Supporting Information (SI)

Facile and rapid access to hexafluoroisopropanol (HFIP)-group

functionalized aniline and indole derivatives using hexafluoroacetone

trihydrate in HFIP

Xindi Li,^a Yuhao Wu,^a Jinshan Li,^{*a,c} Jialin Xie,^{a,c} Juanzu Liu,^{a,c} Zhenchang Wen,^b Zhendong Zhao^b and Chunman Jia^{*b,c}

^aHainan Provincial Key Lab of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.

^bAnalytical & Testing Center, Hainan University, Haikou 570228, China.

^cOne Health Institute, Hainan University, Haikou 570228, China.

*E-mail: lijinshan@hainanu.edu.cn

*E-mail: jiachunman@hainanu.edu.cn

Contents

General information
General procedure for synthesis of HFIP group functionalized aniline and
indole derivatives (3–53)
Synthesis of dendritic HFIP-group functionalized derivatives and phenol-
based product (54–56)
Gram-scale synthesis and recovery of the HFIP solventS3-S4
Synthesis of bioactive molecules 57 and 58
Applications of the obtained HFIP-group functionalized molecules as
organocatalysts
¹ H NMR study of the multiple interactions in the reaction
system
Calculation of Green Metrics
Characterization data of the products
NMR spectra of the related compounds
References

1. General information

Unless otherwise indicated, all reactions were carried out in air. All reagents and solvents were obtained commercially and used as received without further purification. Analytical thin layer chromatography was performed on 0.20 mm Qingdao Haiyang silica gel plates. Silica gel (200-300 mesh) (from Qingdao Haiyang Chem. Company, Ltd.) was used for flash chromatography. ¹H, ¹³C and ¹⁹F were recorded on Bruker AV 400 MHz instrument at 400 MHz (¹H NMR), 100 MHz (¹³C NMR), as well as 376 MHz (¹⁹F NMR). CDCl₃ (7.26 ppm for ¹H NMR, 77.0 ppm for ¹³C NMR), or DMSO- d_6 (2.50 ppm for ¹H NMR, 39.5 ppm for ¹³C NMR) or acetone- d_6 (2.05 ppm for ¹H NMR, 29.8 ppm for ¹³C NMR) was used as a reference. Data for ¹H were reported as follows: chemical shift (ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, m = multiplet, br = broad singlet), coupling constants (Hz), and integration. Data for ¹³C NMR were reported as ppm. High-resolution mass spectra analyses were performed on a Waters SYNAPT G2-Si Q-TOF mass spectrometer or Bruker ultrafleXtreme MALDI-TOF/TOF mass spectrometer. Melting points were determined using a X-4 digital micro melting point apparatus. Thin-layer chromatography (TLC) was performed, and visualization of the compounds was accomplished with UV light (254 nm). Flash column chromatography was performed on silica gel (200-300 mesh). Tridentate and sexadentate indole-based substrates were prepared according to the reported procedures.¹⁻²

2. General procedure for synthesis of HFIP group functionalized aniline and indole derivatives (3-53)

To a solution of aniline or indole derivatives (0.5 mmol, 1.0 equiv.) in HFIP (1.5 mL) in a 5 mL glass vial, hexafluoroacetone trihydrate (0.5 mmol, 1.0 equiv. or 1.0 mmol, 2.0 equiv.) were added and was stirred at room temperature until the completion of the reaction (monitored by TLC, approximately 6–48 hours). Then the mixture was concentrated under reduced pressure. The residue was purified by column chromatography to afford the desired products 3-53, using the indicated eluent.

3. Synthesis of dendritic HFIP-group functionalized derivatives and phenol-based product (54–56)

To a solution of tridentate indole-based substrate (232.8 mg, 0.5 mmol, 1.0 equiv.) in HFIP (1.5

mL) in a 5 mL glass vial, hexafluoroacetone trihydrate (330.0 mg, 1.5 mmol, 3.0 equiv.) were added and was stirred at room temperature until the completion of the reaction (monitored by TLC, 24 hours). Then the mixture was concentrated under reduced pressure. The residue was purified by column chromatography to afford the desired product **54** (366.2 mg, 76%) as white solid, using the indicated eluent.

To a solution of sexadentate indole-based substrate (170.6 mg, 0.2 mmol, 1.0 equiv.) in HFIP (1.5 mL) in a 5 mL glass vial, hexafluoroacetone trihydrate (264.0 mg, 1.2 mmol, 6.0 equiv.) were added and was stirred at room temperature until the completion of the reaction (monitored by TLC, 48 hours). Then the mixture was concentrated under reduced pressure. The residue was purified by column chromatography to afford the desired product **55** (177.5 mg, 48%) as white solid, using the indicated eluent.

To a solution of phenol (47.1 mg, 0.5 mmol, 1.0 equiv.) in HFIP (1.5 mL) in a 5 mL glass vial, hexafluoroacetone trihydrate (110.0 mg, 0.5 mmol, 1.0 equiv.) were added and was stirred at 100 $^{\circ}$ C in an oil bath until the completion of the reaction (monitored by TLC, 48 hours). Then the mixture was concentrated under reduced pressure. The residue was purified by column chromatography to afford the desired product **56** (24.7 mg, 19%) as white solid, using the indicated eluent.

To a 50 mL glass vial added *N*,*N*-dimethylaniline **1** (1.21 g, 10.0 mmol, 1.0 equiv.) and hexafluoroacetone trihydrate **2** (2.20 g, 10.0 mmol, 1.0 equiv.) in 30 mL of HFIP. The resulting mixture was stirred at room temperature. After completion of the reaction (monitored by TLC) the HFIP solvent was recovered by distillation directly from the reaction pot (60–70 °C, 27 mL, 90%).

The residue was purified by washing with hexane to give **3** (2.77 g, 96%) as white solid. Compounds **11** (2.57 g, 86%), **19** (2.72 g, 96%) and **24** (3.33 g, 92%) were obtained as white solid according to above washing work-up procedure.

5. Synthesis of bioactive molecules 57 and 58

The corresponding acyl chloride or sulfonyl chloride (0.53 mmol, 1.05 equiv) was dissolved in anhydrous DCM (1.5 mL) under N₂ atmosphere and the resulting mixture was cooled to 0 °C. Then, the HFIP-functionalized aniline **8** (136.6 mg, 0.5 mmol, 1.0 equiv) was added dropwise followed by the slow addition of triethylamine (87.5 μ L, 0.63 mmol, 1.25 equiv). After completion of addition, the ice bath was removed and the reaction was stirred for 12 hours at room temperature. After the completion of the reaction, the mixture was concentrated under reduced pressure. Then, the mixture was extracted with ethyl acetate (3×2.0 mL), and the combined organic layers washed with brine (2.0 mL), dried over anhydrous Na₂SO₄, and evaporated. The residue was purified by column chromatography to afford the desired products **57** and **58**, using the indicated eluent.

6. Applications of the obtained HFIP-group functionalized molecules as organocatalysts

To a mixture of indole (46.9 mg, 0.4 mmol, 2.0 equiv.) and diffuoroacetaldehyde ethyl hemiacetal (25.2 mg, 0.2 mmol, 1.0 equiv.) in CCl₄ (2.0 mL) was added the obtained HFIP-group functionalized molecules **19**, **8** or **43** (0.02 mmol) under room temperature. The resulting mixture was stirred at room temperature for 48 h according to the reaction condition reported in *J. Org. Chem.*, 2023, **88**, 4790. Then the mixture was concentrated under reduced pressure. The residue was purified by column chromatography to afford the C3-alkylated product **59** using petroleum ether/ethyl acetate (20/1 to 10/1, v/v) as eluent.

7. ¹H NMR study of the multiple interactions in the reaction system

¹H NMR of individual species (1, 2 and HFIP), three binary mixtures (1 : 2 and 1 : HFIP and 2 : HFIP), one ternary mixture (1 : 2 : HFIP) were recorded at a 0.06 mmol scale of *N*,*N*-dimethylaniline 1, 0.06 mmol scale of hexafluoroacetone trihydrate 2, 0.6 mmol scale of HFIP (10.0 equiv.) and 0.6 mL CDCl₃.

Figure S1 ¹H NMR of the individual specie (A–B) and the two binary mixture (C).

	Sp	ecies	
Signal	2	Binary mixture	
	2	(1:2)	
OH (gem-diol form of 2)	4.58, br s	3.14, br s (-1.44)	

Table S1. Significant changes for the binary mixture with respect to individual specie.

The most significant changes found in ¹H NMR for the **1** : **2** binary mixture (Figure S1C) compared to the individual specie (Figure S1B) are the upfield shift of the OH (*gem*-diol form of **2**), from a frequency of 4.58 ppm to 3.14 ppm ($\Delta \delta = 1.44$), supporting the existence of potential interactions between **1** and **2** (Table S1).

	Species		
Signal	HEID	Binary mixture	
	нгіг	(1 : HFIP)	
OHa (HFIP)	3.26, br s	3.69, br s (+0.43)	

Figure S2 ¹H NMR of the individual specie (A–B) and the two binary mixture (C).

Table S2. Significant changes for the binary mixture with respect to individual specie.

The most significant changes found in ¹H NMR for the **1** : **HFIP** binary mixture (Figure S2C) compared to the individual specie (Figure S2B) are the downfield shift (deshieled) of the OH (**HFIP**), from a frequency of 3.69 ppm to 3.26 ppm ($\Delta \delta = 0.43$), supporting the existence of potential interactions between **1** and **HFIP** (Table S2).

D.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

	Species			
Signal	2	HFIP	Binary mixture (2 : HFIP)	
OH (gem-diol form of 2)	4.58, br s	_	4.64, br s (+0.06)	
OHa (HFIP)	—	3.25, br s	3.72, br s (+0.47)	

Figure S3 ¹H NMR of the individual specie (A–B) and the two binary mixture (C).

Table S3. Significant changes for the binary mixture with respect to individual specie.

The most significant changes found in ¹H NMR for the **2** : **HFIP** binary mixture (Figure S3C) compared to the individual specie (Figure S3A) and (Figure S3B) are the downfield shift (deshieled) of the OH (*gem*-diol form of **2**), from a frequency of 4.58 ppm to 4.64 ppm ($\Delta \delta = 0.06$) as well as the downfield shift (deshieled) of the OH (**HFIP**), from a frequency of 3.25 ppm to 3.72 ppm ($\Delta \delta = 0.47$). These data support strong interactions between **2** and **HFIP** (Table S3).

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 f1 (ppm)

Figure S4 ¹H NMR of the individual species (A–C), the ternary mixture (D) and the target product

(E).

	Species			
Signal	1	2	HFIP	Ternary mixture (1 :2:HFIP)
OH (<i>gem</i> -diol form of 2)	_	4.57, br s	_	3.69, br s (-0.88)
OHa (HFIP)	_	_	3.25, br s	3.69, br s (+0.44)
NMe (one Me of 1)	2.95, s	_	_	2.89, s (-0.06)

 Table S4. Significant changes for the ternary mixture with respect to individual species and the binary mixture.

The most significant changes found in ¹H NMR for the **1** : **2** : **HFIP** ternary mixture (Figure S4D) compared to the individual specie (Figure S3B) and (Figure S3C) are the upfield shift of the OH (*gem*-diol form of **2**), from a frequency of 4.57 ppm to 3.69 ppm ($\Delta \delta = 0.88$) as well as the downfield shift (deshieled) of the OH (**HFIP**), from a frequency of 3.25 ppm to 3.69 ppm ($\Delta \delta = 0.44$). Further, the chemical shift of one NMe of *N*,*N*-dimethylaniline **1** is found shifted from 2.95 ppm to 2.89 ppm in the ternary mixture. These data support the existence of multiple hydrogen-

bonding interactions between both the reactants and HFIP (Table S4).

8.	Calculation	of Green	Metrics
•••	Curculation	or or con	1,1001100

	Co-catalyzed CDC reaction (<i>Org. Lett.</i> , 2019, 21 , 218–222)	Cu-catalyzed CDC reaction (<i>Org. Lett.</i> ; 2020, 22 , 3033–3038)	Nucleophilic substitution with arylamine (<i>Russ. Chem.</i> <i>Bull.</i> , 1990, 39 , 323–328)	Our Work
Catalyst	Cobalt acetate tetrahydrate	Cupric acetate /4,4'-bis(1,1- dimethylethyl)- 2,2'-bipyridine		
T oil bath (°C)	70	90	80	rt
Yield	80%	47%	31%	99%
Atom economy	99.3%	99.3%	75.5%	84.1%
Atom efficiency (Yield*Atom economy)	79.4%	46.7%	23.4%	83.3%
Total mass of starting materials	30.3 (aniline) + 798 (HFIP) + 47.3 (additive) + 1.3 (catalyst) = 876.9 mg	24.2 (aniline) + 3192 (HFIP) + 8.1 (additive) +3.6 (catalyst) = 3227.9 mg	190.2 (materials) + 3566 (solvent) = 3756.2 mg	60.6 (aniline) + 110 (hexafluoroaceto ne trihydrate) + 2394 (solvent) = 2564.6 mg
Total mass of product + recovered solvent (if any)	50.3 mg (product)	26.8 mg (product)	44.5 mg (product)	142.2 (product) + 2154.6 (recovered 90% solvent) =2296.8 mg
Total mass of waste (Including water)	876.9–50.3 =826.6 mg	3,227.9 - 26.8 = 3201.1 mg	3,756.2 - 44.5 = 3,711.7 mg	2564.6 - 2296.8 mg =267.8 mg
E-factor (waste/product)	826.6/50.3 = 16.4	3201.1/26.8 = 119.4	3711.7/44.5 = 83.4	267.8/142.2 = 1.8 (recovered solvent)
Reactionmassefficiency(RME) (product/materials)	50.3/(30.3+42) *100% = 69.6%	26.8/(24.2+33.6) *100% = 46.3%	44.5/190.2 * 100% = 23.4%	142.2 / (60.6 + 110) * 100% = 83.3%
Process Mass Intensity (PMI) (Including water) (Total mass of starting	876.9/50.3 = 17.4	3227.9/26.8 = 120.4	3756.2/44.5 = 84.4	(2564.6- 2154.6)/142.2 = 2.9 (recovered solvent)

materials/ product)				
Solvent (recovery demonstrated)	1,1,1,3,3,3- Hexafluoroisopro anol (not recovered)	1,1,1,3,3,3- Hexafluoroisopro anol (not recovered)	Diethyl ether (not recovered)	1,1,1,3,3,3- Hexafluoroisopro anol (recovered and recycled)

9. Characterization data of the products

2-(4-(dimethylamino)phenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol (3): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **3** (white solid, 142.2 mg, 0.495 mmol, 99% yield). M.p.: 72–73 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.9 Hz, 2H), 6.74 (d, J = 9.1 Hz, 2H), 3.38 (s, 1H), 2.99 (s, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.84 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 151.3, 127.3, 122.9 (q, ¹J_{C-F} = 286.7 Hz), 116.2, 111.7, 40.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₂F₆NO: 288.0818, Found: 288.0826.

1,1,1,3,3,3-hexafluoro-2-(1-methyl-1,2,3,4-tetrahydroquinolin-6-yl)propan-2-ol (4): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **4** (white solid, 303.8 mg, 0.485 mmol, 97% yield). M.p.: 53–55 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.35 (d, J = 8.7 Hz, 1H), 7.24 (d, J = 12.6 Hz, 1H), 6.59 (d, J = 8.8 Hz, 1H), 3.35 (s, 1H), 3.31 – 3.25 (m, 2H), 2.92 (s, 3H), 2.79 (t, J = 6.3 Hz, 2H), 2.03 – 1.94 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.77 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 126.6, 125.3, 122.9 (q, ${}^{I}J_{C-F} = 285.7$ Hz), 122.4, 115.7, 110.1, 50.9, 38.8, 27.9, 21.9; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₄F₆NO: 314.0975, Found: 314.0976.

1,1,1,3,3,3-hexafluoro-2-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-*ij***]quinolin-9-yl)propan-2-ol (5): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound 5** (white solid, 164.5 mg, 0.485 mmol, 97% yield). M.p.: 95–97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.04 (s, 2H), 3.29 (s, 1H), 3.21 – 3.14 (m, 4H), 2.76 (t, J = 6.4 Hz, 4H), 2.01 – 1.92 (m, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.52 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 124.8, 122.9 (q, ¹ $J_{C-F} = 287.7$ Hz), 120.9, 115.0, 49.7,

27.9, 21.6; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₆F₆NO: 340.1131, Found: 340.1139.

1,1,1,3,3,3-hexafluoro-2-(4-morpholinophenyl)propan-2-ol (6): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **6** (white solid, 154.7 mg, 0.47 mmol, 94% yield). M.p.: 129–130 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 7.58 (d, *J* = 8.5 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H), 4.05 (s, 1H), 3.90 – 3.82 (m, 4H), 3.25 – 3.18 (m, 4H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -75.70 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 152.0, 127.6, 122.8 (q, ^{*1*}*J*_{C-F} = 288.0 Hz), 120.1, 114.7, 66.7, 48.2; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₄F₆NO₂: 330.0924, Found: 330.0925.

1,1,1,3,3,3-hexafluoro-2-(4-((2-hydroxyethyl)(methyl)amino)phenyl)propan-2-ol (7): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **7** (colorless liquid, 114.2 mg, 0.445 mmol, 89% yield). **¹H NMR** (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 9.1 Hz, 2H), 4.90 (s, 1H), 3.78 (t, *J* = 5.7 Hz, 2H), 3.48 (t, *J* = 5.7 Hz, 2H), 2.97 (s, 3H), 2.31 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.76 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 127.6, 123.0 (q, ^{*I*}*J*_{*C*-*F*} = 287.7 Hz), 117.3, 111.9, 60.0, 54.5, 38.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₄F₆NO₂: 318.0924, Found: 318.0928.

1,1,1,3,3,3-hexafluoro-2-(4-(methylamino)phenyl)propan-2-ol (8): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **8** (white solid, 133.8 mg, 0.49 mmol, 98% yield). M.p.: 86–87 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.8 Hz, 2H), 6.81 – 6.39 (m, 2H), 3.74 (s, 2H), 2.85 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.84 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 127.5, 122.9 (q, ${}^{1}J_{C-F} = 288.0$ Hz), 117.4, 112.0, 30.4; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₁₀F₆NO: 274.0662, Found: 274.0661.

2-(4-(benzylamino)phenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol (9): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **9** (white solid, 155.4 mg, 0.45 mmol, 89% yield). M.p.: 95–96 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 3.9 Hz, 4H), 7.31 (dd, J = 10.3, 6.0 Hz, 1H), 6.67 (d, J = 8.5 Hz, 2H), 4.36 (s, 2H), 4.28 (s, 1H), 3.42 (s, 1H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -75.81 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 149.3, 138.7, 128.7, 127.6, 127.5, 122.8 (q, ${}^{1}J_{C-F} = 287.3$ Hz), 117.5, 112.3, 48.0; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₄F₆NO: 350.0975, Found: 350.0971.

1,1,1,3,3,3-hexafluoro-2-(indolin-5-yl)propan-2-ol (10): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **10** (brown liquid, 128.3mg, 0.45 mmol, 90% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.31 (t, *J* = 6.9 Hz, 2H), 7.02 (t, *J* = 7.7 Hz, 1H), 3.60 (t, *J* = 8.1 Hz, 2H), 3.07 (t, *J* = 8.0 Hz, 2H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.36 (s, 6F); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 153.4, 129.6, 126.4, 123.5 (q, ^{*1*}*J*_{*C*-*F*} = 288.2 Hz), 122.8, 118.9, 108.1, 46.7, 29.2; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₁H₁₀F₆NO: 286.0662, Found: 286.0666.

1,1,1,3,3,3-hexafluoro-2-(1,2,3,4-tetrahydroquinolin-6-yl)propan-2-ol (11): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **11** (white solid, 145.1 mg, 0.485 mmol, 97% yield). M.p.: 114–115 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.23 (s, 2H), 6.47 (d, *J* = 9.2 Hz, 1H), 3.38 (s, 1H), 3.36 – 3.25 (m, 2H), 2.78 (t, *J* = 6.4 Hz, 2H), 1.99 – 1.90 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.72 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 146.0, 127.5, 125.0, 122.9 (q, ^{*I*}*J*_{*C*-*F*} = 288.0 Hz), 121.1, 116.9, 113.7, 41.7, 27.1, 21.6; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₂F₆NO: 300.0818, Found: 300.0816.

HO_CF₃ F₃C

1,1,1,3,3,3-hexafluoro-2-(2,3,4,5-tetrahydro-1H-benzo[b]azepin-7-yl)propan-2-ol (12): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **12** (white solid, 126.8 mg, 0.4 mmol, 81% yield). M.p.:

115–116 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.39 (s, 1H), 7.29 (d, J = 8.3 Hz, 1H), 6.69 (d, J = 8.4 Hz, 1H), 4.08 (s, 1H), 3.13 – 3.03 (m, 2H), 2.82 – 2.75 (m, 2H), 1.88 – 1.78 (m, 2H), 1.71 – 1.62 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.54 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 151.4, 133.2, 129.0, 124.8, 122.8 (q, ${}^{I}J_{C-F} = 288.0$ Hz), 121.5, 119.3, 48.4, 36.1, 31.2, 26.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₄F₆NO: 314.0975, Found: 314.0973.

2-(4-aminophenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol (13): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **13** (white solid, 126.8 mg, 0.4 mmol, 81% yield). M.p.:124–125 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 8.5 Hz, 2H), 6.71 (d, *J* = 8.8 Hz, 2H), 3.84 (s, 2H), 3.32 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.86 (s, 6F); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 150.4, 127.8, 123.5 (q, ^{*I*}*J*_{*C*-*F*} = 288.6 Hz), 116.9, 113.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₈F₆NO: 260.0505, Found: 260.0503.

2-(4-amino-3-methylphenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol (14): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **14** (white solid, 91.5 mg, 0.33 mmol, 67% yield). M.p.: 132–133 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 7.34 (d, J = 12.9 Hz, 2H), 6.69 (d, J = 8.3 Hz, 1H), 3.78 (s, 2H), 3.40 (s, 1H), 2.19 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.76 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 146.1, 128.5, 125.3, 122.8 (q, ${}^{l}J_{C-F} = 286.2$ Hz), 122.1, 118.8, 114.6, 17.5; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₀H₁₀F₆NO: 274.0662, Found: 274.0660.

2-(4-amino-3-(tert-butyl)phenyl)-1,1,1,3,3,3-hexafluoropropan-2-ol (15): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **15** (white solid, 148.1 mg, 0.47 mmol, 97% yield). M.p.:162–163 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.31 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 8.5 Hz, 1H), 4.00 (s, 2H), 3.43 (s, 1H), 1.42 (s, 9H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -75.72 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 146.2, 133.3, 125.1, 124.9, 122.9 (q, ^{*I*}*J*_{*C*-*F*} = 287.8 Hz), 118.6, 117.3, 34.5, 29.4; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₆F₆NO: 316.1131, Found: 316.1141.

1,1,1,3,3,3-hexafluoro-2-(5-methyl-2-(p-tolylamino)phenyl)propan-2-ol (16): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **16** (white solid, 167.1 mg, 0.46 mmol, 92% yield). M.p.:141–143 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.23 (d, J = 8.1 Hz, 1H), 7.12 – 7.04 (m, 3H), 6.71 (d, J = 8.3 Hz, 2H), 2.40 (s, 3H), 2.29 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 75.28 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 142.8, 141.0, 137.4, 132.4, 131.9, 130.0, 129.9, 128.9, 125.9 (q, ${}^{I}J_{C-F} = 274.8$ Hz), 125.9, 118.9, 21.3, 20.6; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₇H₁₄F₆NO: 362.0985, Found: 362.0983.

1,1,1,3,3,3-hexafluoro-2-(2-(phenylamino)naphthalen-1-yl)propan-2-ol (17): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **17** (white solid, 173.3 mg, 0.45 mmol, 90% yield). M.p.:92–93 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 2H), 7.70 (s, 1H), 7.60 (s, 2H), 7.54 (s, 1H), 7.45 (d, *J* = 4.9 Hz, 1H), 7.36 (d, *J* = 4.5 Hz, 1H), 7.32 – 7.24 (m, 2H), 7.17 (dd, *J* = 6.9, 4.2 Hz, 2H), 6.05 (s, 1H), 3.51 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.71 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 139.1, 134.4, 129.8, 129.4, 127.8, 127.7, 126.7, 126.6, 124.2, 122.6 (q, ^{*I*}*J*_{*C-F*} = 286.6 Hz), 120.8, 120.7, 116.2, 114.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₄F₆NO: 386.0975, Found: 386.0973.

1,1,1,3,3,3-hexafluoro-2-(2-((9-phenyl-9H-carbazol-3-yl)amino)naphthalen-1-yl)propan-2-ol (**18**): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **18** (colorless liquid, 156.8mg, 0.28 mmol, 57% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 1H), 8.29 – 8.19 (m, 1H), 7.74 (t, *J* = 8.0 Hz, 2H), 7.62 (d, *J* = 8.1 Hz, 1H), 7.47 (dt, *J* = 6.7, 4.3 Hz, 3H), 7.44 – 7.33 (m, 7H), 7.24 (s, 1H), 7.11 (d, *J* = 1.9 Hz, 1H), 7.05 (dd, *J* = 8.8, 2.3 Hz, 1H), 2.05 (s, 1H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.23 (s, 6F); ¹³**C NMR** (100 MHz, CDCl₃) δ 143.3, 142.3, 141.6, 140.8, 136.6, 135.2, 134.1, 130.1, 129.9, 129.6, 128.1, 127.7, 127.3, 126.8, 126.8, 126.7, 125.0, 124.5, 123.5 (q, ^{*I*}*J*_{*C*-*F*} = 288.4 Hz), 123.0, 122.5, 121.0, 120.7, 119.2, 117.3, 114.2, 111.1, 110.2; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₃₁H₂₁F₆N₂O: 551.1553, Found: 551.1562.

1,1,1,3,3,3-hexafluoro-2-(1H-indol-3-yl)propan-2-ol (19): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **19** (white solid, 139.2 mg, 0.49 mmol, 98% yield). M.p.:74–75 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.47 (s, 1H), 7.43 (d, J = 8.1 Hz, 1H), 7.29 (d, J = 7.2 Hz, 1H), 7.21 (t, J = 7.6 Hz, 1H), 3.50 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.25 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 136.0, 125.2, 124.6, 123.1, 123.0 (q, ${}^{I}J_{C-F} = 288.0$ Hz), 121.2, 121.1, 111.5, 105.2; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₆F₆NO: 282.0359, Found: 282.0358.

1,1,1,3,3,3-hexafluoro-2-(4-methyl-1H-indol-3-yl)propan-2-ol (20): The crude products were purified by column chromat ography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **20** (white solid, 147.2 mg, 0.495 mmol, 99% yield). M.p.: 111–112 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.54 (d, J = 2.7 Hz, 1H), 7.29 (d, J = 8.1 Hz, 1H), 7.18 (t, J = 7.7 Hz, 1H), 7.06 (d, J = 7.2 Hz, 1H), 3.44 (s, 1H), 2.76 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.08 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 131.1, 124.8, 124.7, 124.6, 123.1, 122.9 (q, ${}^{I}J_{C-F} = 287.6$ Hz), 109.4, 105.0, 23.7; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₂H₈F₆NO: 296.0515, Found: 296.0509.

1,1,1,3,3,3-hexafluoro-2-(5-methyl-1H-indol-3-yl)propan-2-ol (21): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **21** (white solid, 144.1 mg, 0.485 mmol, 97% yield). M.p.:112–113 °C; **¹H NMR** (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.73 (s, 1H), 7.43 (d, J = 2.6 Hz, 1H), 7.32 (d, J = 8.3 Hz, 1H), 7.10 (dd, J = 8.4, 0.8 Hz, 1H), 3.44 (s, 1H), 2.47 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.30 (s, 6F); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 134.3, 130.5, 125.5, 124.7, 124.6, 123.0 (q, ${}^{I}J_{C-F}$ = 288.6 Hz), 120.6, 111.2, 104.6, 21.6; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₂H₈F₆NO: 296.0515, Found: 296.0510.

1,1,1,3,3,3-hexafluoro-2-(5-fluoro-1H-indol-3-yl)propan-2-ol (22): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **22** (white solid, 106.9 mg, 0.355 mmol, 71% yield). M.p.:82–83 °C; ¹H

NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.62 (d, J = 10.2 Hz, 1H), 7.50 (s, 1H), 7.34 (dd, J = 8.9, 4.4 Hz, 1H), 7.03 (td, J = 8.9, 1.6 Hz, 1H), 3.52 (s, 1H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -76.49 (s, 6F), -122.31 – -122.42 (m, 1F); ¹³C{¹H} **NMR** (100 MHz, CDCl₃) δ 158.3 (d, ${}^{I}J_{C-F} = 235.6$ Hz), 132.5, 126.0, 125.7 (d, ${}^{2}J_{C-F} = 11.0$ Hz), 122.9 (q, ${}^{I}J_{C-F} = 288.1$ Hz), 112.2, 112.1, 111.9, 111.6, 106.6, 106.4, 105.3, 105.3; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₃F₇NO: 300.0264, Found: 300.0266.

2-(5-chloro-1H-indol-3-yl)-1,1,1,3,3,3-hexafluoropropan-2-ol (23): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **23** (white solid, 154.3 mg, 0.485 mmol, 97% yield). M.p.:85–87 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.48 (s, 1H), 7.95 (s, 1H), 7.48 (s, 1H), 7.33 (d, J = 8.7 Hz, 1H), 7.22 (d, J = 8.7 Hz, 1H), 3.57 (s, 1H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -76.51 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 134.3, 126.8, 126.3, 125.7, 123.5, 122.7 (q, ${}^{I}J_{C-F} = 287.9$ Hz), 120.8, 112.5, 104.9; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₅ClF₆NO: 315.9969, Found: 315.9959.

2-(4-bromo-1H-indol-3-yl)-1,1,1,3,3,3-hexafluoropropan-2-ol (24): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **24** (white solid, 175.5 mg, 0.485 mmol, 97% yield). M.p.:87–88 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.64 (s, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.46 (d, J = 8.2 Hz, 1H), 7.14 (t, J = 7.9 Hz, 1H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -74.38 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 138.0, 127.2, 126.7, 125.1, 123.8, 123.0 (q, ${}^{1}J_{C-F}$ = 288.9 Hz), 105.1; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₅BrF₆NO: 359.9464, Found: 359.9456.

2-(5-bromo-1H-indol-3-yl)-1,1,1,3,3,3-hexafluoropropan-2-ol (25): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **25** (colorless liquid, 173.7mg, 0.48 mmol, 96% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (s, 1H), 8.16 (s, 1H), 7.51 (s, 1H), 7.40 (d, J = 8.7 Hz, 1H), 7.38 – 7.23 (m, 1H), 3.54 (d, J = 16.8 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.53 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 134.6, 127.0, 126.1, 125.5, 123.9, 122.8 (q, ${}^{I}J_{C-F} = 287.9$ Hz), 114.5, 112.9, 104.8; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₅BrF₆NO: 359.9464, Found: 359.9459.

1,1,1,3,3,3-hexafluoro-2-(2-methyl-1H-indol-3-yl)propan-2-ol (26): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **26** (white solid, 142.6 mg, 0.48 mmol, 96% yield). M.p.:68–69 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1H), 7.83 (d, *J* = 6.9 Hz, 1H), 7.30 (d, *J* = 7.6 Hz, 1H), 7.22 – 7.10 (m, 2H), 3.49 (s, 1H), 2.59 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.45 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 134.5, 123.3 (q, ^{*I*}*J*_{*C*-*F*} = 288.6 Hz), 121.8, 120.6, 110.4, 15.0; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₂H₈F₆NO: 296.0515, Found: 296.0513.

2-(1,2-dimethyl-1H-indol-3-yl)-1,1,1,3,3,3-hexafluoropropan-2-ol (27): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **27** (white solid, 146.2 mg, 0.47 mmol, 94% yield). M.p.:148–149 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.30 (d, J = 8.2 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.16 – 7.10 (m, 1H), 3.70 (s, 3H), 3.48 (s, 1H), 2.61 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.81 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 123.4 (q, ${}^{I}J_{C-F} = 288.4$ Hz), 121.4, 120.4, 109.1, 29.6, 12.4; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₃H₁₀F₆NO: 310.0672, Found: 310.0678.

2-(5,6-dihydro-4H-pyrrolo[3,2,1-ij]quinolin-1-yl)-1,1,1,3,3,3-hexafluoropropan-2-ol (28): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **28** (white solid, 147 mg, 0.455 mmol, 91% yield). M.p.:68–69 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.2 Hz, 1H), 7.35 (s, 1H), 7.15 – 7.07 (m, 1H), 7.00 (d, J = 7.1 Hz, 1H), 4.30 – 4.12 (m, 2H), 3.43 (s, 1H), 3.02 (t, J = 6.1 Hz, 2H), 2.27 (dt, J = 11.8, 6.0 Hz, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.37 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 134.3, 127.2, 123.5, 123.1 (q, ${}^{I}J_{C-F}$ = 288.2 Hz), 120.4, 118.8, 103.4, 44.5, 24.5, 22.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₂F₆NO: 324.0818, Found: 324.0824.

1,1,1,3,3,3-hexafluoro-2-(3-methyl-1H-indol-2-yl)propan-2-ol (29): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **29** (white solid, 135 mg, 0.455 mmol, 91% yield). M.p.:91–92 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.42 (s, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.39 (d, *J* = 8.2 Hz, 1H), 7.30 (t,

J = 7.5 Hz, 1H), 7.19 (t, J = 7.5 Hz, 1H), 3.81 (s, 1H), 2.48 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.51 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 129.1, 123.9, 122.5 (q, ${}^{1}J_{C-F} = 284.5$ Hz), 119.9, 119.4, 113.6, 111.1, 9.1; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₂H₈F₆NO: 296.0515, Found: 296.0509.

1,1,1,3,3,3-hexafluoro-2-(4,5,6,7-tetrahydro-1H-indol-2-yl)propan-2-ol (30): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (30/1 to 20/1, v/v) as eluent to give compound **30** (brown liquid, 126.3 mg, 0.444 mmol, 88% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 8.14 (s, 1H), 6.19 (s, 1H), 3.77 (s, 1H), 2.57 (t, J = 6.1 Hz, 2H), 2.49 (t, J = 6.0 Hz, 2H), 1.86 – 1.78 (m, 2H), 1.75 (ddd, J = 10.6, 7.4, 3.7 Hz, 2H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -76.95 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 129.3, 122.3 (q, ${}^{I}J_{C-F} = 287.6$ Hz), 118.1, 116.4, 108.7, 23.4, 23.1, 22.6, 22.5; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₁₀F₆NO: 286.0672, Found: 286.0671.

5-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-1H-indol-4-ol (31): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **31** (white solid, 143.6 mg, 0.48 mmol, 96% yield). M.p.:123–125 °C. ¹H **NMR** (400 MHz, CDCl₃) δ 8.52 (s, 1H), 7.74 (s, 1H), 7.41 (s, 1H), 7.14 (t, J = 7.9 Hz, 1H), 7.07 (dd, J = 8.2, 0.7 Hz, 1H), 6.66 (dd, J = 7.5, 0.7 Hz, 1H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -76.42 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 146.4, 138.1, 124.0, 123.7, 123.0 (q, ${}^{1}J_{C-F} = 287.6$ Hz), 114.9, 106.2, 105.2, 105.1; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₆F₆NO₂: 298.00308, Found: 298.0313.

4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-1H-indol-5-ol (32): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **32** (white solid, 145 mg, 0.485 mmol, 97% yield). M.p.:119–122 °C; ¹H **NMR** (400 MHz, CDCl₃) δ 8.40 (s, 1H), 7.42 (s, 1H), 7.35 (s, 1H), 7.26 (s, 1H), 6.84 (d, J = 8.4 Hz, 1H), 3.71 (d, J = 6.9 Hz, 2H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -75.76 (s, 6F); ¹³C **NMR** (100 MHz, DMSO-*d*6) δ 151.3, 131.0, 126.5, 125.8, 123.9 (q, ¹J_{C-F} = 289.8 Hz), 112.5, 112.4, 105.4, 103.8; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₆F₆NO₂: 298.00308, Found: 298.0307.

7-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-1H-indol-6-ol (33): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound 33 (white solid, 140 mg, 0.47 mmol, 94% yield). M.p.:118–119 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.35 (s, 1H), 6.86 (s, 1H), 6.80 – 6.68 (m, 1H), 4.84 (s, 1H), 3.46 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.36 (s, 6F); ¹³C NMR (100 MHz, DMSO-*d*6) δ 153.7, 137.9, 124.0, 123.9 (q, ^{*1*}*J*_{*C*-*F*} = 289.1 Hz), 121.9, 119.1, 110.9, 104.8, 96.9; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₁H₆F₆NO₂: 298.00308, Found: 298.0306.

2-(2,3-diphenyl-1H-indol-6-yl)-1,1,1,3,3,3-hexafluoropropan-2-ol (34): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **34** (white solid, 193.7 mg, 0.445 mmol, 89% yield). M.p.:148–149 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.41 (s, 1H), 7.86 (s, 1H), 7.74 (d, *J* = 8.6 Hz, 1H), 7.45 – 7.38 (m, 6H), 7.38 – 7.30 (m, 5H), 3.61 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.38 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 136.1, 135.4, 134.4, 132.2, 130.0, 129.9, 128.8, 128.6, 128.2, 128.2, 126.5, 123.4, 119.8, 118.2, 115.0, 109.8; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₃H₁₄F₆NO: 434.0985, Found: 434.0977.

2-(2,3-dimethyl-1H-indol-6-yl)-1,1,1,3,3,3-hexafluoropropan-2-ol (35): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **35** (white solid, 96.4 mg, 0.31 mmol, 62% yield). M.p.:81–82 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.65 (s, 1H), 7.53 (d, *J* = 8.5 Hz, 1H), 7.40 (d, *J* = 8.5 Hz, 1H), 3.59 (s, 1H), 2.38 (s, 3H), 2.24 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.42 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 134.7, 133.1, 130.6, 123.0 (q, ^{*I*}*J*_{*C*-*F*} = 286.7 Hz), 117.9, 116.8, 108.8, 107.3, 11.6, 8.3; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₃H₁₀F₆NO: 310.0672, Found: 310.0671.

1,1,1,3,3,3-hexafluoro-2-((3-methyl-1H-indol-2-yl)methyl)propan-2-ol (36): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **36** (colorless liquid, 63 mg, 0.2 mmol, 41% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.33 (d, *J* = 8.1 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.17 – 7.11 (m, 1H), 3.45 (s, 1H), 3.44 (s, 2H), 2.29 (s, 3H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -77.07 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 136.2, 128.5, 123.4, 122.9 (q, ^{*I*}*J*_{*C*-*F*} = 287.4 Hz), 122.8, 119.6, 118.9, 112.7, 110.77, 26.6, 8.5; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₃H₁₀F₆NO: 310.0672, Found: 310.0679.

1,1,1,3,3,3-hexafluoro-2-(5,6,7,8,9,10-hexahydrocyclohepta[b]indol-3-yl)propan-2-ol (37): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **37** (colorless liquid, 126.3 mg, 0.36 mmol, 72% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.66 (s, 1H), 7.54 (d, *J* = 8.5 Hz, 1H), 7.40 (d, *J* = 8.5 Hz, 1H), 3.59 (s, 1H), 2.84 (dd, *J* = 11.5, 8.1 Hz, 4H), 1.96 – 1.87 (m, 2H), 1.84 – 1.72 (m, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.47 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 133.7, 130.4, 123.0 (q, ^{*1*}*J*_{*C*-*F*} = 287.7 Hz), 121.3, 117.7, 116.8, 113.9, 109.0, 31.7, 29.6, 28.6, 27.3, 24.6; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₆H₁₄F₆NO: 350.0985, Found: 350.0976.

1,1,1,3,3,3-hexafluoro-2-(4-(methyl(phenyl)amino)phenyl)propan-2-ol (38): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **38** (colorless liquid, 120.4 mg, 0.35 mmol, 69% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.55 (d, J = 8.8 Hz, 2H), 7.42 – 7.37 (m, 2H), 7.22 (d, J = 7.5 Hz, 2H), 7.18 (dd, J = 11.6, 4.2 Hz, 1H), 6.95 – 6.90 (m, 2H), 3.53 (s, 1H), 3.37 (s, 3H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -75.80 (s, 6F); ¹³C **NMR** (100 MHz, CDCl₃) δ 150.2, 147.9, 129.6, 127.3, 124.7, 124.4, 122.8 (q, ${}^{1}J_{C-F} = 287.6$ Hz), 118.8, 115.5, 40.0; **HRMS** (ESI) m/z: [M+H]⁺ Calcd for C₁₆H₁₄F₆NO: 350.0975, Found: 350.0973.

2,2'-((methylazanediyl)bis(4,1-phenylene))bis(1,1,1,3,3,3-hexafluoropropan-2-ol) (39): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **39** (colorless liquid, 152 mg, 0.3 mmol, 59% yield). ¹H **NMR** (400 MHz, CDCl₃) δ 7.61 (d, J = 8.4 Hz, 4H), 7.12 (d, J = 8.6 Hz, 4H), 3.63 (s, 2H), 3.38 (s, 3H); ¹⁹F **NMR** (376 MHz, CDCl₃) δ -75.68 (s, 12F); ¹³C **NMR** (100 MHz, CDCl₃) δ 149.5, 127.7, 122.7 (q, ${}^{1}J_{C-F} = 287.5$ Hz), 122.1, 120.1, 39.9; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₁₉H₁₂F₁₂NO₂: 514.0681, Found: 514.0686.

2-(4-(diphenylamino)phenyl)-1,1,1,3,3,-hexafluoropropan-2-ol (40): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **40** (colorless liquid, 148 mg, 0.36 mmol, 72% yield). ¹H NMR (400

MHz, CDCl₃) δ 7.50 (d, J = 8.7 Hz, 2H), 7.33 – 7.27 (m, 4H), 7.16 – 7.12 (m, 4H), 7.12 – 7.04 (m, 4H), 3.52 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.64 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 149.5, 147.0, 129.5, 127.3, 125.4, 123.9, 122.7 (q, ${}^{I}J_{C-F} = 288.2$ Hz), 121.4, 121.2; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₁₆F₆NO: 412.1131, Found: 412,1130.

2,2'-((phenylazanediyl)bis(4,1-phenylene))bis(1,1,1,3,3,3-hexafluoropropan-2-ol) (41): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **41** (white solid, 161.6 mg, 0.28 mmol, 56% yield). M.p.:120–121 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, J = 8.4 Hz, 4H), 7.34 (t, J = 7.6 Hz, 2H), 7.14 (t, J = 8.8 Hz, 7H), 3.45 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.64 (s, 12F); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 146.4, 129.8, 127.6, 126.2, 124.8, 122.9, 122.8, 122.7 (q, ${}^{1}J_{C-F} = 287.8$ Hz); **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₂₄H₁₄F₁₂NO₂: 576.0838, Found: 576.0841.

1,1,1,3,3,3-hexafluoro-2-(4-(phenylamino)phenyl)propan-2-ol (42): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound **42** (colorless liquid, 119.1 mg, 0.355 mmol, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.6 Hz, 2H), 7.32 (dd, *J* = 8.3, 7.5 Hz, 2H), 7.18 – 7.12 (m, 2H), 7.07 (dd, *J* = 9.4, 2.3 Hz, 2H), 7.03 (t, *J* = 7.4 Hz, 1H), 3.60 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ - 75.74 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 141.5, 129.5, 127.7, 122.8 (q, ^{*I*}*J*_{*C*-*F*} = 287.8 Hz), 122.4, 120.3, 119.5, 115.8; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₅H₁₂F₆NO: 336.0818, Found: 336.0819.

2,2'-(azanediylbis(4,1-phenylene))bis(1,1,1,3,3,3-hexafluoropropan-2-ol) (43): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **43** (white solid, 170.4 mg, 0.34 mmol, 68% yield). M.p.:59–60 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, J = 8.4 Hz, 4H), 7.16 (d, J = 8.3 Hz, 4H), 6.00 (s, 1H), 3.65 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.73 (s, 12F); ¹³C NMR (100 MHz, CDCl₃) δ 143.8, 127.9, 122.7 (q, ¹*J*_{C-F} = 287.7 Hz), 121.8, 117.4; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₈H₁₀F₁₂NO₂: 500.0525, Found: 500.0520.

2-(10,11-dihydro-5H-dibenzo[b,f]azepin-2-yl)-1,1,1,3,3,3-hexafluoropropan-2-ol (44): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 15/1, v/v) as eluent to give compound 44 (white solid, 140.8 mg, 0.39 mmol, 78% yield). M.p.:130–131 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 6.4 Hz, 2H), 7.09 (dd, J = 16.3, 7.8 Hz, 2H), 6.83 (t, J = 7.4 Hz, 1H), 6.77 (d, J = 7.1 Hz, 2H), 6.17 (s, 1H), 3.55 (s, 1H), 3.18 – 3.00 (m, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.68 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 143.9, 141.7, 130.5, 129.3, 129.1, 127.8, 127.0, 125.0, 122.8 (q, ${}^{1}J_{C-F} = 288.1$ Hz), 120.3, 119.3, 118.2, 117.8, 35.4, 34.6; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₇H₁₄F₆NO: 362.0975, Found: 362.0975.

2,2'-(10,11-dihydro-5H-dibenzo[b,f]azepine-2,8-diyl)bis(1,1,1,3,3,3-hexafluoropropan-2-ol)

(45): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound 45 (white solid, 176.6 mg, 0.335 mmol, 67% yield). M.p.:128–129 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 7.4 Hz, 4H), 6.80 (d, J = 8.9 Hz, 2H), 6.30 (s, 1H), 3.45 (s, 2H), 3.12 (s, 4H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.73 (s, 12F); ¹³C NMR (100 MHz, CDCl₃) δ 143.2, 129.0, 128.5, 125.2, 122.7 (q, ${}^{I}J_{C-F}$ = 287.9 Hz), 120.3, 118.2, 35.1; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₀H₁₂F₁₂NO₂: 562.0681, Found: 562.0679.

2,2'-((1,3-phenylenebis(azanediyl))bis(4,1-phenylene))bis(1,1,1,3,3,3-hexafluoropropan-2-ol) (**46**): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **46** (white solid, 186.6 mg, 0.32 mmol, 63% yield). M.p.:212–213 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.81 (s, 1H), 7.22 (t, *J* = 7.9 Hz, 4H), 7.03 – 6.97 (m, 3H), 6.87 (d, *J* = 7.6 Hz, 4H), 2.96 (s, 1H), 2.88 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.95 (s, 12F); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 142.2, 129.5, 123.6, 122.9 (d, *J* = 287.8 Hz), 120.4, 117.6, 113.9; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₄H₁₅F₁₂N₂O₂: 591.0947, Found: 591.0939.

$$F_3C$$
 H CF_3 OH F_3C CF_3

2,2'-(methylenebis(1H-pyrrole-5,2-diyl))bis(1,1,1,3,3,3-hexafluoropropan-2-ol) (47): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **47** (white solid, 193.6 mg, 0.4 mmol, 81% yield). M.p.:79–80 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 2H), 6.37 (s, 2H), 6.05 (t, *J* = 3.2 Hz, 2H), 3.99 (s, 2H); ¹⁹F NMR (376 MHz, CDCl₃) δ -77.19 (s, 12F); ¹³C NMR (100 MHz, CDCl₃) δ 130.5, 122.1 (q, ^{*1*}*J*_{*C*-*F*} = 287.4 Hz), 118.4, 109.8, 108.0, 26.2; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₅H₉F₁₂N₂O₂: 477.0477, Found: 477.0469.

1,1,1,3,3,3-hexafluoro-2-(4-(2-hydroxy-3-(isopropylamino)propoxy)-1H-indol-3-yl)propan-2ol (48): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (10/1 to 6/1, v/v) as eluent to give compound **48** (white solid, 169.7 mg, 0.41 mmol, 81% yield). M.p.:139–140 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 7.42 (s, 1H), 7.19 (t, J = 7.9 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 6.70 (d, J = 7.6 Hz, 1H), 4.25 (d, J = 5.0 Hz, 2H), 4.12 (td, J = 8.7, 4.8 Hz, 1H), 2.95 (dd, J = 12.3, 3.6 Hz, 1H), 2.84 (dt, J = 12.5, 6.2 Hz, 1H), 2.75 (dd, J = 12.2, 8.7 Hz, 1H), 2.04 (s, 1H), 1.26 (s, 1H), 1.10 (s, 3H), 1.08 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.53 (s, 6F); ¹³C NMR (100 MHz, DMSO-*d*6) δ 149.6, 138.1, 124.8, 123.5 (d, J = 289.5 Hz), 123.3, 115.2, 106.9, 103.9, 102.1, 71.9, 68.3, 49.8, 48.6, 22.9; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₇H₁₉F₆N₂O₃: 413.1305, Found: 413.1302.

(4-chlorophenyl)(5-methoxy-3-methyl-2-(3,3,3-trifluoro-2-hydroxy-2-

(trifluoromethyl)propyl) -1H-indol-1-yl)methanone (49): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound 49 (white solid, 153.5 mg, 0.32 mmol, 64% yield). M.p.:133–134 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 8.3 Hz, 2H), 7.48 (d, J = 8.3 Hz, 2H), 7.00 (s, 1H), 6.87 (d, J = 9.0 Hz, 1H), 6.71 (d, J = 9.0 Hz, 1H), 3.83 (s, 3H), 3.40 (s, 2H), 3.14 (s, 1H), 2.37 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.86 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 156.2, 139.8, 138.4, 133.4, 131.3, 130.9, 130.8, 129.3, 123.1 (q, ${}^{I}J_{C-F} = 288.1$ Hz), 114.9, 112.2, 108.8, 101.5, 55.7, 24.7, 13.6; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₂₁H₁₅ClF₆NO₃: 478.0650, Found: 478.0648.

5-chloro-2-(2,4-dichlorophenoxy)phenyl3-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)-1Hindole-5-carboxylate (50): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound 50 (colorless liquid, 275.4 mg, 0.46 mmol, 92% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.75 (s, 1H), 7.94 (d, *J* = 8.3 Hz, 1H), 7.54 (s, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.36 (s, 1H), 7.29 (s, 1H), 7.21 (d, *J* = 7.9 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 1H), 6.91 (t, *J* = 8.2 Hz, 2H), 3.66 (s, 1H); ¹⁹F NMR (376 MHz,

CDCl₃) δ -76.62 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 164.9, 151.3, 146.8, 142.3, 139.0, 130.2, 129.4, 129.1, 128.0, 126.9, 126.1, 125.7, 125.4, 125.1, 124.8, 122.8 (q, ${}^{l}J_{C-F} = 287.3$ Hz), 121.3, 120.6, 120.1, 111.5, 106.7; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₂₄H₁₁Cl₃F₆NO₄: 595.9663, Found: 595.9655.

2-((4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl)(methyl)amino)ethyl(R)-2-(6methoxynaphthalen-2-yl)propanoate (51): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **51** (white solid, 220.2 mg, 0.43 mmol, 87% yield). M.p.:164–165 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 1.9 Hz, 1H), 7.66 (s, 1H), 7.61 (s, 1H), 7.47 (d, *J* = 8.8 Hz, 2H), 7.32 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.14 (dd, *J* = 8.9, 2.5 Hz, 1H), 7.11 (d, *J* = 2.4 Hz, 1H), 6.66 (d, *J* = 9.1 Hz, 2H), 4.31 – 4.17 (m, 2H), 3.92 (s, 3H), 3.76 (q, *J* = 7.2 Hz, 1H), 3.54 (t, *J* = 5.8 Hz, 2H), 3.44 (s, 1H), 2.82 (s, 3H), 1.51 (d, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.80 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 174.9, 157.6, 149.8, 135.3, 133.7, 129.2, 128.9, 127.5, 127.2, 126.1, 125.9, 122.9 (q, ^{*I*}*J*_{*C*-*F*} = 287.6 Hz), 119.0, 116.7, 111.4, 105.6, 61.9, 55.2, 50.5, 45.4, 38.1, 18.1; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₄F₆NO₄: 530.1761, Found: 530.1752.

2-((4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl)(methyl)amino)ethyl2-(2-fluoro-[**1,1'-biphenyl]-4-yl)propanoate (52):** The crude products were purified by column chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **53** (white solid, 247.2 mg, 0.45 mmol, 91% yield). M.p.:98–99 °C; ¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 6.4 Hz, 4H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 8.1 Hz, 2H), 7.06 (t, *J* = 8.2 Hz, 2H), 6.74 (d, *J* = 8.2 Hz, 2H), 4.29 (ddq, *J* = 17.0, 11.4, 5.8 Hz, 2H), 3.68 – 3.62 (m, 1H), 3.61 (t, *J* = 5.7 Hz, 2H), 3.40 (s, 1H), 2.92 (s, 3H), 1.45 (d, *J* = 7.2 Hz, 3H); ¹⁹**F** NMR (376 MHz, CDCl₃) δ 75.78 (s, 6F), -117.48 – -117.56 (m, 1F); ¹³**C** NMR (100 MHz, CDCl₃) δ 174.0, 159.6 (d, ^{*I*}*J*_{*C*-*F*} = 248.4 Hz), 149.8, 141.5 (d, ³*J*_{*C*-*F*} = 7.7 Hz), 135.4, 130.8 (d, ⁴*J*_{*C*-*F*} = 3.8 Hz), 128.9 (d, ⁴*J*_{*C*-*F*} = 23.7 Hz), 127.7, 127.5, 123.5 (d, ⁴*J*_{*C*-*F*</sup> = 3.2 Hz), 122.9 (q, ^{*I*}*J*_{*C*-*F*</sup> = 287.5 Hz), 116.7, 115.2 (d, ²*J*_{*C*-*F*} = 23.7 Hz), 111.6, 62.0, 50.6, 45.0, 38.3, 18.0; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₂₇H₂₃F₇NO₃: 542.1571, Found: 542.1578.}}

2-((4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl)(methyl)amino)ethyl5-(2,5dimethylphenoxy)-2,2-dimethylpentanoate (53): The crude products were purified by column

chromatography with petroleum ether/ethyl acetate (15/1 to 10/1, v/v) as eluent to give compound **53** (colorless liquid, 244.5 mg, 0.44 mmol, 89% yield). ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 8.8 Hz, 2H), 7.00 (d, *J* = 7.5 Hz, 1H), 6.80 – 6.73 (m, 2H), 6.66 (d, *J* = 7.5 Hz, 1H), 6.59 (s, 1H), 4.24 (t, *J* = 5.9 Hz, 2H), 3.85 (t, *J* = 5.4 Hz, 2H), 3.63 (t, *J* = 5.9 Hz, 2H), 3.49 (s, 1H), 3.01 (s, 3H), 2.31 (s, 3H), 2.17 (s, 3H), 1.65 (s, 2H), 1.15 (s, 6H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -75.81 (s, 6F); ¹³**C NMR** (100 MHz, CDCl₃) δ 178.1, 156.8, 149.9, 136.4, 130.3, 127.5, 123.5, 122.9 (q, ^{*I*}*J*_{*C*-*F*} = 287.9 Hz), 120.7, 116.8, 112.0, 111.5, 67.8, 61.6, 50.5, 42.0, 38.2, 37.0, 25.0, 24.9, 21.3, 15.7; **HRMS** (ESI) m/z: [M-H]⁻ Calcd for C₂₇H₃₂F₆NO₄: 548.2241, Found: 548.2242.

2,2',2"-((benzene-1,3,5-triyltris(methylene))tris(1H-indole-1,3-diyl))tris(1,1,1,3,3,3-

hexafluoropropan-2-ol) (54): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (10/1 to 5/1, v/v) as eluent to give compound 54 (white solid, 366.2 mg, 0.38 mmol, 76% yield). M.p.:81–83 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.8 Hz, 3H), 7.29 (s, 3H), 7.22 – 7.13 (m, 6H), 7.05 (d, J = 7.9 Hz, 3H), 6.66 (s, 3H), 5.18 (s, 6H), 3.51 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.16 (s, 18F); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 136.3, 128.3, 126.0, 124.2, 123.0 (q, ${}^{I}J_{C-F}$ = 282.9 Hz), 122.9, 121.6, 120.9, 110.0, 104.4, 50.0; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₄₂H₂₆F₁₈N₃O₃:962.1692, Found: 962.1691.

2,2',2'',2''',2'''',2'''''-((benzene-1,2,3,4,5,6-hexaylhexakis(methylene))hexakis(1*H*-indole-1,3diyl))hexakis(1,1,1,3,3,3-hexafluoropropan-2-ol) (55): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (8/1 to 3/1, v/v) as eluent to give compound 55 (white solid, 177.5 mg, 0.096 mmol, 48% yield). M.p.:306–308 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, *J* = 8.2 Hz, 6H), 7.22 (t, *J* = 7.6 Hz, 6H), 7.10 (t, *J* = 7.6 Hz, 6H), 6.96 (s, 6H), 6.82 (d, *J* = 8.3 Hz, 6H), 5.19 (s, 12H), 3.85 (s, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ -76.37 (s, 36F); ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 137.0, 125.6, 125.0, 123.8, 122.7 (q, ^{*I*}*J*_{C-F} = 287.6 Hz), 122.0, 121.8, 109.5, 106.9, 43.9; HRMS (MALDI-TOF/TOF) m/z: [M-H]⁻ Calcd for C₇₈H₄₇F₃₆N₆O₆:1847.2987, Found: 1847.9823.

4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenol (56): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (10/1 to 5/1, v/v) as eluent to give compound **56** (white solid, 24.7 mg, 0.095 mmol, 19% yield). M.p.:116–118 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, J = 8.6 Hz, 2H), 6.90 (d, J = 9.0 Hz, 2H), 5.17 (s, 1H), 3.48 (s, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -75.84 (s, 6F); ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 128.2, 122.7 (q, ${}^{1}J_{C-F} = 287.4$ Hz), 121.5, 115.5; HRMS (ESI) m/z: [M+H]⁺ Calcd for C₉H₇F₆O₂:261.0345, Found: 261.0342.

N-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl)-*N*-methylbenzamide (57): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (6/1 to 3/1, v/v) as eluent to give compound 57 (white solid, 181.2 mg, 0.48 mmol, 96% yield). M.p.:156–157 °C; ¹H NMR (400 MHz, acetone-*d*6) δ 7.67 (d, J = 8.5 Hz, 2H), 7.52 (s, 1H), 7.30 (ddd, J = 9.7, 8.2, 1.7 Hz, 5H), 7.21 (t, J = 7.4 Hz, 2H), 3.47 (s, 3H); ¹⁹F NMR (376 MHz, acetone-*d*6) δ -75.66 (s, 6F); ¹³C NMR (100 MHz, acetone-*d*6) δ 170.6, 147.7, 137.2, 130.4, 129.4, 129.2, 128.5, 127.7, 123.9 (q, ${}^{I}J_{C-F} = 287.8$ Hz), 38.1; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₇H₁₂F₆NO₂:376.0777, Found: 376.0768.

N-(4-(1,1,1,3,3,3-hexafluoro-2-hydroxypropan-2-yl)phenyl)-N-methylbenzenesulfonamide

(58): The crude products were purified by column chromatography with petroleum ether/ethyl acetate (6/1 to 2/1, v/v) as eluent to give compound 58 (white solid, 190.3 mg, 0.46 mmol, 92% yield). M.p.:172–173 °C; ¹H NMR (400 MHz, acetone-*d*6) δ 77.75 (d, *J* = 8.5 Hz, 2H), 7.69 (dd, *J* = 8.8, 3.8 Hz, 1H), 7.62 – 7.57 (m, 1H), 7.56 (d, *J* = 4.1 Hz, 4H), 7.34 (d, *J* = 8.9 Hz, 2H), 3.25 (s, 3H); ¹⁹F NMR (376 MHz, acetone-*d*6) δ -75.58 (s, 6F); ¹³C NMR (100 MHz, acetone-*d*6) δ 144.3, 137.5, 134.0, 129.9, 128.4, 128.3, 126.7, 123.9 (q, ^{*I*}*J*_{*C*-*F*} = 288.2 Hz), 38.1; HRMS (ESI) m/z: [M-H]⁻ Calcd for C₁₆H₁₂F₆NO₃S:412.0447, Found: 412.0441.

2,2-difluoro-1-(1*H***-indol-3-yl)ethan-1-ol (59):** The crude products were purified by column chromatography with petroleum ether/ethyl acetate (20/1 to 10/1, v/v) as eluent to give compound **59** (pale yellow oil, 94.1 mg, 0.48 mmol, 95% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.39 (d, *J* = 7.4 Hz, 1H), 7.34 – 7.21 (m, 2H), 7.21 – 7.08 (m, 1H), 6.00 (td, *J* = 56.1, 4.3 Hz, 1H), 5.22 – 5.08 (m, 1H), 2.40 (d, *J* = 4.1 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -125.98 (ddd, *J* = 281.6, 55.6, 9.7 Hz, 1F), -127.34 (ddd, *J* = 281.9, 56.7, 12.2 Hz, 1F);

¹³C{¹H} NMR (100 MHz, CDCl₃) δ 136.1, 125.7, 123.4, 122.7, 120.3, 119.2, 115.6 (t, ${}^{1}J_{C-F} =$ 245.1 Hz), 111.5, 111.1 (dd, ${}^{3}J_{C-F} =$ 4.3, 3.3 Hz), 68.2 (dd, ${}^{2}J_{C-F} =$ 26.1, 24.7 Hz); HRMS (ESI) m/z: [M-H]⁻Calcd for C₁₀H₈F₂NO: 196.0579, Found: 196.0583.

10. NMR spectra of the related compounds

¹H NMR (400 MHz, CDCl₃) of **3**

S26

¹³C NMR (100 MHz, CDCl₃) of **4**

¹³C NMR (100 MHz, CDCl₃) of **5**

1 H NMR (400 MHz, CDCl₃) of **6**

¹³C NMR (100 MHz, CDCl₃) of 6

¹⁹F NMR (376 MHz, CDCl₃) of 7

$^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of $\mathbf{8}$

¹⁹F NMR (376 MHz, CDCl₃) of **9**

¹³C NMR (100 MHz, CDCl₃) of **9**

¹³C NMR (100 MHz, DMSO-*d*6) of **10**

---75.715

¹⁹F NMR (376 MHz, CDCl₃) of **11**

S40

 ^{19}F NMR (376 MHz, CDCl₃) of 13

¹³C NMR (100 MHz, DMSO-*d*6) of **13**

 ^{19}F NMR (376 MHz, CDCl_3) of 15

$^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of 15

 1 H NMR (400 MHz, CDCl₃) of 16

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl₃) of 16

^{13}C NMR (100 MHz, CDCl₃) of 16

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

¹H NMR (400 MHz, CDCl₃) of **18**

 $^{19}\mathrm{F}$ NMR (376 MHz, CDCl_3) of 18

 $F_{3}C, OH \\ CF_{3}$

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

^{13}C NMR (100 MHz, CDCl₃) of 20

¹⁹F NMR (376 MHz, CDCl₃) of **21**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

^{13}C NMR (100 MHz, CDCl₃) of 22

159.464 157.122 157.122 132.495 125.7237 125.623 125.653 125.653 112.5532 112.5532 112.5532 112.5532 112.5322 112.5322 112.5323 12.5323 10
--

 1 H NMR (400 MHz, CDCl₃) of **24**

¹⁹F NMR (376 MHz, CDCl₃) of 25

S60

---75.206

¹⁹F NMR (376 MHz, CDCl₃) of **27**

^{13}C NMR (100 MHz, CDCl₃) of 27

 ^{13}C NMR (100 MHz, CDCl₃) of 28

---75.507

 ^{19}F NMR (376 MHz, CDCl₃) of 29

 ^{13}C NMR (100 MHz, CDCl₃) of 29

---76.418

¹⁹F NMR (376 MHz, CDCl₃) of **31**

¹H NMR (400 MHz, CDCl₃) of **32**

---75.763

---76.363

 ^{19}F NMR (376 MHz, CDCl₃) of 33

¹³C NMR (100 MHz, DMSO-*d*6) of **33**

¹H NMR (400 MHz, CDCl₃) of **34**

 ^{13}C NMR (100 MHz, CDCl₃) of 34

136.087 135.385 135.385 132.468 140.4688 140.4688 140.4688 140.4688 140.4688 1	₹77.000 76.682
---	-------------------

 ^{19}F NMR (376 MHz, CDCl₃) of 35

^{13}C NMR (100 MHz, CDCl₃) of 35

¹⁹F NMR (376 MHz, CDCl₃) of **36**

---75.467

¹⁹F NMR (376 MHz, CDCl₃) of **37**

¹⁹F NMR (376 MHz, CDCl₃) of **38**

^{13}C NMR (100 MHz, CDCl₃) of 38

15519 15515 15526 125726 127,126 127,126 124,377 124,377 124,377 124,377 124,377 124,377 124,377 124,377 124,377 124,377 124,377 124,377 124,377 126,246 127,126 1	77.318 77.000 76.682	-40.029
--	----------------------------	---------

¹⁹F NMR (376 MHz, CDCl₃) of **39**

^{13}C NMR (100 MHz, CDCl₃) of 40

¹⁹F NMR (376 MHz, CDCl₃) of **41**

^{13}C NMR (100 MHz, CDCl₃) of 42

- 145.298 - 141.513 - 121.513 - 127.712 - 127.020 - 122.179 - 122.179 - 122.179 - 122.179 - 122.179 - 122.219 - 122.219 - 112.319 - 112.319 - 115.810	77.318 77.000 76.682
---	----------------------------

---75.728

 ^{19}F NMR (376 MHz, CDCl₃) of 43

 ^{19}F NMR (376 MHz, CDCl₃) of 45

¹³C NMR (100 MHz, CDCl₃) of **46**

---77.192

^{19}F NMR (376 MHz, CDCl₃) of **47**

¹⁹F NMR (376 MHz, CDCl₃) of **48**

¹³C NMR (100 MHz, DMSO-*d*6) of **48**

¹⁹F NMR (376 MHz, CDCl₃) of **49**

¹H NMR (400 MHz, CDCl₃) of **50**

 ^{19}F NMR (376 MHz, CDCl₃) of 50

 $^{13}\mathrm{C}$ NMR (100 MHz, CDCl₃) of $\mathbf{50}$

¹⁹F NMR (376 MHz, CDCl₃) of **51**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

S101

^{19}F NMR (376 MHz, CDCl₃) of **54**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹⁹F NMR (376 MHz, CDCl₃) of **55**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

 ^{19}F NMR (376 MHz, CDCl₃) of 56

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 f1 (ppm)

¹⁹F NMR (376 MHz, acetone-*d*6) of **57**

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 fl (ppm)

S108

S109

 ^{19}F NMR (376 MHz, CDCl₃) of 59

522 547 669	695	296	443	871	021	619	802
222	22	20.2	200	26	22	227	53
111	TT	T	TI	11	ΤT	ΤT	11

11. References

- 1. A. L. Whiting, N. M. Neufeld and F. Hof, Tetrahedron Lett., 2009, 50, 7035-7037.
- 2. K. Jenett-Siems, I. Köhler, C. Kraft, H. H. Pertz, V. Křen, A. Fišerová, M. Kuzma, J. Ulrichová,
- U. Bienzle and E. Eich, Bioorg. Med. Chem., 2004, 12, 817-824.