Supporting Information (SI) for: Highly active Fe-N₄ sites confined in ordered carbon nanotube arrays as self-supporting cathode catalyst for oxygen conversion

Shuling Liu,^a Tongjun Li,^a Guozheng Dong,^a Xinao Wei,^b Keke Zhao,^b Bangan Lu,^c Yu Chen,^d Yanyan Liu,^{*a,b} Jianchun Jiang,^e and Baojun Li^a

^a College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China

^b College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou

450002, P. R. China

E-mail address: lyylhs180208@163.com (Y.Y. Liu)

^c College of Materials Science and Engineering, Zhengzhou University, 100 Science Road,

Zhengzhou 450001, P. R. China

^d Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Key Laboratory

for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology,

School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, P.

R. China

^e Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojinwucun, Nanjing 210042, P. R. China Total number of Fig.s: 16

Total number of tables: 5

Table of Contents

Fig. S2
Fig. S3 4 Fig. S4 4 Fig. S5 4 Fig. S6 5 Fig. S7 5 Fig. S8 6 Fig. S9 6 Fig. S10 7 Fig. S12 7 Fig. S13 8 Fig. S14 8 Fig. S15 8 Fig. S16 9 Table S1 10
Fig. S4 4 Fig. S5 4 Fig. S6 5 Fig. S7 5 Fig. S8 6 Fig. S9 6 Fig. S10 7 Fig. S11 7 Fig. S12 7 Fig. S13 8 Fig. S14 8 Fig. S15 8 Fig. S16 9 Table S1 10
Fig. S5 4 Fig. S6 5 Fig. S7 5 Fig. S8 6 Fig. S9 6 Fig. S10 7 Fig. S11 7 Fig. S12 7 Fig. S13 8 Fig. S14 8 Fig. S15 8 Fig. S16 9 Table S1 10
Fig. S6 .5 Fig. S7 .5 Fig. S8 .6 Fig. S9 .6 Fig. S10 .7 Fig. S11 .7 Fig. S12 .7 Fig. S13 .8 Fig. S14 .8 Fig. S15 .8 Fig. S16 .9 Table S1 .10
Fig. S7 5 Fig. S8 6 Fig. S9 6 Fig. S10 7 Fig. S11 7 Fig. S12 7 Fig. S13 8 Fig. S14 8 Fig. S15 8 Fig. S16 9 Table S1 10
Fig. S8
Fig. S9
Fig. S10
Fig. S11
Fig. S12
Fig. S13
Fig. S14
Fig. S15
Fig. S16
Table S110
Table S210
Table S311
Table S412
Table S513

Fig. S1. SEM images of NC at various magnifications through (a) lateral direction and (b) longitudinal direction.

Fig. S2. Contact angle of NC

Fig. S3. SEM results of Fe-ZIF-8/NC: (a, c) lateral cutting surface and (b, d) longitudinal cutting surface.

Fig. S4. XRD of (a) Fe-ZIF-8/NC and ZIF-8/NC, (b) Fe_{SA}/NC, CNC and NC.

Fig. S5. SEM results of Fe_{SA}/NC.

Fig. S7. The XPS spectra of a Fe_{SA}/NC , b C.

Fig. S8. Nitrogen adsorption–desorption isotherms of Fe_{SA}/NC , ZIF-NC, and NC.

Fig. S9. Wavelet transform (WT) of Fe_{SA}/NC , Fe foil and Fe_2O_3 samples

Fig. S10. EXAFS k-space fitting curve corresponding to Fe_{SA}/NC

Fig. S12. EXAFS r-space and k-space fitting curves corresponding to Fe foil.

Fig. S13. (a) ORR LSV curves of Fe_{SA}/NC at different rotation rates, (b) the corresponding K-L plots.

Fig. S14. The results of SCN⁻ poisoned Fe_{SA}/NC in 0.1 M KOH

Fig. S15. Impedance diagrams of Fe_{SA}/NC, ZIF-NC, NC and CNC.

Fig. S16. Fe_{SA}/NC plate-based quasi-solid-state ZAB.

Catalysts	Fe (wt.%,	Zn (wt.%, ICP-	Fe	С	Ν	0
2	ICP-OES)	OES)		(at.	%, XPS)	
Fe _{SA} /NC	0.95	0.04	0.98	88.23	5.36	5.45

Table S1. Element analysis results of $\mathrm{Fe}_{\mathrm{SA}}/\mathrm{NC}$ determined by XPS and ICP-OES

Table S2. BET surface and pore volume of samples.

Sample name	BET surface area (m ² g ⁻¹)	Total pore volume (cm ³ g ⁻¹)
NC	1229	0.38
Z-NC	453	0.06
Fe _{SA} /NC	1378	0.23

Sample	Shell	CN^a	$R(\text{\AA})^b$	$\sigma^2(\text{\AA}^2)^c$	$\Delta E_0(\mathrm{eV})^d$	R factor
Fe <i>K</i> -edge ($S_0^2 = 0.811$)						
Fe foil	Fe-Fe	8*	2.470 ± 0.009	0.0058+0.0010	((1)	0.0014
	Fe-Fe	6*	2.852 ± 0.009	0.0038 ± 0.0019	0.0 ± 1.0	0.0014
	Fe-O	5.8±0.9	1.956±0.028	0.0126 ± 0.0038	-0.8±1.7	
E ₂ O	Fe-Fe	5.2±0.4	2.977±0.017			0.0096
$\Gamma e_2 O_3$	Fe-Fe	5.2±0.7	3.473±0.013	$0.0078 {\pm} 0.0019$	1.4±2.7	0.0080
	Fe-Fe	3.9±0.3	3.717±0.019			
Fe _{SA} /NC	Fe-N	4.6±0.5	1.893 ± 0.009	0.0106 ± 0.0023	-2.5 ± 0.4	0.0016
	Fe-N-C	1.6±0.4	2.961±0.015	0.0156 ± 0.0041	8.7±0.6	0.0010

Table S3. EXAFS fitting parameters at the Fe K-edge for various samples

Catalysts	Electrolyte	$E_{onset}(V vs.$	$E_{1/2}$ (V vs.	Data source
Fe _{SA} /NC	0.1 M KOH	1.06	<u> </u>	This work
571				
	$0.5 \text{ M} \text{H}_2 \text{SO}_4$		0.80	
Fe/SNCFs- NH ₃	0.1 M KOH	1.02	0.89	Adv.Mater.2021, 2105410
SA-Fe/NG	0.1 M KOH	0.99	0.88	Sci. USA 2018, 115, 6626.
Fe–NC– SAC	0.1 M KOH	0.98	0.9	Nat. Commun. 2019, 10, 1278.
Fe-SAC/NC	0.1 M KOH		0.86	Nano Energy 2020, 72, 104670
meso-Fe-N- C	0.1 M KOH		0.846	ACS Catal. 2021, 11, 74-81
Fe/N-CNRs	0.5 M H ₂ SO ₄	0.90	0.73	Adv. Funct. Mater. 2020, 2008085
Fe-N-C HNSs	0.1 M KOH	1.046	0.87	Adv. Mater. 2019, 31, 1806312
FeSA-N-C	0.1 M HClO ₄		0.78	Angew. Chem. Int. Ed. 2018, 57, 8525-8529
Fe- SAs/NPS- HC	0.1 M KOH	0.970	0.912	Nat. Commun. 2018, 9, 5422
FeSA-N-C	0.1 M HClO ₄		0.8	Nat. Commun. 2020, 11, 1-7
SA-Fe/NG	$0.5 \ \mathrm{M} \ \mathrm{H_2SO_4}$		0.80	Proc. Natl. Acad. Sci. 2018, 115, 6626-6631
Fe/N-G- SAC	0.1 M KOH		0.89	Adv. Mater. 2020, 32, 2004900[
Fe–N _x ISAs/GHS	0.1 M KOH		0.87	Adv. Sci. 2019, 6, 1801103
Fe-N/P-C- 700	0.1 M KOH	0.941	0.867	J. Am. Chem. Soc. 2020, 142, 2404–2412
Fe- SAs/NSC	0.1 M KOH	1.00	0.87	J. Am. Chem. Soc. 2019, 141, 20118– 20126
Fe–N–C	0.1 M KOH	0.965	0.85	Nat. Energy 2021, 6, 834–843

 Table S4. Comparison of ORR activity of various non-precious catalysts.

Catalysts	OCV (V)	Power densities (mW cm ⁻²)	Data sourse
Fe _{SA} /NC	1.47	77.3	This work
Co-CoO _x /N-C NSAs	1.32	20.7	ACS Sustainable Chem. Eng. 2019, 8 (1), 452- 459.
V-Co ₃ O ₄	1.39	40.6	ACS Catal. 2021, 11 (13), 8097–8103.
FeCo/Se- CNTLDH + Pt/C	1.40	37.5	Nano Lett. 2021, 21 (5), 2255–2264.
V ₂ O ₃ / MnS/CC	1.40	72	Small 2022, 18 (15), 2104411.
Ni- SAs/HCNFs/ Co-NAs	1.38	57.6	ACS Nano 2022, 16 (9), 15273–15285.
CoSe ₂ -NCNT NSA	1.35	40.6	Nanoscale 2021, 13 (5), 3019–3026.

 Table S5. Performance comparison between Fe_{SA}/NC-based quasi-solid Zinc-air batteries and other quasi-solid zinc-air batteries previously reported