm.

Rf: 0.34 (EtOAc/Hexane (40:60 v/v)

HRMS: calc. for [M+H]⁺ C₂₉H₂₆ClN₂O₄: 533.1479 found: 533.1570.

3-(3-Oxobutyl)indolin-2-one (4a)

Compound **4a** was obtained by using the general procedure **A** 4-(1H-indol-3-yl)butan-2-one (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (25.9 mg) with 51% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.38 (s, 1H), 7.24 (d, *J* = 7.3 Hz, 1H), 7.17 (t, *J* = 7.7 Hz, 1H), 6.97 – 6.91 (m, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 3.42 (t, *J* = 6.3 Hz, 1H), 2.48 – 2.38 (m, 2H), 2.04 (s, 2H), 2.02 – 1.93 (m, 2H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 207.7, 178.6, 142.7, 129.3, 127.7, 124.0, 121.3, 109.2, 44.1, 38.8, 29.8, 23.9 ppm.

Rf: 0.35 (EtOAc/Hexane (50:50 v/v)

The spectral data are consistent with those reported in the literature.⁸

1'-Methyl-4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-one (4b)

Compound **4b** was obtained by using the general procedure **A** 3-(1-methyl-1H-indol-3-yl)propyl 4-methylbenzenesulfonate (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (10:90 v/v); white solid (23.3 mg) with 46% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 7.33 (m, 2H), 7.05 (t, J = 7.7 Hz, 1H), 6.98 (d, J = 7.8 Hz, 1H), 4.16 – 4.01 (m, 2H), 3.08 (s, 3H), 2.32 – 2.25 (m, 1H), 2.19 (m, 2H), 2.11 – 2.03 (m, 1H) ppm.
¹³C NMR (151 MHz, DMSO-D₆) δ 176.9, 143.3, 130.3, 129.5, 123.5, 122.6, 108.6, 82.1, 69.5, 35.5, 26.0, 25.8 ppm.

Rf: 0.35 (EtOAc/Hexane (20:80 v/v)

The spectral data are consistent with those reported in the literature.9

4,5-dihydro-3H-spiro[furan-2,3'-indolin]-2'-one (4c)

Compound **4c** was obtained by using the general procedure **A** 3-(1H-indol-3-yl)propan-1-ol (0.25 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (20:80 v/v); white solid (21.25 mg) with 45% yield.

¹H NMR (600 MHz, DMSO-D₆) δ 10.29 (s, 1H), 7.28 (d, *J* = 7.3 Hz, 1H), 7.21 (t, *J* = 7.7 Hz, 1H), 6.96 (t, *J* = 7.2 Hz, 1H), 6.80 (d, *J* = 7.7 Hz, 1H), 4.17 – 3.99 (m, 2H), 2.31 – 2.22 (m, 1H), 2.22 – 2.11 (m, 2H), 2.08 – 1.95 (m, 1H) ppm

¹³C NMR (151 MHz, DMSO-D₆) δ 178.9, 141.8, 131.0, 129.4, 123.9, 122.0, 109.7, 82.4, 69.4, 35.5, 25.9 ppm.

Rf: 0.36 (EtOAc/Hexane (30:70 v/v)

The spectral data are consistent with those reported in the literature.¹⁰

N-(2-(3-Hydroxy-2-oxoindolin-3-yl)ethyl)-*N*-methyl-4-nitrobenzenesulfonamide (7) Compound 7 was obtained by using the general procedure A *N*-(2-(1H-Indol-3-yl)ethyl)-*N*methyl-4-nitrobenzenesulfonamide (1 mmol). The product was isolated by column chromatography with silica gel. Eluent: EtOAc/Hexane (40:60 v/v); white solid (274 mg) with 70% yield. (65% for 1 gram-scale reaction)

¹H NMR (600 MHz, DMSO- D_6) δ 10.29 (s, 1H), 8.41 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 8.8 Hz, 2H), 7.28 (dd, J = 7.4, 1.2 Hz, 1H), 7.21 (dd, J = 7.6, 1.3 Hz, 1H), 6.98 (td, J = 7.5, 1.0 Hz, 1H), 6.81 (d, J = 7.7 Hz, 1H), 6.03 (s, 1H), 3.17 (m, J = 13.5, 10.4, 6.0 Hz, 1H), 3.13 – 3.07 (m, 1H), 2.69 (s, 3H), 1.92 (m, J = 13.2, 11.0, 6.9 Hz, 2H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 178.6, 149.9, 142.7, 141.4, 131.6, 129.2, 128.6, 124.8, 123.9, 121.7, 109.8, 73.8, 44.6, 35.3, 34.5 ppm.

Rf: 0.38 (EtOAc/Hexane (50:50 v/v)

HRMS: calc. for [M+H]⁺ C₁₇H₁₈N₃O₆S: 392.0916 found: 392.0898.

3-Hydroxy-3-(2-(methylamino)ethyl)indolin-2-one (8)

To a screw cap reaction tube charged with a magnetic stir-bar, substrate **7** (0.25 mmol) and Cs_2CO_3 (0.5 mmol, 2 equiv)) were added followed by the addition of Thiophenol (0.75 mmol, 3 equiv) Then, 1.5 mL DMF was added. The reaction mixture was kept at room temperature under a nitrogen atmosphere and stirred vigorously for completion of the reaction (1h). Then the reaction mixture was diluted with 20 mL of water and extracted with 3*20 mL of EtOAc.

Afterward, the extracted organic layer was dried over Na_2SO_4 and concentrated and the product was purified by column chromatography using silica gel (100-200 mesh) and EtOAc / Hexane as eluent (65:35 v/v); yellow solid (20.5 mg) with 40% yield.

¹**H NMR (600 MHz, DMSO-D₆)** δ 6.99 – 6.93 (m, 1H), 6.68 – 6.65 (m, 2H), 6.45 (t, *J* = 7.4 Hz, 1H), 6.08 (s, 1H), 5.24 (br s, 2H), 3.30 – 3.24 (m, 1H), 2.99 (m, 1H), 2.85 (s, 3H), 2.43 (m, 1H), 2.16 (m, 1H) ppm.

¹³C NMR (151 MHz, DMSO-D₆) δ 174.1, 147.1, 128.1, 125.9, 124.4, 116.2, 115.4, 78.8, 44.6, 33.4, 29.5 ppm.

Rf: 0.4 (EtOAc/Hexane (70:30 v/v)

The spectral data are consistent with those reported in the literature.⁴

Mechanistic experiment:

i) Reaction with 4-BrPHCH₂Br

To a screw cap reaction tube charged with a magnetic stir-bar, substrate 4bromobenylbromide (1 mmol) was added. Then, 2 mL DMSO was added. The reaction mixture was kept at 30 °C and stirred vigorously for 12 h. Then the reaction mixture was diluted with 20 mL of water and extracted with 3*20 mL of EtOAc. Afterward, the extracted organic layer was dried over Na₂SO₄ and concentrated and the product was purified by column chromatography using silica gel (100-200 mesh) and EtOAc / Hexane as eluent (20:80 v/v); colorless liquid (125 mg) with 67% yield.

(4-Bromophenyl)methanol

OH

¹H NMR (600 MHz, DMSO-D₆) δ 7.50 (d, J = 7.9 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 5.28 (t, J = 5.7 Hz, 1H), 4.46 (d, J = 5.6 Hz, 2H) ppm.
¹³C NMR (151 MHz, DMSO-D₆) δ 142.0, 130.9, 128.6, 119.5, 62.1 ppm.
Rf: 0.38 (EtOAc/Hexane (30:70 v/v)

The spectral data are consistent with those reported in the literature.

ii) Reaction with Dry DMSO and Molecular Sieve

To a screw cap reaction tube charged with a magnetic stir-bar, substrate **1a** (0.25 mmol) and bromoacetonitrile (0.75 mmol) were added. Then, 2 mL dry DMSO was added. The reaction mixture was kept at 30 °C and stirred vigorously for completion of the reaction (24h). Then the reaction mixture was diluted with 20 mL of water and extracted with 3*20 mL of EtOAc. Afterward, the extracted organic layer was dried over Na₂SO₄ and concentrated and the product was purified by column chromatography using silica gel (100-200 mesh) and EtOAc / Hexane as eluent. Finally, the reaction mixture was analysed by ¹H NMR of crude reaction mixture and the desired product was not found.

Similarly, when, the reaction was performed with DMSO with 4 Å MS, the desired product was not found, confirmed by TLC and ¹H NMR.

iii) Reaction with probable intermediate

To a screw cap reaction tube charged with a magnetic stir-bar, substrate $1a^{-1}$ (0.25 mmol) was added. Then, 2 mL normal DMSO was added. The reaction mixture was kept at 30 °C and stirred vigorously for completion of the reaction (24h). Then the reaction mixture was diluted with 20 mL of water and extracted with 3*20 mL of EtOAc. Afterward, the extracted organic layer was dried over Na₂SO₄ and concentrated and the product was purified by column chromatography using silica gel (100-200 mesh) and EtOAc / Hexane as eluent. Finally, the reaction mixture was analysed by ¹H NMR of crude reaction mixture and the desired product was not found.

Similarly, when, the reaction was carried out with 3 equiv of BrCH₂CN, the desired product was observed only 20% after 36 h, confirmed ¹H NMR

iv) NMR study of the crude reaction mixture

Conclusion: After 3 hours, two methyl peaks of the intended product and perhaps an intermediate were identified. After 6 hours, the methyl peak of the intermediate had vanished, leaving only the methyl peak of the desired product. During the 1H NMR analysis, we did not observe an oxindole signals.

v) ¹⁸O labelling experiment with ¹⁸OH₂

Unsuccessful Attempts:

O

R = CN 0% R = CHO 0% R = CO₂Et 0%

0%

decomposed

Ĥ

complex mixtures

Green chemistry metrics comparison with previous works¹¹

E-Factor = Amount of waste/Amount of final product (*Green Chem.*, 2025, 10.1039/D4GC06205A)

AE = Molecular weight of product/Sum of molecular weight of reagent. (*Green Chem.*, 2025, 10.1039/D4GC06205A)

Entry	Work of different	AE	E-factor	Conditions	Ref ⁿ
	groups				
1	Our method	97.88	1.16	Metal-free	-
2	Palaniappan	84.68	3.82	PANI, PCC	12
3	Yadav	41.64	4.18	CeCl ₃ •7H ₂ O and IBX	13
4	Ren and others	73.31	3.86	$CuBr_2+Cu(ClO_4)_2\bullet 6H_2O$	4

Green Chemistry Metrics for our method ^{11,14}

a) Process Mass Intensity (PMI)

PMI = [Total mass used in the process (g/g)]/[Mass of product (g/g)]

PMI_[Reaction] = [Mass_[reactants] + Mass_[reagents] + Mass_[solvents]]/ [Mass of product]

 $PMI_{[Workup \& column]} = [Mass_{[workup solvents]} + Mass_{[conumn solvents]} / [Mass of product]$

 $\mathbf{PMI}_{[Total]} = [Mass_{[reactants]} + Mass_{[reagents]} + Mass_{[solvents]} + Mass_{[workup & column solvents]}]/[Mass of product]$

b) E-Factor = PMI-1

c) Atom Economy (AE) = [Molar Mass of desired product X 100]/ [Molar Mass of all reactants]

d) Reaction Mass Efficiency (RME) = [Mass of desired product X 100]/ [Mass of all reactants]

PMI Calculations:

The table below displays the detailed PMI calculations and other green chemistry parameters for the preparation of compound 2a in a 0.25 mmol scale.

i)	Substrate	Mass (g)	Mol. Wt.	Mol	
	1a	0.036	145.02	0.00025	
ii)	Reagents	Mass (g)	Mol. Wt.	Mol	
	BrCH ₂ CN	0.089	119.94	0.00075	
iii)	Reaction Solvents	Vol. (mL)	Density (g/mL)	Mass (g)	
	DMSO	2.5	1.10	2.750	
	Total Reaction Materials	2.875 g	-		
B) F	Purification Stage (Work up & Colu	umn chromatogra	phy)	l	
	Materials	Vol. (mL)	Density (g/mL)	Mass (g)	
	H ₂ O	20	1.0	20	
	AcOEt	180	0.902	162.36	
	hexane	180	0.661	118.98	
	Total purification Materials	301.34 g			
	Total Input Materials	304.21 g			
	Output Target Product	Mass (g)	Mol. Wt.		
	2a	0.036	177.2		
		•	1		
	Green Metrics Analysis				
	Yield (%)	82			
	Conversion (%)	100			
	AE (%)	97.88			
	RME (%)	100			
	PMI _[Reaction]	79.86			
	PMI _[Workup & column]	8370.55			
	PMI _[Total]	8450.27			
	E-factor	8449.27			

PMI Calculations for step iii (7 to 8)

The table below displays the detailed PMI calculations and other green chemistry parameters for the preparation of compound 8 in a 0.25 mmol scale

$H_{3}C, N_{3}C, N_{3$					
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\$					
A) R	eaction Stage				
i)	Substrate	Mass (g)	Mol. Wt.	Mol	
	7	0.089	359.40	0.25	
ii)	Reagents	Mass (g)	Mol. Wt.	Mol	
	BrCH ₂ CN	0.089	119.94	0.75	
iii)	Reaction Solvents	Vol. (mL)	Density (g/mL)	Mass (g)	
	DMSO	2.5	1.10	2.75	
	Total Reaction Materials	2.92 g			
B) Purification Stage (Work up & Column chromatography)					
	Materials	Vol. (mL)	Density (g/mL)	Mass (g)	
	H ₂ O	20	1.0	20	
	AcOEt	180	0.902	162.36	
	hexane	180	0.661	118.98	
	Total purification Materials	301.34 g			
	Total Input Materials	304.26 g			
	Output Target Product	Mass (g)	Mol. Wt.		
	8	0.068	391.39		
		1		-	
	Green Metrics Analysis				
	Yield (%)	70			
	Conversion (%)	100			
	AE (%)	98.98			
	RME (%)	76.40			
	PMI _[Reaction]	42.94			
	PMI _[Workup & column]	4431.47			
	PMI _[Total]	4474.41			
	E-factor	4473.41			

PMI Calculations for step iv (8 to 9)

The table below displays the detailed PMI calculations and other green chemistry parameters for the preparation of compound 9 (Donaxaridine) in a 0.25 mmol scale.

HO H = O H					
	8		9		
A) R	eaction Stage		1		
i)	Substrate	Mass (g)	Mol. Wt.	Mol	
	8	0.097	391.39	0.25	
ii)	Reagents	Mass (g)	Mol. Wt.	Mol	
	Cs ₂ CO ₃	0.162	325.82	0.5	
	PhSH	0.082	110.19	0.75	
iii)	Reaction Solvents	Vol. (mL)	Density (g/mL)	Mass (g)	
-	CH ₃ CN	1.5	0.783	1.17	
	Total Reaction Materials 1.51 g				
B) P	urification Stage (Work up & Colu	mn chromatograp	hy)		
	Materials	Vol. (mL)	Density (g/mL)	Mass (g)	
	H ₂ O	20	1.0	20	
	AcOEt	180	0.902	162.36	
	hexane	180	0.661	118.98	
	Total purification Materials	301.34 g	1		
-	Total Input Materials	302.85 g			
	Output Target Product	Mass (g)	Mol. Wt.		
	9	0.023	206.25		
				- <u>-</u>	
	Green Metrics Analysis				
	Yield (%)	45			
	Conversion (%)	100			
	AE (%)	52.69			
	RME (%)	23.71			
	PMI _[Reaction]	65.65			
	PMI _[Workup & column]	13101.73			
	PMI _[Total]	13167.39			
	E-factor	13166.39			

NMR spectra of synthesized compounds

NMR of compound (2a)

NMR of compound (2d)

NMR of compound (2h)

NMR of compound (2I)

NMR of compound (2t)

NMR of compound (2u)

-50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

Reference:

- Kumar, N.; Das, M. K.; Ghosh, S.; Bisai, A. Development of catalytic deacylative alkylations (DaA) of 3-acyl-2-oxindoles: total synthesis of meso-chimonanthine and related alkaloids. *Chem. Commun.* 2017, 53 (13), 2170.
- (2) Kinthada, L. K.; Medisetty, S. R.; Parida, A.; Babu, K. N.; Bisai, A. FeCl3-Catalyzed Allylation Reactions onto 3-Hydroxy-2-oxindoles: Formal Total Syntheses of Bis-cyclotryptamine Alkaloids, (±)-Chimonanthine, and (±)-Folicanthine. *J. Org. Chem.* **2017**, *82* (16), 8548.
- Mohanta, N.; Samal, P. P.; Pandey, A. M.; Mondal, S.; Krishnamurty, S.; Gnanaprakasam, B.
 Catalyst-Assisted Selective Vinylation and Methylallylation of a Quaternary Carbon Center
 Using tert-Butyl Acetate. J. Org. Chem. 2023, 88 (14), 9686.
- Jiang, S.-Y.; Shi, J.; Wang, W.; Sun, Y.-Z.; Wu, W.; Song, J.-R.; Yang, X.; Hao, G.-F.; Pan, W.-D.; Ren, H. Copper-Catalyzed Selective Electron Transfer Enables Switchable Divergent Synthesis of 3-Functionalized Oxindoles. ACS Catal. 2023, 13 (5), 3085.
- (5) Chaudhari, M. B.; Sutar, Y.; Malpathak, S.; Hazra, A.; Gnanaprakasam, B. Transition-Metal-Free C–H Hydroxylation of Carbonyl Compounds. *Org. Lett.* **2017**, *19* (13), 3628.
- Zou, B.; Leong, S. Y.; Ding, M.; Smith, P. W. A mild and efficient synthesis of spiroquinolinones via an unexpected rearrangement. *Tetrahedron Lett.* 2015, *56* (44), 6016.
- (7) Calvo, R.; Le Tellier, A.; Nauser, T.; Rombach, D.; Nater, D.; Katayev, D. Synthesis, Characterization, and Reactivity of a Hypervalent-Iodine-Based Nitrooxylating Reagent. *Angew. Chem. Int. Ed.* 2020, *59* (39), 17162.
- (8) Gruda, I. Addition de Michael des indol-2(3H)-ones. *Tetrahedron Lett.* **1973**, *14* (6), 457.
- (9) Wang, H.; Liu, D.; Chen, H.; Li, J.; Wang, D. Z. CuCl2/TBHP-mediated direct chlorooxidation of indoles. *Tetrahedron* **2015**, *71* (38), 7073.

- (10) Zheng, H.; Chen, X.; Zuo, J.; Ye, J.; Zhao, C.; Xu, J. Syntheses of spiro-oxindoles via KI/oxonemediated oxidation/cyclization of homotryptamine and homotryptophol derivatives. *Tetrahedron* **2023**, *137*, 133386.
- (11) Zhou, X.; Wang, S.-C.; Chen, Q.-L.; Zhang, Z.-Y.; Xiong, Y.-S.; Lu, G.; Weng, J. Photocatalytic hydro-fluorosulfonylation of alkenes with N-fluorosulfonyl aldimines. *Green Chem.* 2025, DOI:10.1039/D4GC06205A 10.1039/D4GC06205A.
- (12) Kumar, C. N. S. S. P.; Devi, C. L.; Rao, V. J.; Palaniappan, S. Use of Pyridinium Chlorochromate and Reusable Polyaniline Salt Catalyst Combination for the Oxidation of Indoles. *Synlett* 2008, 2008 (13), 2023.
- (13) Yadav, J. S.; Reddy, B. V. S.; Reddy, C. S.; Krishna, A. D. CeCl3·7H2O/IBX-promoted oxidation of 3-alkylindoles to 3-hydroxyoxindoles. *Tetrahedron Lett.* **2007**, *48* (11), 2029.
- (14) Monteith, E. R.; Mampuys, P.; Summerton, L.; Clark, J. H.; Maes, B. U. W.; McElroy, C. R. Why we might be misusing process mass intensity (PMI) and a methodology to apply it effectively as a discovery level metric. *Green Chem.* **2020**, *22* (1), 123.