Supplementary Information

Asymmetric defective sites-triggered triple synergistic modulation in nanoconfined-aerogel for superior electrochemical low-concentration nitrate-toammonia

Ke Wang^a, Tong Zhao^a, Shiyu Zhang^a, Rupeng Wang^a, Meng Wang^a, Zixiang He^a, Shih-Hsin Ho^{a*}

^aState Key Laboratory of Urban Water Resource and Environment, School of

Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.

*Corresponding author. E-mail: stephen6949@msn.com

Supplementary Experiments

Text S1. Chemicals

Cobalt acetate tetrahydrate (Co(CH₃COO)₂·4H₂O, 99%), 2-methylimidazole (2-mIM, 98%), carboxymethyl cellulose (CMC, AR), potassium hydroxide (NaOH, AR), sodium nitrate (Na¹⁴NO₃, 99.99%), sodium nitrate (Na¹⁵NO₃, 98.5%), sodium nitrite (NaNO₂, 99.99%), sodium sulfate (Na₂SO₄, 99%), sodium citrate (C₆H₅O₇Na₃, 98%), salicylic acid (C7H6O3, 99.5%), sodium nitroferricyanide dihydrate (C5FeN6Na2O.2H2O 99.0%), sodium chloride (NaCl, 99.99%), sodium bicarbonate (NaHCO₃, 99%), sodium carbonate (Na₂CO₃, 99%), Humic acid (HA, 90%), calcium sulfate (CaSO₄, AR), and magnesium sulfate (MgSO₄, AR) were purchased from Aladdin Reagent Co., Ltd. (Shanghai, China). Hydrochloric acid (HCl, AR) was purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Sulfanilamide (C6H8N2O2S, 99.5%), N-(1-naphthyl) ethylenediamine dihydrochloride (C₁₂H₁₄N₂·2HCl, >98%), sulfamic acid (H₃NO₃S, 99.5%), phosphoric acid (H₃PO₄, AR), sodium hypochlorite (NaClO, AR), cobalt powder (20-30 nm, 99.9%), tert-Butanol (TBA, 99%), and ammonium chloride (NH₄Cl, 99.99%) were purchased from Macklin Biochemical Co., Ltd. (Shanghai, China). Spirulina-based reduced graphene oxide (SRGO) was prepared according to our previous works after ascorbic acid reduction [1]. All chemicals were analytical grade and used without further purification.

Text S2. Characterization methods

The morphological characteristics and microstructures of the samples were observed by field-emission scanning electron microscopy (SEM, Hitachi S-4800, Japan) and field-emission transmission electron microscopy (TEM, JEOL-2001F), while the crystalline structures were obtained by X-ray diffraction using Cu Kα irradiation (XRD, Bruker D8, Germany). The chemical compositions and the valence of the elements in the samples were investigated by X-ray photoelectron spectroscopy using an Al-Ka Xray source (XPS, Thermo Escalab 250, America). The isotope labeling experiments were measured by ¹H-NMR measurement (Bruker 600-MHz, Germany). The Raman spectra were obtained Via Raman spectroscopy system (Renishaw, UK) with a 532-nm excitation laser to determine the degree of graphitization of the prepared materials. The concentrations of nitrogen species were determined through ultraviolet-visible (UVvis) spectrophotometer (UV-6000, China). The measurement of oxygen vacancies in the sample was conducted using an EPR spectrometer (Bruker A300, Germany). The specific surface area was calculated based on the Brunauer-Emmett-Teller equation (BET, NOVA2000E. America) in the pressure P/Po range. The hydrophilicity was tested by a contact angle instrument (CA, Dataphysics OCA 20, Germany). The Work function was tested by Scanning Kelvin probe (SKP) (SKP5050 system, Scotland). Inductively coupled plasma mass spectrometer (ICP-MS, PerkinElmer NexION 300X, America) was used to determine the Co₃O₄ loading.

Text S3. Determination of nitrogen species concentration

The ion concentration was quantified by the UV-Vis spectrophotometer, after diluting to an appropriate concentration based on the calibration curves. The specific detection methods are as follows:

NO₃⁻⁻N quantification. First, 0.2 mL of the electrolyte after the electrochemical nitrate reduction reaction test was diluted to 5 mL with water, then 0.1 mL of HCl solution (1 M) and 0.01 mL of 0.8 wt% sulfamic acid solution were added, and the color was developed for 10 min. Subsequently, the absorbance was measured by UV-vis

spectrophotometry in the wavelength of 220 nm and 275 nm. Nitrate-N final absorbance was obtained from the following equation: $A = A_{220nm} - 2A_{275nm}$. The concentration-absorbance calibration curve was plotted using a series of concentration known standard NaNO₃ solutions dissolved in 0.1 M Na₂SO₄.

NO₂-N quantification. The concentration of NO₂⁻ was determined by Griess method. The color agent was prepared as follows: 50 mL deionized water and 10 mL phosphoric acid were mixed together, followed by adding 4.0 g sulfanilamide and 0.2 g of N-(1-naphthyl)-ethylenediamine 5 dihydrochloride. The mixture was then diluted to calibration tail in a 100 mL volumetric flask. In addition to that, 5 mL electrolyte diluted to the detection range was taken out into a test tube, followed by adding 0.1 mL color reagent. After shaking and standing for 20 min, the absorbance value at a wavelength of 540 nm was recorded by UV-Vis absorption spectra. The concentration-absorbance calibration curve was plotted using a series of concentration known standard NaNO₂ solutions dissolved in 0.1 M Na₂SO₄.

NH₃-N quantification. The concentration of NH₃ was determined by the indophenol blue method. Specifically, a certain amount of electrolyte was extracted out to dilute to the detection range. And then 2 mL diluted electrolyte was taken out into a test tube, followed by adding 2 mL 1.0 M NaOH solution containing 5.0 wt% salicylic acid (C₇H₆O₃) and 5.0 wt% sodium citrates (C₆H₅Na₃O₇·2H₂O), 1 mL NaClO (0.05 M) solution and 0.2 mL 1.0 wt% sodium nitroferricyanide (Na₂[Fe(NO)(CN)₅]·2H₂O) solution. After standing for 2 h in dark place under ambient conditions, UV-Vis absorption spectra were measured, and the absorbance value at a wavelength of 655 nm was collected. In order to quantify the concentration, the concentration-absorbance calibration curve was plotted using a series of standard NH₄Cl solutions dissolved in 0.1 M Na₂SO₄.

Text S4. Calculation of the NO₃RR parameters

The NO₃⁻N conversion was calculated as follow:

NO₃-N conversion (%) =
$$\Delta c_{NO_2-N}/c_0 \times 100\%$$

The selectivity of NH₃-N was calculated as follow:

NH₃-N selectivity (%) = $c_{NH_3-N}/\Delta c_{NO_3^2-N} \times 100\%$

The Faradaic efficiency was calculated as follow:

 FE_{NH_3-N} (%) = 8 × F × c_{NH_3-N} × V/17 × Q

The yield rate of NH₃-N was calculated as follow:

NH₃-N yield (mg h⁻¹ cm⁻²) =
$$c_{NH_3-N} \times V/t \times S$$

where c_{NH_3-N} is the mass concentration of NH₃-N(mg/L), V is the volume of electrolyte in the cathode compartment (mL), M is the molar mass of NH₃, t is the electrolysis time (h), S is the geometric area of working electrode (cm²), $\Delta c_{NO_3^2-N}$ is the concentration difference of NO₃⁻-N before and after electrolysis, c₀ is the initial concentration of NO₃⁻-N, F is the Faradaic constant (96485 C mol⁻¹), Q is the total charge passing the electrode.

Text S5. In-situ FT-IR measurements

In situ Fourier transformed infrared spectroscopy (FT-IR) were obtained on a Bruker INVENIO S spectrometer. A thin gold film was chemically deposited on the surface of a silicon crystal. The ink of the sample was dropped on the aforementioned gold film supported by silicon, and the whole was served as the working electrode. Platinum foil and Ag/AgCl electrodes were used as the counter electrode and the reference electrode, respectively. 140 mg/L NO₃⁻-N with 0.1 M Na₂SO₄ electrolyte were used as the reactant. LSV curves were conducted from 0.0 V to -1 V vs. RHE. with a scan rate of 10 mV s⁻¹.

Text S6. Online DEMS measurements

The mass spectrometer and an electrochemical workstation were used for the online

differential electrochemical mass spectrometry (DEMS) measurements. 140 mg/L NO₃⁻ -N with 0.1 M Na₂SO₄ electrolyte was prepared as the electrolyte. Ar was bubbled into the electrolyte constantly before and during the DEMS measurements. The as-prepared sample, Pt wire, and Ag/AgCl electrode were used as the working electrode, counter electrode, and reference electrode, respectively. Potentiostatic test at -0.8 V vs. RHE was performed and the corresponding mass signals can be detected during this period. After the electrochemical test was over and the mass signal returned to baseline, the next cycle was started using the same test conditions to avoid the accidental error during DEMS measurements. The measurement was ended after three cycles.

Text S7. FEM simulations

The COMSOL Multiphysics software package was used to conduct FEM simulations. Based on the experimental data, the diameter of Co₃O₄ nanoparticles (blue semicircle) was determined to be 20 nm, and the pore diameter of porous SRGA (gray shell) was determined to be 4 nm. The solution of 0.1 M Na₂SO₄ with 10 mM NO₃⁻-N was allowed to diffuse to the surface of catalysts. The "Chemistry" module defined surface equilibrium reactions on the porous carbon shell for the adsorption-desorption of NO₃⁻, while the "Transport of Diluted Species" module was utilized to model the diffusion of NO₃⁻.

Text S8. DFT computational details

The Co₃O₄ surface was modeled using a periodic slab structure with lattice parameters of a = 12.0014 Å, b = 12.2345 Å, and c = 20.0000 Å, including a vacuum layer of 15 Å along the c-axis to eliminate inter-slab interactions. A surface oxygen atom was deliberately removed to introduce oxygen vacancies, simulating surface defect states that are typically present in catalytic conditions. This defect model allows for the investigation of the role of surface oxygen vacancies in modulating adsorption properties and electronic structure.

First-principles calculations were performed within the density functional theory framework. The projector-augmented wave (PAW) method [2] and the generalized gradient approximation (GGA) [3] for the exchange-correlation energy functional, as implemented in the Vienna ab initio simulation package (VASP) were used [4]. The GGA calculation was conducted with the Perdew-Burke-Ernzerhof (PBE) exchangecorrelation potential [5]. Considering long-range interaction between molecules/intermediates and surface, Van der Waals interactions were considered using DFT-D3 correlation. A slab model of 1×1×1 conventional cell of Co₃O₄ surface with six atomic layers as used to model the catalyst. To avoid effects from other slabs, a vacuum of 15 Å was added along z direction. The convergence criterion of geometry relaxation was set to 0.03 eV^A in force on each atom. The energy cutoff for the plane wave-basis was set to 500 eV. The K points were sampled with $3 \times 3 \times 1$ by the Monkhorst-Pack method. The change in free energy (ΔG) of per reaction step was calculated as follows,

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S$$

where ΔE is the change of the total reaction energy obtained from DFT calculation, ΔZPE the change of the zero-point energy, T the temperature (300 K), and ΔS the change of the entropy.

Figure S1. (a, b) SEM images and (c, d) TEM images of SRGO.

Figure S2. (a) XRD patterns, (b) SEM images and (c, d) TEM images of Co-MOF/SRGA.

Figure S3. (a) Photos of Vo-HCo₃O₄@SRGA on carbon paper with different mass loadings. photographs of Vo-HCo₃O₄@SRGA-80 (b) before and (c) after 200 h of immersion in the electrolyte.

When the coating amounts of Co-MOF@SRGO hydrogels was 80 µL, the best stability was maintained while maximizing the uniform distribution of Vo-HCo₃O₄@SRGA on the surface of carbon paper. Since the loading amount is too low, Vo-HCo₃O₄@SRGA cannot completely cover the surface of carbon paper, and when the loading amount is too high, it leads to the cracking of Vo-HCo₃O₄@SRGA on the surface and decreases the stability. Vo-HCo₃O₄@SRGA shows no significant shedding even after 200 hours of immersion in electrolyte, indicating its excellent stability.

Figure S4. SEM images of (a) Vo-HCo₃O₄@SRGA-20, (b) Vo-HCo₃O₄@SRGA-40, (c) Vo-HCo₃O₄@SRGA-60, (d) Vo-HCo₃O₄@SRGA-80, and Vo-HCo₃O₄@SRGA-100 on carbon paper.

Figure S5. SEM images of (a)Vo-HCo₃O₄@SRGA and (b) Vo-HCo₃O₄.

Figure S6. (a) SEM and (b) TEM images of H-Co₃O₄.

Figure S7. (a) XRD and (b) Raman spectra of Co@SRGA, H-Co₃O₄@SRGA, Y-Co₃O₄@SRGA, and Vo-HCo₃O₄@SRGA.

Figure S8. (a) high-resolution XPS of O1s of Y-Co₃O₄@SRGA. High-resolution XPS of Co 2p of

(b) H-Co₃O₄@SRGA, (c) Y-Co₃O₄@SRGA, and (d) Vo-HCo₃O₄@SRGA.

Figure S9. High-resolution XPS of (a) Co 2p and (b) O1s of H-Co₃O₄.

Figure S10. PL spectroscopy of H-Co₃O₄@SRGA, Y-Co₃O₄@SRGA, and Vo-HCo₃O₄@SRGA.

Figure S11. Work functions of H-Co₃O₄@SRGA and Vo-HCo₃O₄@SRGA.

Figure S12. (a) N₂ adsorption-desorption isotherm and (b) pore size distribution curves of H-Co₃O₄,

Vo-HCo₃O₄@SRGA, and H-Co₃O₄@SRGA.

Figure S13. Adsorption kinetic for NO3⁻ adsorption onto H-Co3O4, H-Co3O4@SRGA, and Vo-

HCo₃O₄@SRGA.

Figure S14. (a) UV-Vis curves and (b) corresponding calibration curve of indophenol assays with

known NO3⁻ concentrations.

Figure S15. (a) UV-Vis curves and (b) corresponding calibration curve of indophenol assays with

known NO₂⁻ concentrations.

Figure S16. (a) UV-Vis curves and (b) corresponding calibration curve of indophenol assays with known NH_3 concentrations.

Figure S17. (a) Tafel slopes of H-Co₃O₄, H-Co₃O₄@SRGA, Co@SRGA, Y-Co₃O₄@SRGA, and Vo-HCo₃O₄@SRGA. CV measurements for testing the ECSAs of (b) H-Co₃O₄, (c) H-Co₃O₄@SRGA, (d) Co@SRGA, (e) Y-Co₃O₄@SRGA, and (f) Vo-HCo₃O₄@SRGA.

Figure S18. Nyquist plots for H-Co₃O₄, H-Co₃O₄@SRGA, Co@SRGA, Y-Co₃O₄@SRGA, and Vo-HCo₃O₄@SRGA.

Figure S19. (a) LSV curves of carbon paper and Vo-HCo₃O₄@SRGA during the eNO₃⁻RR process. (b) NH₃-N yield rates of carbon paper and Vo-HCo₃O₄@SRGA. (c) The comparation of NH₃-N yield rates of Vo-HCo₃O₄@SRGA at -0.8 V vs. RHE and open circuit potential (OCP). (d) The comparation of NH₃-N yield rates of Vo-HCo₃O₄@SRGA in the presence and without of NO₃⁻ electrolyte.

Figure S20. XRD patterns of Vo-HCo₃O₄@SRGA (a) before and (b) after eNO_3 ⁻RR process. (c) TEM, (d) HRTEM, and (e) and elemental mappings of Vo-HCo₃O₄@SRGA after eNO_3 ⁻RR process.

Figure S21. (a) Environmental interference factors on FE of NH₃-N over Vo-HCo₃O₄@SRGA.

Figure S22. NH₃-N yield rates and FEs of Vo-HCo₃O₄@SRGA at (a) different NO₃⁻ concentrations and (b) different pH.

Figure S23. Simulated concentration distribution of NO_3^- on the surface of Vo-HCo₃O₄ and Vo-HCo₃O₄ encapsulated with SRGA at different diffusion time.

Figure S24. Structural models of (c) Co_3O_4 and (d) $Vo-Co_3O_4$ used in this work. Calculated Co-O bonds length of (c) Co_3O_4 and (d) $Vo-Co_3O_4$.

Figure S25. Calculated band structures of (a) Co₃O₄ and (b) Vo-Co₃O₄.

Figure S26. PDOS of (a) d_{yz} , (b) d_{z^2} , (c) d_{xz} , and (d) $d_{x^2-y^2}$ orbitals for NO₃⁻ adsorbed on Co₃O₄ and Vo-Co₃O₄.

Figure S27. The tested adsorption geometries of *H₂O, *H+*OH and *H on the Co₃O₄ surface.

Figure S28. The tested adsorption geometries of *H₂O, *H+*OH and *H on the Vo-Co₃O₄ surface.

$$NO_{3}^{-} \longrightarrow NO_{3}^{*} \longrightarrow HNO_{3}^{*} \longrightarrow NO_{2}^{*}$$

$$NO_{2(g)} \longleftarrow HNO_{2}^{*}$$

$$NO_{(g)} \longleftarrow NO^{*} \xrightarrow{(1)} HNO^{*} \longrightarrow NH^{*} \longrightarrow NH_{2}^{*} \longrightarrow NH_{3}^{*}$$

$$NOH^{*} \xrightarrow{(2)} N^{*} \longrightarrow NH^{*} \longrightarrow NH_{2}^{*} \longrightarrow NH_{3}^{*}$$

$$HNOH^{*} \xrightarrow{(3)} NH^{*} \longrightarrow NH_{2}^{*} \longrightarrow NH_{3}^{*}$$

$$HNOH^{*} \xrightarrow{(4)} HAO^{*} \longrightarrow HA_{2}^{*} \longrightarrow HA_{3}^{*}$$

Figure S29. All possible reaction paths that result in NH₃ as the main product.

Figure S30. The tested adsorption geometries of $*NO_3$, $*NO_2$, *NO, *NOH, *N, NH*, $*NH_2$ and NH_3* on the Co_3O_4 surface.

Figure S31. The tested adsorption geometries of $*NO_3$, $*NO_2$, *NO, *NOH, *N, NH*, $*NH_2$ and NH_3* on the Vo-Co₃O₄ surface.

Samples name/µL Vo-HCo ₃ O ₄ @SRGA-X (X	20	40	60	80	100
= 20-100 μL)					
Active aera of carbon paper/cm ²			1		
Mass loading after pyrolysis/mg cm ⁻²	0.45	0.90	1.28	1.72	1.83

Table S1. The preparation details and mass loadings of Vo-HCo $_3O_4@SRGA$ on carbon paper.

Catalytic system	Use of	Use of	Use of high	Use of	References
5 5	Nafion	precious	temperature heating or	Hazardous	
	solution or	metals or	not	Chemicals	
	not	not		Reagents or	
				not	
Vo-HCo ₃ O ₄ @SRGA	No	No	Yes (800 °C in Ar environment)	No	Our work
Pd-CoO _x	No	Yes (Pd)	No	Yes (HCl, acetone)	6
Mg single atom/carbon	Yes	No	Yes (850 °C in N ₂ for 3 h)	Yes (acetone, hydrofluoric acid)	7
Cu-TiO ₂	Yes	No	Yes (hydrothermal at 180 °C for 12 h, 600 °C in Ar for 2 h)	Yes (HCl)	8
Cu in an oxide octahedral molecular sieve (Cu(x)- OMS-1	Yes	No	Yes (hydrothermal at 140 °C for 24 h)	No	9
Mo-HATN-COFs	Yes	No	Yes (hydrothermal at 180 °C for 12 h)	Yes (H ₂ SO ₄)	10
Fe ₃ C/NC	Yes	No	Yes (hydrothermal at 180 °C for 6 h, 700 °C in Ar for 2 h)	Yes (HCl)	11
NbO _x	Yes	No	Yes (hydrothermal at 180 °C for 12 h, 500 °C in Air for 4 h)	Yes (H ₂ C ₂ O ₄ , methanol)	12
Cu ₂ O/Cu@PdCu	Yes	Yes (Pd)	No	Yes (HCl)	13
Co_9S_8	Yes	No	Yes (450 °C in Ar/H ₂ for 3 h)	Yes (methanol)	14
RhCu nanocavities	Yes	Yes (Rh)	Yes (350 °C in Ar/H ₂ for 3 h)	Yes (dimethyl formamide)	15
Ru-Co ₃ O ₄	Yes	Yes (Ru)	Yes (hydrothermal at 100 °C for 6 h, hydrothermal at 120 °C for 12 h, 350 °C in Air for 3 h, 250 °C in Air for 2 h)	Yes (HCl)	16

Table S2. Comparison of Vo-HCo₃O₄@SRGA with some related electrocatalysts in terms of

materials used as well as preparation process.

CuPd/CuO	No	Yes (Pd)	Yes (hydrothermal at 90 °C for 14 h, 300 °C	Yes (NaBH ₄ solution)	17
RuCu DAs/NGA	Yes	Yes (Ru)	$\begin{array}{c} \text{in Air for 2 h)} \\ \text{Yes (800 °C in N2 for} \\ 2 \text{ h)} \end{array}$	No	18
FeIr alloy	No	Yes (Ir)	Yes (hydrothermal at 180 °C for 12 h)	Yes (HCl)	19
Ag1@Cu2O	No	Yes (Ag)	Yes (200 °C in Ar/H ₂ for 1 h)	Yes (HCl)	20
Fe-TiO ₂	Yes	No	Yes (800 °C in Air for 20 h, 800 °C in Air for 20 h)	Yes (HCl, Cs ₂ CO ₃ , TBAOH)	21
IrCu ₄ alloy	Yes	Yes (Ir)	Yes (oil bath at 260 °C for 5 h)	Yes (cyclohexane)	22
Cu-SrRuO ₃	Yes	Yes (Ru)	Yes (500 °C in Air for 6 h, 950 °C in Air for 12 h)	Yes (HNO ₃)	23
FeSe ₂ /Fe ₃ O ₄	No	No	Yes (hydrothermal at 180 °C for 24 h)	Yes (HCl, acetone)	24
Ru-B-Co ₃ O ₄ /CNT	Yes	Yes (Ru)	Yes (350 °C in Air for 3 h)	Yes (HNO ₃)	25
Ru _{SACs} -CF	No	Yes (Ru)	No	Yes (HCl)	26
Ru/WO _{3-x}	No	Yes (Ru)	Yes (hydrothermal at 170 °C for 10 h, 350 °C in Ar/H ₂ for 2 h, 250 °C in Ar/H ₂ for 2 h))	Yes (HCl, acetone)	27
Ru _{SA} @Cu ₂₊₁ O	Yes	Yes (Ru)	Yes (300 °C in N ₂ for 3 h)	Yes (NaBH4 solution)	28
Rh ₁ -TiO ₂	No	Yes (Rh)	Yes (400 °C in Air for 3 h)	Yes (Methyl methacrylate)	29
P-CoMoO ₄ -x nanowires	Yes	No	Yes (hydrothermal at 150 °C for 10 h, 400 °C in Ar for 2 h)	Yes (NH ₄ F solution)	30
IrCo alloy	Yes	Yes (Ir)	Yes (900 °C in N ₂ for 2 h)	No	31
Ni-MOF-Ru rod qrray	No	Yes (Ru)	Yes (hydrothermal at 150 °C for 20 h)	Yes (HCl, acetone, C ₈ H ₆ O ₄)	32
Co-B/Ru ₁₂	Yes	Yes (Ru)	No	Yes (NaBH ₄ solution)	33
Cu11Ag3 nanotips	No	Yes (Ag)	No	Yes (H ₂ SO ₄)	34

Ni-MoS ₂ nanosheets	Yes	No	Yes (hydrothermal at	Yes	35
			180 °C for 20 h,	(thioacetamid	
			400 °C in Ar for 2 h)	e)	
HPdCuCo/RGO	Yes	Yes (Pd)	Yes (hydrothermal at	No	36
			160 °C for 7 h)		

Table S3. The specific surface areas, pore sizes and pore volumes of Vo-HCo₃O₄,

Samples	Surface area (m ² g ⁻¹)	Pore size (nm)
H-Co ₃ O ₄	9.5	4.3
H-Co ₃ O ₄ @SRGA	206.4	3.9
Vo-HCo ₃ O ₄ @SRGA	191.3	4.1

HCo₃O₄@SRGA and Vo-HCo₃O₄@SRGA.

Models	Parameters	H-Co ₃ O ₄	H-Co ₃ O ₄ @SRGA	Vo-HCo ₃ O ₄ @SRGA
Pseudo-	$q_e ({ m mg/g})$	2.11	4.95	9.01
first-	$K_l(\min^{-1})$	0.037	0.073	0.12
order	R^2	0.8978	0.9464	0.9416
Pseudo-	$q_e ({ m mg/g})$	2.25	5.40	9.63
second-	$K_2(g/(\text{mg}\cdot\text{min}))$	0.01	0.019	0.03
order	R^2	0.9753	0.9822	0.9853

Table S4. Parameters of Pseudo-first-order and Pseudo-second-order kinetic models for NO3⁻

adsorption by H-Co₃O₄, H-Co₃O₄@SRGA, and Vo-HCo₃O₄@SRGA.

Table S5. Comparison of electrocatalytic eNO3 RR performance for Vo-HCo3O4@SRGA with

Electrocatalyst	Electrolyte	Conditions	Performance	Reference
Vo-	140 mg/L NO ₃ ⁻ -	-0.8 V vs. RHE	FENH ₃ -N: 96.5%	this work
HCo ₃ O ₄ @SRGA	N+0.1 M Na ₂ SO ₄		YNH ₃ -N: 1.53 mg h $^-$	
			$^{1} \mathrm{cm}^{-2}$	
CoP	140 http://pp/10803	-N+ 0 2.4 V vs2.4 V	V vs. ISHNH 3-N: 38%/ENH	I3-N: β387%
	N+0.1 M NMa218102280	D ₄ SHE	YNH3-N: 1.28/mg/hj=N	: 1.275 mg h ⁻¹
			cm ⁻²	cm ⁻²
CuCl/TiO ₂	100 mg/L NO ₃ ⁻ -	-1.0 V vs. RHE	FENH ₃ -N: 44.7%	[38]
	N+0.5 M Na ₂ SO ₄		YNH ₃ -N: 1.50 mg h ⁻¹ cm ⁻²	
CuSAs/NC	50 mg/L NO ₃ ⁻ -	-1.06 V vs.	FENH ₃ -N: 46.7%	[39]
	N+0.05 M Na ₂ SO ₄	SCE	YNH ₃ -N: 0.482 mg h ⁻¹ cm ⁻²	
Cu@C	14 ppm NO ₃ ⁻ -N+1	-0.3 V vs. RHE	FENH ₃ -N: 72%	[40]
	М КОН		YNH ₃ -N: 0.255 mg h ⁻¹ cm ⁻²	
	100 mg/L NO ₃ -	-0.44 V vs	FENH ₃ -N: 74.1%	[41]
0000002	N+0.1 M Na ₂ SO ₄	RHE	YNH ₃ -N: 0.204 mg	[]
	2 .		$h^{-1} \text{ cm}^{-2}$	
CuCoO _x	50 ppm NO ₃ ⁻ -	-1.1 V vs. SCE	FENH ₃ -N: 81%	[42]
	N+0.5 M Na ₂ SO ₄		YNH3-N: 0.288 mg	
			$h^{-1} cm^{-2}$	
Co/NC-800	100 ppm NO ₃ ⁻ -	-1.2 V vs.	FENH ₃ -N: 81.2%	[43]
	N+0.1 M Na ₂ SO ₄	Ag/AgCl	YNH ₃ -N: 0.611 mg h ⁻¹ cm ⁻²	
TiO _{2-x}	50 ppm NO ₃ ⁻ -	-0.95 V vs.	FENH ₃ -N: 85%	[44]
	N+0.5 M Na ₂ SO ₄	RHE	YNH ₃ -N: 0.63 mg h ⁻¹ cm ⁻²	
Cu-PTCAD	112.9 ppm NO ₃ ⁻ -	-0.4 V vs.	FENH ₃ -N: 85.9%	[45]
	N+0.1 M PBS (pH =7)	RHE	YNH ₃ -N: 0.362 mg h ⁻¹ cm ⁻²	
NiPc-CNT	50 ppm NO_3^{-} -	-1.2 V vs.	FENH ₃ -N: 86.8%	[46]
	N+0.05 M Na ₂ SO ₄	Ag/AgCl	YNH ₃ -N: 0.156 mg h ⁻¹ cm ⁻²	
Co-B@CoOx	100 ppm NO ₃ ⁻ -	-0.75 V vs.	FENH ₃ -N: 86.82%	[47]
	N+0.5 M Na ₂ SO ₄	RHE	YNH ₃ -N: 0.791 mg	
		1011 005	$h^{-1} \text{ cm}^{-2}$	F 4 6 3
$Cu(\underline{a})Cu_{2+1}ONWs$	50 ppm NO_3^-	-1.2 V <i>vs</i> . SCE	FENH ₃ -N: 87.07%	[48]
	IN+U.3 IVI K28U4		h^{-1} cm ⁻²	

some related electrocatalysts under low concentrations NO₃⁻ conditions.

Mn-O-C	100 ppm NO ₃ ⁻ -	-0.5 V vs. RHE	FENH ₃ -N:	[49]
	N+0.1 M K ₂ SO ₄		$89.0\pm3.8\%$	
			YNH ₃ -N: 0.796 mg	
			$h^{-1} cm^{-2}$	
Cu _{1.5} /NTC	50 ppm NO ₃ ⁻ -	-0.75 V vs.	FENH ₃ -N: 94.3%	[50]
	N+0.5 M Na ₂ SO ₄	RHE	YNH3-N: 0.618 mg	
			$h^{-1} cm^{-2}$	
Ni ₃ Fe-CO ₃	70 ppm NO ₃ ⁻ -N+1	-0.2 V vs. RHE	FENH ₃ -N: 96.8%	[51]
LDH/Cu	М КОН		YNH3-N: 1.038 mg	
			h^{-1} cm ⁻²	

References

[1] K. Wang, S. Zhang, R. Wang, Y. Liu, G. Cao, X. Duan and S.-H. Ho, *Sep. Pur. Technol.*, 2022, **290**, 120862.

[2] P. E. Blöchl, Phys. Re.v B Condens. Matter., 1994, 50, 17953.

[3] S. Grimme, J. Comput. Chem., 2006, 27, 1787-1799.

[4] G. Kresse and J. Furthmüller, Comp. Mater. Sci., 1996, 6, 15-50.

[5] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

[6] Y. Wang, Y. Zeng, J. Xie, C. Wang, C. Zhou, L. Song, K. Ma and H. Yue, *Green Chem.*, 2025, 27, 1763-1770.

[7] K. Kumar, P. Tripathi, G. Raj, D. Kalyan, D.B. Gorle, N.G. Mohan, S.K. Makineni, K. Ramanujam, A.K. Singh and K.K. Nanda, *Green Chem.*, 2024, **26**, 7931-7943.

[8] W.P. Utomo, H. Wu, R. Liu and Y.H. Ng, Green Chem., 2024, 26, 1443-1453.

[9] S. Li, C. Xiao, R. Chen, M. Wang, Y. Ma, K. Luo, M. Shen, Y. Zhu, Y. Li and C. Li, *Green Chem.*, 2023, 25, 10549-10555.

[10] H. Huang and K. Wang, Green Chem., 2023, 25, 9167-9174.

[11] Y. Wang, L. Zhang, Y. Niu, D. Fang, J. Wang, Q. Su and C. Wang, *Green Chem.*, 2021, 23, 7594-7608.

[12] X. Wan, W. Guo, X. Dong, H. Wu, X. Sun, M. Chu, S. Han, J. Zhai, W. Xia, S. Jia, M. He and B. Han, *Green Chem.*, 2022, 24, 1090-1095.

[13] L. Sun, X. Min, J. Wang, Y. Yang, S. Han, D. Fan, Y. Jing, D. Xu, W. Wang and B. Liu, *Adv. Mater.*, 2025, 2503291.

[14] J. Zhang, J. Li, W. Chen, Q. Zhang, J. Li, Y. Li, X. Ren, X. Ouyang, X. Meng, J. Qiu, J. Hu, S. Ye, J. Liu and Q. Zhang, *Appl. Catal. B-Environ. Energy*, 2025, **373**, 125333.

[15] L. Zhu, H. Yao, L. Sun, L. Ai, H. Zhai and C. Yi, Small, 2025, 2502787.

[16] J. Jiang, L. Zhang, G. Wu, J. Zhang, Y. Yang, W. He, J. Zhu, J. Zhang and Q. Qin, *Angew. Chem. Int. Edit.*, 2025, e202421240.

[17] J. Li, L. Liu, S. Huang, H. Wang, Y. Tang, C. Zhang, F. Du, R. Ma, C. Li and C. Guo, *Adv. Funct. Mater.*, 2025, 2501527.

[18] K. Liu, Z. Sun, X. Peng, X. Liu, X. Zhang, B. Zhou, K. Yu, Z. Chen, Q. Zhou, F. Zhang, Y. Wang, X. Gao, W. Chen and P. Chen, *Nat. Commun.*, 2025, 16, 2167.

[19] J. Xiong, L. Jiang, B. Zhu, S. Huang, S. Wu, K. You, X. Li and L. Feng, *Adv. Funct. Mater.*, 2025, 23705.

[20] L. Zhang, Y. Cai, Y. Li, C. Sun, Y. Xiao, Y. Yang, D. Chen, D. Xiao, C.-F. Lee, Y. Wang, S. Feng, H.-T. Wang, Y.-C. Shao, T.-S. Chan, H. Ishii, N. Hiraoka, X. Wang, J. Luo and L. Han, *Energ. Environ. Sci.*, 2025, **18**, 2804-2816.

[21] J. Wang, K. Zhao, Y. Yao, F. Xue, F. Lu, W. Yan, F. Yuan and X. Wang, *Nat. Commun.*, 2025, **16**, 1129.

[22] N. He, Z. Yuan, C. Wu, S. Xi, J. Xiong, Y. Huang, G. Lian, Z. Du, L. Liu, D. Wu, Z. Chen, W. Tu, Z. Zou and S.-Y. Tong, ACS Nano, 2025, 19, 4684-4693.

[23] L. Lv, H. Tan, Y. Liu, N. Li, Q. Ji, Y. Kong, H. Wang, M. Sun, M. Fan, C. Wang and W. Yan, *Adv. Funct. Mater.*, 2025, 2423612.

[24] Y. Du, H. Lu, J. Wu, Y. Zou, Z.-F. Huang, J.-J. Zou, T. Mu, J. Gao, X.-D. Zhu and Y.-C. Zhang, *Angew. Chem. Int. Edit.*, 2025, **64**, e202420903.

[25] X. Wang, L. Chen, Q. Wei, Z. Wen, G. Ding, Z. Feng, Z. Wang and Q. Jiang, *Chem. Eng. J.*, 2025, **504**, 158814.

[26] T. Xiang, X. Liu, Z. Wang, Y. Zeng, J. Deng, W. Xiong, M. Cheng, J. Liu, C. Zhou and Y. Yang, *Appl. Catal. B-Environ. Energy*, 2025, **365**, 124943.

[27] H. Fu, S. Lu, Y. Xin, S. Xiao, L. Chen, Y. Li and K. Shen, *Energ. Environ. Sci.*, 2025, **18**, 818-830.

[28] Y. Lin, Y. Wang, Y. Xu, H. Liu, X. Liu, L. Shan, C. Wu, L. Yang and L. Song, *Adv. Funct. Mater.*, 2025, **35**, 2417486.

[29] Z.L. Zhao, S. Yang, S. Wang, Z. Zhang, L. Zhao, Q. Wang and X. Zhang, Adv. Sci., 2025, 12, 2411705.

[30] Y. You, H. Chen, J. Guo, Z. Feng, J. Zhan, F. Yu and L.-H. Zhang, *Appl. Catal. B-Environ. Energy*, 2025, **363**, 124837.

[31] Y. Tang, P. Ran, L. Zhong, H. Liao, Q. Tong, W. Zou and L. Dong, *Chem. Eng. J.*, 2024, **500**, 157518.

[32] Y. Yao, X. Wei, H. Zhou, K. Wei, B. Kui, F. Wu, L. Chen, W. Wang, F. Dai, P. Gao, N. Wang and W. Ye, *ACS Catal.*, 2024, **14**, 16205-16213.

[33] J. Zhang, T. Quast, B. Eid, Y.-T. Chen, R. Zerdoumi, S. Dieckhöfer, J.R.C. Junqueira, S. Seisel and W. Schuhmann, *Nat. Commun.*, 2024, **15**, 8583.

[34] C. Wang, Z. Liu, Q. Peng, D. Xing, T. Hu, F. Du, C. Li, R. Ma, H. Yang and C. Guo, *Angew. Chem. Int. Edit.*, 2025, **64**, e202415259.

[35] J. Lv, X. Sun, F. Wang, R. Yang, T. Zhang, T. Liang, W. Rong, Q. Yang, W. Xue, L. Wang, X. Xu and Y. Liu, *Adv. Funct. Mater.*, 2024, **34**, 2411491.

[36] R. Yan, H. Yin, X. Zuo, W. Peng, X. Zhu, L. Shi, J. Hou, D. Wang, F. Ye, J. Li, B. Mao and C. Hu, *Appl. Catal. B-Environ. Energy*, 2025, **361**, 124609.

[37] J. Gao, N. Shi, X. Guo, Y. Li, X. Bi, Y. Qi, J. Guan and B. Jiang, *Environ. Sci. Technol.*, 2021, 55, 10684-10694.

[38] W.-J. Sun, H.-Q. Ji, L.-X. Li, H.-Y. Zhang, Z.-K. Wang, J.-H. He and J.-M. Lu, *Angew. Chem. Int. Ed.*, 2021, **60**, 22933-22939.

[39] T. Zhu, Q. Chen, P. Liao, W. Duan, S. Liang, Z. Yan and C. Feng, Small, 2020, 16, 2004526.

[40] Z. Song, Y. Liu, Y. Zhong, Q. Guo, J. Zeng and Z. Geng, Adv. Mater., 2022, 34, 2204306.

[41] Y. Xue, Q. Yu, J. Fang, Y. Jia, R. Wang and J. Fan, Small, 2024, 20, 2400505.

[42] L. Fang, S. Wang, S. Lu, F. Yin, Y. Dai, L. Chang and H. Liu, *Chinese Chem. Lett.*, 2024, **35(4)**, 108864.

[43] H. Liu, J. Qin, J. Mu and B. Liu, J. Colloid Interf. Sci., 2023, 636, 134-140.

[44] R. Jia, Y. Wang, C. Wang, Y. Ling, Y. Yu and B. Zhang, ACS Catal., 2020, 10(6), 3533-3540.

[45] G.-F. Chen, Y. Yuan, H. Jiang, S.-Y. Ren, L.-X. Ding, L. Ma, T. Wu, J. Lu and H. Wang, *Nat. Energy*, 2020, **5**, 605-613.

[46] Y. Li, L. Ren, Z. Li, T. Wang, Z. Wu and Z. Wang, ACS Appl. Mater. Interfaces, 2022, 14, 53884-53892.

[47] X. Zhu, C. Ma, Y.-C. Wang, K. Qu, L. Song, J. Wang, Y. Gong, X. Liu, J. Zhang, Q. Lu and A.-L. Wang, *Energ. Environ. Sci.*, 2024, 17, 2908-2920.

[48] T. Ren, K. Ren, M. Wang, M. Liu, Z. Wang, H. Wang, X. Li, L. Wang and Y. Xu, *Chem. Eng. J.*, 2021, **426**, 130759.

[49] S. Zhang, Y. Zha, Y. Ye, K. Li, Y. Lin, L. Zheng, G. Wang, Y. Zhang, H. Yin, T. Shi and H.

Zhang, Nano-Micro Lett., 2023, 16, 9.

[50] X.-Y. Ji, K. Sun, Z.-K. Liu, X. Liu, W. Dong, X. Zuo, R. Shao and J. Tao, *Nano-Micro Lett.*, 2023, **15**, 110.

[51] K.-H. Kim, H. Lee, X. Huang, J.H. Choi, C. Chen, J.K. Kang and D. O'Hare, *Energ. Environ. Sci.*, 2023, **16**, 663-672.