Supplementary Information To the publication 'Gram-scale production of 4-vinyl guaiacol in the fast-growing cyanobacterium *Synechococcus* sp. PCC 11901'

Table of Contents

1.	Supplementary figures and tables	2
2.	Plasmids, primers, and sequences	7
	2.1 Sequence of Phenolic Acid Decarboxylase (PAD) from <i>Bacillus coagulans</i> DSM11 ³	8
	2.2 Primers used in this study	8
3.	References	9

1. Supplementary figures and tables

Figure 1 Sequence alignment of PAD with the amplicon from the colony-PCR of S. PCC11901 fadA::pad.

Figure 2 SDS-PAGE for expression control. Samples were denatured with an SDS-buffer at 95° C for 10min and transferred into a polyacrylamide gel (12% bis-acrylamide) and run at 200V. The marker is shown in the middle (PageRuler, Fisher Scientific, Waltham, MA, USA). Synechococcus sp. PCC11901, with left fadA::pad strain, after induction with 1mM IPTG, the middle lane is the WT of S. PCC11901followed by the DNA marker, outer right is an E. coli strain expressing PAD as a positive control. The molecular weight of PAD is expected at ~19 kDa, indicated by a green arrow.

Figure 3 Synechococcus sp. PCC11901 fadA::pad was incubated with 10mM caffeic acid at 500 μ mol photons/s/m². A shows cells after 24h, **B** the same tube, after centrifugation. **C** shows 10mM 3,4-dimethoxy styrene after 24h incubation in the same buffer and light conditions, without cells.

Figure 4 Synechococcus sp. PCC 11901WT (left) and fadA::pad (right) incubated with 10mM ferulic acid at 500µmol photons/s/m² after 24h.

Figure 5 NMR spectrum of 4-vinyl guaiacol, converted from ferulic acid by S. PCC 11901 fadA::pad. The product was extracted from the organic phase (DINP) by basic extraction. NMR code: ¹H NMR (400 MHz, DMSO) δ 9.07 (s, 1H), 7.04 (d, J = 2.0 Hz, 1H), 6.85 (dd, J = 8.2, 2.0 Hz, 1H), 6.73 (d, J = 8.1 Hz, 1H), 6.60 (dd, J = 17.6, 10.9 Hz, 1H), 5.62 (dd, J = 17.6, 1.1 Hz, 1H), 5.06 (dd, J = 10.9, 1.1 Hz, 1H), 3.79 (s, 3H).

Figure 6 Calculating the factor of OD_{750nm} to dry cell weight.

Figure 7 Optical density at 750nm (OD), Chlorophyll a and carotenoids content of S. PCC 11901, grown at 37°C, 1% CO_{2,} and 500µmol photons/s/m². The error bars indicate the standard error of the means from 3 replicates.

Figure 8 8 Growth comparison of S. PCC11901 and S. UTEX2973 in the CellDEG system. Cells were incubated at 500µmol photons/s/m² and 37°C. The arrows indicate an exchange of the carbonate buffer. S. UTEX2973 has been described as the fastest-growing cyanobacterium known¹, but S. PCC11901 shows a higher total biomass accumulation.

Compound	LB	ТВ	AD7 ²	MAD2 ²	YBG11 ³
Peptone	10 g/L				
Yeast extract	5 g/L	24 g/L			
NaCl	5 g/L		18 g/L	18 g/L	
Tryptone		20 g/L			
KH ₂ PO ₄		17 mM	50 mg/L	50 mg/L	
K ₂ HPO ₄		72 mM		0.27605 g/L	0.0305 g/L
MgSO ₄ * 7H ₂ O			5 g/L	5 g/L	0.074 g/L
KCI			0.6 g/L	0.6 g/L	
NaNO ₃			1 g/L	16 g/L	1.49 g/L
CaCl ₂ *2H ₂ O			0.37 g/L	0.37 g/L	36 mg/L
Na ₂ EDTA*2H ₂ O			30 mg/L	30 mg/L	5.95 mg/L
FeCl ₃ *6H ₂ O			15 µM	30 µM	0.97 mg/L
Vitamin B12			4 µg/L	12 µg/L	
H ₃ BO ₃			2.86 µg/L	2.86 µg/L	2.78 mg/L
MnCl ₂ * 4H ₂ O			1.18 µg/L	1.18 µg/L	1.13 mg/L
ZnSO ₄ * 7H ₂ O			222 µg/L	222 µg/L	0.2 mg/L
Na ₂ MoO ₄ * 2H ₂ O			1.26 mg/L	1.26 mg/L	0.39 mg/L
CuSO ₄ *5H ₂ O			79 µg/L	79 µg/L	0.07 mg/L
CoCl ₂ * 6H ₂ O			40.3 µg/L	40.3 µg/L	0.16 µM
Citric acid * H ₂ O					6.3 mg/L
Na ₂ CO ₃					160 µM
Tris (pH 8.4)			1.0375 g/L	1.0375 g/L	
HEPES (pH 7.8)					10/100 mM (depends on use)
Bacto-Agar	18 g/L (for plates)		12 g/L (for plates)		
$Na_2S_2O_3$			1 g/L (for plates)		
					Adjust to pH 7.2

Table 1 Media composition

2. Plasmids, primers, and sequences

Figure 9 Plasmid for genomic integration of PAD into S. PCC 11901. The integration site was the fadA locus, as described in Wlodraczyk et al., 2020.² The map was designed using SnapGene (Boston, USA).

2.1 Sequence of Phenolic Acid Decarboxylase (PAD) from *Bacillus coagulans* DSM11⁴

ATGAAAACCCTGGAAGAATTTTTGGGAACCCACATGATCTACACCTACGAAAATGGCTGGGAATACGAGTTCT ACGTCAAGAATCAAAACACTGTTGACTATCGAATTCACTCTGGCATGGTAGGTGGTCGCTGGGTTCGCGGTCA GAAAGCTGATATTGTCAAAATTACCGATGGCGTTTTCAAAGTCAGCTGGACGGAGCCGACAGGGACGGATGCC AGTCTAAACTTCATGCCTGACGACAAGCGGATGCATGGGGTGATTTTTTTCCCGAAGTGGGTGCATGAGCATCC CGAGATTACAGTCTGCTATCAGAATGATCACATCGATCTGATGGAAGAGTCGCGCGCAAAAATATGAAACCTAT CCCAAGTATGTGGTGCCAGAGTTTGCCGATATCACTTACATCAAAAATGAAGGCATCAACAACGAAAAGGTGA TCAGCGAGGCACCCTACGCCACGATGGCGGATGACATTCGTTCAGGCAAAACTCAAGTTTTCCTAA

2.2 Primers used in this study

Table 2 List of primers used in this study.

#74 PAD into fadA_fwd	tcaagtaggagattaattccATGAAAACCCTGGAAGAATTTTTGGG
#75 PAD into fadA_rev	gtttgtacaagaaatctagaTTAGGAAAACTTGAGTTTGCCTGAACG
#76 fadA for PAD_fwd	GCAAACTCAAGTTTTCCTAAtctagatttcttgtacaaactcggccc
#77 fadA for PAD_rev	AATTCTTCCAGGGTTTTCATggaattaatctcctacttgactttatgagt

3. References

- Yu, J. *et al.* Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. *Sci. Rep.*
- Wlodarczyk, A., Selão, T. T., Norling, B. & Nixon, P. J. Unprecedented biomass and fatty acid production by the newly discovered cyanobacterium Synechococcus sp. PCC 11901. *bioRxiv* (2020) doi:https://doi.org/10.1101/684944.
- Shcolnick, S., Shaked, Y. & Keren, N. A role for mrgA, a DPS family protein, in the internal transport of Fe in the cyanobacterium Synechocystis sp. PCC6803. *Biochim. Biophys. Acta BBA -Bioenerg.* 1767, 814–819 (2007).
- Ni, J., Gao, Y.-Y., Tao, F., Liu, H.-Y. & Xu, P. Temperature-Directed Biocatalysis for the Sustainable Production of Aromatic Aldehydes or Alcohols. *Angew. Chem.* 130, 1228–1231 (2018).