Metal Bioaccumulation Prediction via QSPR-q-RASPR Synergy and Cross-Species Risk Analysis

Ramin Abdullayev^{1#}, Kabiruddin Khan^{1#*}, Gopala Krishna Jillella², Varun Gopalakrishnan Nair¹, Sk. Abdul Amin³, Joyita Roy⁴, Mahmoud Bousily¹, Agnieszka Gajewicz-Skretna^{1*}

¹Laboratory of Environmental Chemoinformatics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland

²Department of Pharmaceutical Chemistry, Dr. K. V. Subba Reddy Institute of Pharmacy, Dupadu, Kurnool, Andhra Pradesh, India-518218

³Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy

⁴Global College of Pharmaceutical Technology, NH34, Palpara, Kolkata, West Bengal 741102, India

[#]Equal contribution as first authors

*Corresponding authors: K Khan, Email: <u>kabiruddin.khan@ug.edu.pl</u>, Phone: +48 691416458 A Gajewicz-Skretna, Email: <u>agnieszka.gajewicz@ug.edu.pl</u>, Phone: +48 585235246 URL: <u>https://nanosens.ug.edu.pl/</u>

SI-2

Species	Model Type	Average R	Average R ²	Average Q ² (LOO)	cRp^2
			Metal		
Algae	QSPR	0.48	0.28	-0.58	0.66
-	q-RASPR	0.44	0.22	-0.75	0.56
Crustaceans	QSPR	0.46	0.27	-0.91	0.58
	q-RASPR	0.45	0.25	-0.74	0.75
Fish	QSPR	0.44	0.23	-0.64	0.80
	q-RASPR	0.43	0.22	-0.42	0.78
Mollusc	QSPR	0.44	0.23	-0.79	0.67
	q-RASPR	0.39	0.19	-1.15	0.64
Plant	QSPR	0.39	0.19	-0.76	0.41
	q-RASPR	0.45	0.25	-3.06	0.76
			Metal Halide		
Algae	QSPR	0.45	0.24	-0.57	0.61
-	q-RASPR	0.52	0.31	-0.49	0.79
Crustaceans	QSPR	0.41	0.21	-0.52	0.66
	q-RASPR	0.45	0.25	-0.65	0.72
Fish	QSPR	0.45	0.24	-0.52	0.67
	q-RASPR	0.37	0.16	-0.50	0.64
Mollusc	QSPR	0.41	0.20	-9.22	0.70
	q-RASPR	0.41	0.20	-1.00	0.77
Plant	QSPR	0.44	0.26	-1.85	0.62
	q-RASPR	0.42	0.22	-1.70	0.78
			Metal Oxide		
Fish	QSPR	0.44	0.22	-0.73	0.72
	q-RASPR	0.44	0.24	-0.52	0.56

Table S1. Summary of Y-randomization test results (50 Permutations) for QSPR and q-RASPR individual species models.

Values marked with bold are below the optimum threshold.

Species	Model Type	Average R	Average R ²	Average Q ² (LOO)	<i>cRp^2</i>
			Metal		
Mean	QSPR	0.37	0.18	-0.50	0.72
	q-RASPR	0.42	0.21	-0.53	0.78
SD	QSPR	0.40	0.20	-0.42	0.66
	q-RASPR	0.37	0.18	-0.47	0.70
HC5	q-RASPR	0.39	0.22	-0.97	0.91
			Metal Halide		
Mean	QSPR	0.38	0.19	-0.72	0.66
	q-RASPR	0.43	0.22	-0.73	0.75
SD	QSPR	0.44	0.22	-0.68	0.39
	q-RASPR	0.28	0.12	-0.37	0.78
HC5	q-RASPR	0.40	0.22	-1.87	0.90

Table S2. Summary of Y-randomization test results (50 Permutations) for SbSDs models (QSPR and q-RASPR).

Values marked with bold are below the optimum threshold.

Table S3.	Mean and SE	models re	presenting	SSDs modeling.
				()

Sr.EquationNtrain R^2 Q^2 RMSE _c Ntest Q^2_{F1} Q^2_{F2} Q^2_{F3} RM	MSE _P
---	------------------

						Metals				
1	$Mean_p(BCF) = 7.54 + 0.0441 \times Electrons_ActiveM -$	12	0.79	0.61	0.43	5	< 0.5	<0.5	<0.5	0.78
2	$Mean_p(BCF) = 3.48 + 1.8 \times gm(Euc)[Banerjee - Ro$	12	0.87	0.79	0.30	5	0.86	0.86	0.86	0.34
3	$SD_p(BCF) = 4.43 + 0.0151 \times Neutons_ActiveM - 0.7$	13	0.74	0.61	0.23	3	0.84	0.84	0.84	0.25
4	$SD_p(BCF) = 1.15 + 0.342 \times MaxNeg(GK) + 1.01 \times g$	12	0.76	0.60	0.18	5	0.80	0.80	0.81	0.28
					Μ	etal Hali	les			
1	$Mean_p(BCF) = 0.70 + 5.07 \times VWR_ActivM + 0.646$	10	0.74	< 0.50	0.19	2	< 0.50	< 0.50	< 0.50	1.38
2	$Mean_p(BCF) = 2.78 + 5.65 \times SD Activity(Euc) - 15.$	10	0.84	0.73	0.28	2	< 0.50	< 0.50	< 0.50	1.38
3	$SD_p(BCF) = -0.387 - 0.381 \times logKow + 0.00989 \times$	10	< 0.60	< 0.50	0.29	2	< 0.50	< 0.50	< 0.50	0.85
4	$SD_{p(BCF)} = 0.335 + 1.32 \times MaxPos(LK))$	10	0.81	0.72	0.18	1	0.60	NA	0.51	0.52

 Table S4.
 Summary of applicability domain analysis towards QSPR, q-RASPR and SbSDs models.

Species	Compound type	Model	Ntotal	Outliers	Outside AD	%Training coverage	%Test coverage	Total (%)
Algae	Metal	QSPR	12	0	0	100	100	100
-		q-RASPR	12	0	0	100	100	100
Crustaceans	Metal	QSPR	12	0	0	100	100	100
		q-RASPR	12	0	0	100	100	100
Fish	Metal	QSPR	16	0	0	100	100	100
		q-RASPR	16	0	0	100	100	100
Mollusc	Metal	QSPR	14	0	0	100	100	100
		q-RASPR	14	0	0	100	100	100
Plant	Metal	QSPR	10	0	-	100	-	100
		q-RASPR	10	0	-	100	-	100

Mean	Metal	QSPR	17	0	0	100	100	100
		q-RASPR	17	0	0	100	100	100
SD	Metal	QSPR	17	0	0	100	100	100
		q-RASPR	17	0	0	100	100	100
HC5	Metal	q-RASPR	17	1	1	93	75	89
Algae	Metal Halides	QSPR	11	0	0	100	100	100
		q-RASPR	11	0	0	100	100	100
Crustaceans	Metal Halides	QSPR	14	0	0	100	100	100
		q-RASPR	14	0	0	100	100	100
Fish	Metal Halides	QSPR	19	1	0	92.86	100	94.73
		q-RASPR	19	0	0	100	100	100
Mollusc	Metal Halides	QSPR	13	0	0	100	100	100
		q-RASPR	13	0	0	100	100	100
Plant	Metal Halides	QSPR	11	0	0	100	100	100
		q-RASPR	11	0	0	100	100	100
Mean	Metal Halides	QSPR	10	0	0	100	100	100
		q-RASPR	10	0	0	100	100	100
SD	Metal Halides	QSPR	11	0	0	100	100	100
		q-RASPR	11	0	0	100	100	100
HC5	Metal Halides	q-RASPR	10	0	0	100	100	100
Fish	Metal Oxide	QSPR	14	0	0	100	100	100
		q-RASPR	14	0	0	100	100	100

Table S5. Quantitative results obtained for QSPR and q-RASPR individual species models.

Species	Model Type	Split	R2 test	Q2 (LOO)	RMSEc	Q2F1	<i>Q2F2</i>	<i>Q2F3</i>	RMSEP
				Meta	ls				
	QSPR	Split 1	0.81	0.51	0.48	< 0.50	< 0.50	< 0.50	2.25
Algae		Split 2	0.68	< 0.50	0.90	< 0.50	< 0.50	< 0.50	1.07
_		Split 3	0.68	< 0.50	0.92	< 0.50	< 0.50	< 0.50	0.94

	q-RASPR	Split 1	0.90	0.82	0.35	0.74	0.74	0.90	0.80
	1	Split 2	0.90	0.84	0.47	0.87	0.87	0.97	0.20
		Split 3	0.91	0.86	0.48	0.58	0.58	0.92	0.12
	QSPR	Split 1	0.68	< 0.50	0.40	< 0.50	< 0.50	< 0.50	1.48
		Split 2	0.66	< 0.50	0.50	< 0.50	< 0.50	< 0.50	1.33
C I		Split 3	0.62	< 0.50	0.55	< 0.50	< 0.50	< 0.50	1.18
Crustaceans	q-RASPR	Split 1	0.86	0.73	0.33	0.57	0.57	0.74	0.52
	-	Split 2	0.82	0.67	0.37	0.80	0.80	0.89	0.36
		Split 3	0.86	0.75	0.35	0.73	0.73	0.74	0.43
	QSPR	Split 1	0.85	0.71	0.27	< 0.50	< 0.50	< 0.50	2.39
		Split 2	0.78	< 0.50	0.59	< 0.50	< 0.50	< 0.50	2.37
F : 1		Split 3	0.71	0.53	0.79	< 0.50	< 0.50	< 0.50	3.22
FISH	q-RASPR	Split 1	0.88	0.73	0.72	< 0.50	< 0.50	< 0.50	0.38
		Split 2	0.89	0.73	0.69	< 0.50	< 0.50	< 0.50	0.58
		Split 3	0.87	0.71	0.71	< 0.50	< 0.50	0.73	0.45
	QSPR	Split 1	0.73	0.59	0.73	0.64	0.64	0.66	0.67
		Split 2	0.75	0.61	0.69	0.52	0.52	0.57	0.81
Mallugas		Split 3	0.77	0.52	0.65	0.55	0.55	0.55	0.93
wonuses	q-RASPR	Split 1	0.70	0.53	0.73	0.65	0.65	0.68	0.66
		Split 2	0.70	0.53	0.73	0.65	0.65	0.68	0.66
		Split 3	0.70	0.54	0.74	0.71	0.71	0.72	0.58
Plant		No Split				No Test Set	-		
				Metal ha	lide				
	OSPR	Split 1	0.71	0.50	0.36	0.72	NA	0.66	0.28
		Split 2	0.71	< 0.50	0.36	0.79	NA	0.74	0.23
		Split 3	0.82	0.68	0.26	< 0.50	NA	< 0.50	0.89
Algae	g-RASPR	Split 1	0.92	0.86	0.19	0.69	NA	0.62	0.23
	T	Split 2	0.91	0.85	0.20	0.91	NA	0.89	0.04
		Split 3	0.91	0.85	0.20	0.96	NA	0.95	0.10

	QSPR	Split 1	0.73	0.59	0.70	< 0.50	< 0.50	< 0.50	2.57	
		Split 2	0.68	0.53	0.77	< 0.50	< 0.50	< 0.50	2.34	
Crustaceans		Split 3	0.67	0.51	0.72	< 0.50	< 0.50	< 0.50	2.36	
Crustaceans	q-RASPR	Split 1	0.84	0.54	0.43	0.66	0.66	0.66	1.20	
		Split 2	0.78	0.68	0.63	0.68	0.68	0.71	0.87	
		Split 3	0.83	0.75	0.55	0.60	0.60	0.61	1.01	
	QSPR	Split 1	0.66	0.51	0.52	< 0.50	< 0.50	< 0.50	1.69	
		Split 2	0.60	< 0.50	0.62	< 0.50	< 0.50	< 0.50	1.27	
Figh		Split 3	< 0.60	< 0.50	0.76	< 0.50	< 0.50	< 0.50	1.11	
FISH	q-RASPR	Split 1	0.81	0.60	0.43	0.54	0.54	0.55	0.94	
		Split 2	0.75	0.59	0.54	0.53	0.53	0.53	0.84	
		Split 3	0.72	0.58	0.56	0.64	0.64	0.65	0.75	
	QSPR	Split 1	0.79	0.53	0.57	0.57	0.57	0.73	0.50	
		Split 2	0.80	0.65	0.49	0.61	0.61	0.62	1.01	
N C 11		Split 3	0.79	0.59	0.57	0.55	0.55	0.71	0.47	
Molluscs	q-RASPR	Split 1	0.87	0.70	0.45	0.65	0.65	0.66	0.56	
		Split 2	0.84	0.72	0.52	0.88	0.88	0.93	0.20	
		Split 3	0.84	0.72	0.52	0.83	0.83	0.93	0.22	
	QSPR	Split 1	0.73	0.51	0.59	0.60	NA	0.51	0.36	
		Split 2	0.80	0.55	0.46	< 0.50	NA	< 0.50	1.34	
		Split 3	0.75	0.61	0.58	< 0.50	NA	< 0.50	0.58	
Plants	q-RASPR	Split 1	0.87	0.78	0.42	0.99	NA	0.99	0.06	
	1	Split 2	0.87	0.78	0.42	0.99	NA	0.99	0.06	
		Split 3	0.87	0.75	0.41	0.93	NA	0.92	0.22	
		1 -								
				Metal (Oxide					
	QSPR	Split 1	0.80	0.51	0.42	< 0.50	< 0.50	< 0.50	2.79	
F: 1		Split 2	0.71	< 0.50	0.50	< 0.50	< 0.50	< 0.50	2.80	
FISh		Split 3	0.68	0.32	0.62	< 0.50	< 0.50	< 0.50	3.00	
	q-RASPR	Split 1	0.81	< 0.50	0.86	< 0.50	< 0.50	< 0.50	2.89	

Split	2 0.69	< 0.50	1.12	< 0.50	< 0.50	< 0.50	1.91	
Split	3 0.62	< 0.50	0.69	< 0.50	< 0.50	< 0.50	2.33	

SbSD Type Model Type *Q2F1 Q2F2 Q2F3* **RMSEP Split** R2 test *Q2 (LOO) RMSEc* Metals Mean **QSPR** Split 1 0.68 0.53 0.51 < 0.50 < 0.50 < 0.50 0.85 Split 2 0.69 0.56 0.52 < 0.50 < 0.50 < 0.50 0.84 Split 3 0.70 0.56 0.51 < 0.50 < 0.50 < 0.50 0.85 q-RASPR Split 1 0.90 0.83 0.29 0.73 0.73 0.73 0.35 Split 2 0.91 0.85 0.28 0.69 0.69 0.72 0.35 Split 3 0.81 0.68 0.27 0.89 0.80 0.88 0.43 SD 0.67 0.25 0.85 0.85 0.90 0.10 QSPR Split 1 0.77 0.21 0.33 Split 2 0.77 0.69 0.71 0.71 0.72 0.21 0.74 0.75 Split 3 0.73 0.60 0.74 0.37 Split 1 0.89 0.81 0.16 0.70 0.70 0.72 0.28 q-RASPR Split 2 0.75 0.59 0.18 0.84 0.84 0.85 0.27 Split 3 0.82 0.22 0.89 0.89 0.90 0.11 0.73 HC5 q-RASPR Split 1 0.87 0.65 0.83 0.98 0.98 0.98 1.28 Split 2 0.98 0.89 0.84 0.78 0.78 0.82 0.87 Split 3 0.98 0.89 0.75 0.68 0.68 0.73 1.14 Metal halide Mean **QSPR** Split 1 < 0.60 < 0.50 0.46 < 0.50 < 0.50 < 0.50 0.85 Split 2 < 0.60 < 0.50 0.5 < 0.50 < 0.50 < 0.50 0.65 Split 3 < 0.60 < 0.50 0.38 < 0.50 < 0.50 < 0.50 0.89 0.51 q-RASPR Split 1 0.76 0.35 < 0.50 < 0.50 < 0.50 0.88

Table S6. Quantitative results obtained for SbSDs models (QSPR and q-RASPR).

		Split 2	0.76	< 0.50	0.35	< 0.50	< 0.50	< 0.50	0.95
		Split 3	0.72	< 0.50	0.33	< 0.50	< 0.50	< 0.50	0.86
SD	QSPR	Split 1	< 0.60	< 0.50	0.3	< 0.50	< 0.50	< 0.50	0.8
		Split 2	< 0.60	< 0.50	0.41	< 0.50	< 0.50	< 0.50	0.41
		Split 3	< 0.60	< 0.50	0.44	0.91	0.91	0.91	0.11
	q-RASPR	Split 1	0.75	0.64	0.22	0.84	NA	0.81	0.21
		Split 2	0.74	0.64	0.22	0.90	NA	0.88	0.16
		Split 3	0.75	0.63	0.23	0.99	NA	0.99	0.028
HC5	q-RASPR	Split 1	0.84	0.54	0.90	0.99	0.99	0.99	0.51
	-	Split 2	0.98	0.97	0.83	< 0.50	< 0.50	< 0.50	0.82
		Split 3	0.98	0.92	0.75	0.89	0.89	0.89	1.14
HC5	q-RASPR	Split 3 Split 2 Split 3	0.84 0.98 0.98	0.54 0.97 0.92	0.23 0.90 0.83 0.75	0.99 <0.50 0.89	0.99 <0.50 0.89	0.99 <0.50 0.89	0.51 0.82 1.14

 Table S7. Quantitative metrics obtained for experiment-derived and synthetic-derived (SMOGN) QSPR and q-RASPR models.

Species	Model Type	N_{train}	R ²	Q2 (LOC	$O) RMSE_c$	N_{test}	Q^{2}_{F1}	Q^{2}_{F2}	Q^{2}_{F3}	$RMSE_p$
										*
				Ме	etal					
Algae	QSPR	10	0.78	0.51	0.75	2	< 0.5	< 0.5	< 0.5	1.75
	QSPR-SMOGN	10	0.78	0.51	0.75	10	0.66	0.66	0.67	1.12
	q-RASPR	10	0.91	0.84	0.43	2	0.82	0.82	0.91	0.51
	q-RASPR-SMOGN	10	0.91	0.84	0.43	11	0.83	0.83	0.86	0.64
Crustaceans	QSPR	10	0.69	0.54	0.38	2	< 0.5	< 0.5	< 0.5	1.46
	QSPR-SMOGN	10	0.69	0.54	0.38	11	0.59	0.59	0.59	0.55
	q-RASPR	10	0.85	0.71	0.34	2	0.77	0.77	0.8	0.49
	q-RASPR-SMOGN	10	0.85	0.71	0.34	14	0.83	0.83	0.83	0.39
Fish	QSPR	10	0.9	0.67	0.41	8	< 0.5	< 0.5	< 0.5	2.51

	OSPR-SMOGN	10	0.9	0.67	0.41	15	0.5	0.5	0.5	0.83
	\tilde{a} -RASPR	12	0.87	0.71	0.75	4	0.83	0.83	0.98	0.08
	q-RASPR-SMOGN	12	0.87	0.71	0.75	20	0.92	0.92	0.92	0.61
Molluscs	<i>OSPR</i>	10	0.77	0.65	0.6	3	0.57	0.54	0.56	1.11
	~ QSPR-SMOGN	10	0.77	0.65	0.6	16	0.66	0.66	0.66	0.83
	\tilde{q} -RASPR	11	0.72	0.59	0.75	3	0.57	0.57	0.66	0.44
	q-RASPR-SMOGN	11	0.72	0.59	0.75	17	0.69	0.69	0.69	0.68
Plant	QSPR	10	<0.6	=<0.5	0.64	NA	NA	NA	NA	NA
	QSPR-SMOGN	NA	NA	NA	NA	NA	NA	NA	NA	NA
	q-RASPR	10	0.86	0.64	0.34	NA	NA	NA	NA	NA
	q-RASPR-SMOGN	NA	NA	NA	NA	NA	NA	NA	NA	NA
Metal Halide										
Algae	QSPR	10	0.71	0.51	0.37	1	0.91	0.91	0.91	0.04
	QSPR-SMOGN	10	0.71	0.51	0.37	12	0.71	0.71	0.71	0.34
	q-RASPR	10	0.93	0.87	0.17	1	0.8	NA	0.76	0.37
	q-RASPR-SMOGN	10	0.93	0.87	0.17	12	0.89	0.89	0.89	0.22
Crustaceans	QSPR	12	1	0.6	0.64	2	< 0.5	< 0.5	< 0.5	2.49
	QSPR-SMOGN	12	0.75	0.6	0.64	14	0.6	0.6	0.61	0.83
	q-RASPR	10	0.83	0.72	0.55	4	0.62	0.62	0.62	1.04
	q-RASPR-SMOGN	10	0.83	0.72	0.55	18	0.71	0.71	0.71	0.8
Fish	QSPR	13	0.77	0.51	0.38	6	< 0.5	< 0.5	< 0.5	1.62
	QSPR-SMOGN	13	0.77	0.51	0.38	14	0.62	0.62	0.62	0.57
	q-RASPR	14	0.71	0.58	0.63	5	0.72	0.72	0.72	0.51
	q-RASPR-SMOGN	14	0.71	0.58	0.63	24	0.71	0.71	0.71	0.58
Molluscs	QSPR	11	0.79	0.6	0.6	2	0.86	0.86	0.9	0.17
	QSPR-SMOGN	11	0.79	0.6	0.6	13	0.8	0.8	0.81	0.6
	q-RASPR	10	0.85	0.74	0.49	3	0.72	0.72	0.72	0.8
	q-RASPR-SMOGN	10	0.85	0.74	0.49	14	0.88	0.88	0.88	0.52
Plant	QSPR	10	0.72	0.57	0.6	1	0.98	NA	0.97	0.12
	QSPR-SMOGN	10	0.72	0.57	0.6	8	0.84	0.84	0.84	0.56

	q-RASPR	10	0.87	0.77	0.39	1	0.82	NA	0.78	0.51
	q-RASPR-SMOGN	10	0.87	0.77	0.39	8	0.88	0.88	0.88	0.44
Metal Oxide										
Fish	QSPR	10	0.82	0.57	0.42	4	< 0.5	< 0.5	< 0.5	2.9
	QSPR-SMOGN	10	0.82	0.57	0.42	11	0.63	0.63	0.63	0.86

 Table S8. Quantitative metrics obtained for experiment-derived and synthetic-derived (SMOGN) various SbSD (QSPR and q-RASPR) models.

SbSD Type	Model Type	N_{train}	<i>R</i> ²	Q2 (LOO)	<i>RMSE</i> _c	N _{test}	Q^2_{F1}	Q^{2}_{F2}	Q^{2}_{F3}	<i>RMSE</i> _p
				М	etals					
Mean	QSPR	12	0.79	0.61	0.43	5	< 0.50	< 0.50	< 0.50	0.78
	QSPR-SMOGN	12	0.79	0.61	0.43	16	0.64	0.64	0.64	0.53
	q-RASPR	12	0.87	0.79	0.3	5	0.86	0.86	0.86	0.34
	q-RASPR-SMOGN	12	0.87	0.79	0.3	22	0.87	0.87	0.87	0.32
SD	QSPR	13	0.63	0.61	0.23	3	0.84	0.84	0.84	0.25
	QSPR-SMOGN	13	0.74	0.61	0.23	19	0.78	0.78	0.78	0.23
	q-RASPR	12	0.76	0.6	0.18	5	0.8	0.8	0.81	0.28
	q-RASPR-SMOGN	12	0.76	0.6	0.18	22	0.82	0.82	0.82	0.23
HC5	q-RASPR	13	0.98	0.91	0.77	4	0.92	0.92	0.92	1
	q-RASPR-SMOGN	13	0.98	0.91	0.77	16	0.95	0.95	0.95	1.13
				Meta	l Halide					
Mean	QSPR	10	0.74	< 0.50	0.19	2	< 0.50	< 0.50	< 0.50	1.38
	QSPR-SMOGN	10	0.74	< 0.50	0.19	4	0.76	0.76	0.82	0.15
	q-RASPR	10	0.84	0.73	0.28	2	< 0.50	< 0.50	< 0.50	
	q-RASPR-SMOGN	10	0.84	0.73	0.28	12	0.28	0.28	0.32	0.69
SD	QSPR	10	< 0.60	< 0.50	0.29	2	< 0.50	< 0.50	< 0.50	0.85
	QSPR-SMOGN	10	< 0.60	< 0.50	0.29	9	0.59	0.59	0.59	0.26

	q-RASPR	10	0.81	0.73	0.18	1	0.6	NA	0.51	0.52
	q-RASPR-SMOGN	10	0.81	0.73	0.18	12	0.69	0.69	0.7	0.27
HC5	q-RASPR	10	0.81	0.58	3.17	2	< 0.50	< 0.50	< 0.50	=>1.0
	q-RASPR-SMOGN	10	0.81	0.58	3.17	6	0.79	0.79	0.84	3.25

Table S9. Comparison of model BCF predictions with widely applied *in silico* tools.

Chemical Name	pBCF(Fish)_Ex	EPI	TEST	OECD QSAR	OCHEM	Present QSPR	Present q-RASPR					
	p	Suite		Toolbox	Model	Models	Models					
Metals												
Aluminum	1.56	0.5	0.5	0.5	0.53	1.56	5.42					
Iron	0.86	0.5	0.5	0.5	0.53	1.90	0.14					
Lead	0.53	0.5	0.5	0.5	0.53	3.07	0.14					
Manganese	2.34	0.5	0.5	0.5	0.53	2.61	5.42					
Mercury	4.43	0.5	0.5	0.5	0.53	3.66	5.42					
Nickel	0.50	0.5	0.5	0.5	0.53	1.84	0.6					
Silver	0.50	0.5	0.5	0.5	0.53	0.63	0.6					
Antimony	-0.40	0.5	0.5	0.5	0.53	-0.75	0.14					
Arsenic	0.62	0.5	0.5	0.5	0.53	0.58	0.6					
Barium	0.50	0.5	0.5	0.5	0.53	0.81	0.6					
Cadmium	1.10	0.5	0.5	0.5	0.53	1.90	0.6					
Chromium	0.13	0.5	0.5	0.5	0.53	2.30	0.14					
Cobalt	0.33	0.5	0.5	0.5	0.53	1.55	0.6					
Copper	6.41	0.5	0.5	0.5	0.53	1.73	5.42					
Vanadium	0.50	0.5	0.5	0.5	0.53	1.95	0.14					
Zinc	-1.52	0.5	0.5	0.5	0.53	1.75	0.14					
Calcium	0.50	0.5	0.5	0.5	0.53	0.10	0.6					
Selenium	0.89	0.5	0.5	0.5	0.53	0.91	0.14					

				Metal Halides			
Copper chloride	1.04	0.50	0.50	0.50	1.11	1.33	1.44
Mercury chloride	2.91	2.00	2.00	2.00	1.09	2.33	3.06
Lithium bromide	1.49	0.50	0.50	0.50	0.87	1.10	1.48
Cobalt chloride	-0.27	0.50	0.50	0.50	1.11	1.28	-0.52
Zinc chloride	1.65	0.50	0.50	0.50	1.10	1.20	1.44
Cesium chloride	0.91	0.50	0.50	0.50	0.84	1.97	1.39
Sodium fluoride	0.81	0.50	0.50	0.50	0.65	0.72	0.69
Nickel chloride	-1.12	0.50	0.50	0.50	1.11	1.30	-0.99
Iron chloride	1.15	0.50	0.50	0.50	1.11	1.25	1.12
Manganese chloride	1.35	0.50	0.50	0.50	1.11	1.28	1.12
Silver chloride	1.81	0.50	0.50	0.50	0.84	1.40	1.55
Beryllium chloride	-0.07	0.50	0.50	0.50	1.12	0.70	0.86
Indium chloride	1.96	0.43	0.43	0.43	1.36	2.28	1.53
Cadmium chloride	0.30	0.50	0.50	0.50	1.10	1.66	0.70
Mercury chloride	3.11	2.00	2.00	2.00	1.14	3.24	3.06
Barium chloride	1.78	0.50	0.50	0.50	1.09	2.21	2.22
Strontium chloride	1.77	0.50	0.50	0.50	1.10	1.72	1.72
Manganese chloride	-0.70	0.50	0.50	0.50	1.11	1.28	1.12
Iron chloride	2.30	0.50	0.50	0.50	1.40	1.57	1.12
				Metal Oxides			
Arsenic pentoxide	0.49	0.50	0.50	0.50	0.53	1.16	1.10
Cadmium oxide	1.76	0.50	0.50	0.50	0.52	1.71	0.48
Zinc oxide	0.36	0.68	0.68	0.68	0.49	-0.08	0.48
Lead oxide	2.37	0.50	0.50	0.50	0.57	2.15	2.49
Vanadium oxide	1.41	1.63	1.63	1.63	0.32	1.08	1.10
Lead oxide	1.63	0.50	0.50	0.50	0.54	2.15	0.48
Copper oxide	1.85	0.61	0.61	0.61	0.49	-0.01	2.49

Arsenic oxide	0.60	0.50	0.50	0.50	0.44	1.16	0.48
Chromium oxide	1.86	1.14	1.14	1.14	0.35	1.63	2.49
Titanium oxide	1.00	1.14	1.14	1.14	0.39	-0.12	1.10
Selenite	-0.22	0.50	0.50	0.50	0.38	1.78	1.10
Selenate	6.81	0.50	0.50	0.50	0.33	1.78	2.49
(T-4)-Vanadate	1.51	1.14	1.14	1.14	0.32	1.08	1.10
Mercury oxide	3.86	2.08	2.08	2.08	0.54	3.47	2.49

Figure S1. Comparative bar plot of observed and predicted pBCF values for various metals (A), metal halides (B), and metal oxides (C). Predictions from six computational models are shown alongside experimental (observed pBCF) values, enabling visual assessment of model accuracy across different chemicals.

Figure S2. (A)Spider plot depicting the mean absolute deviations between predicted and observed pBCF values for various predictive models applied to metals. A smaller distance from the center indicates higher predictive accuracy. (B) Heatmap showing the absolute differences between predicted and experimentally observed pBCF values across various predictive models for selected metal compounds. Lower values indicate closer agreement with experimental data, highlighting model performance and reliability.

Figure S3. (A) Spider plot depicting the mean absolute deviations between predicted and observed pBCF values for various predictive models applied to metal halides. A smaller distance from the center indicates higher predictive accuracy. (B) Heatmap showing the absolute differences between predicted and experimentally observed pBCF values across various predictive models for selected metal compounds. Lower values indicate closer agreement with experimental data, highlighting model performance and reliability.

Figure S4. (A) Spider plot depicting the mean absolute deviations between predicted and observed pBCF values for various predictive models applied to metal oxides. A smaller distance from the center indicates higher predictive accuracy. (B) Heatmap showing the absolute differences between predicted and experimentally observed pBCF values across various predictive models for selected metal compounds. Lower values indicate closer agreement with experimental data, highlighting model performance and reliability.

	EPI Suite	TEST	OECD QSAR Toolbox	OCHEM Model	Present QSPR Models	Present q-RASPR Models					
				Metals							
df	17	17	17	17	17	17					
t_{critical} for $\alpha=0.05$	2.110	2.110	2.110	2.110	2.110	2.110					
<i>t</i> -test value	1.424	1.424	1.424	1.352	1.166	1.293					
<i>p</i> -value	0.173	0.173	0.173	0.194	0.260	0.213					
Standard error of difference	0.421	0.421	0.421	0.421	0.396	0.304					
	Metal Halides										
df	18	18	18	18	18	18					
t_{critical} for $\alpha = 0.05$	2.101	2.101	2.101	2.101	2.101	2.101					
<i>t</i> -test value	2.327	2.327	2.327	0.369	1.954	0.732					
<i>p</i> -value	0.032	0.032	0.032	0.716	0.066	0.474					
Standard error of difference	0.221	0.221	0.221	0.260	0.206	0.139					
				Metal Oxides							
df	13	13	13	13	13	13					
t_{critical} for $\alpha=0.05$	2.160	2.160	2.160	2.160	2.160	2.160					
<i>t</i> -test value	2.051	2.051	2.051	2.890	1.067	1.052					
<i>p</i> -value	0.061	0.061	0.061	0.013	0.306	0.312					
Standard error of difference	0.466	0.466	0.466	0.472	0.425	0.368					

Table S10. Results of paired Student's *t*-tests between experimentally measured and *in silico* predicted pBCF(Fish) values. Statistically significant differences are highlighted in red.