Supporting Information

Copper-catalyzed radical amino-oxygenation of alkenes for the exclusive synthesis of 5-substituted 2-oxazolidinones

Xuan Zhou,^a Xi Hu,^a Yi Chen,^a Hongxing Zhu,^a Muyang Yang,^a Guo-Jun Deng,^a Wen Shao^{a,*}

^{*a*} Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.

E-mail: shaowen@xtu.edu.cn

List of Contents

1.	General Information	S2
2.	Optimization of Reaction Conditions	S3
3.	Procedure for the Preparation of BocNR-Cl Reagents	S9
4.	General Procedure for Synthesis of Products 3	S13
5.	Large-Scale and Gram-Scale Reactions	S14
6.	Derivatizations of Products	S15
	6.1 Synthesis of (\pm) -Cytoxazone regioisomer	S15
	6.2 Synthesis of β-amino alcohols by reduction/hydrolysis cascade treatment	S16
	6.3 Synthesis of (\pm) - <i>Epipen</i> derivative	S17
	6.4 Allylation of <i>N</i> H-2-oxazolidinone 3ab	S18
	6.5 Arylation of <i>N</i> H-2-oxazolidinone 3ab	S19
7.	Mechanistic Studies	S20
	7.1 Radical capture experiment	S20
	7.2 Stereoconvergent experiment of E/Z alkene mixtures	S21
	7.3 Competition experiment and Hammett analysis	S22
8.	Green Metrics	S25
	8.1 <i>E</i> -factor & atom economy (AE)	S25
	8.2 Sustainability assessment by safety hazard scores (ES and SHS scores)	S26
9.	Characterization of Products	
10.	Copies of NMR Spectra of All Products	
11.	References	S142

1. General Information

The reactions via general procedure were carried out under an atmosphere of argon unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker-AV (400, 100 and 376 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, tt = triplet of triplets, ddd = doublet of double doublets, m = multiplet or unresolved, br = broad signal), coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and HRMS data with those in literatures. All reactions were performed in an oil bath when heating was required.

2. Optimization of Reaction Conditions

	Table	S1 .	Reaction	of So	lvent
--	-------	-------------	----------	-------	-------

1a	+ ^{Boc} _N , ^{Me} CuCl (10 mol%) Cl Solvent Ar, 100 °C, 12 h 2a	→ 3aa
Entry	Solvent	Yield (%) ^b
1	PhCH ₃	41
2	1,4-Dioxane	trace
3	THF	12
4	DMF	trace
5	DMSO	trace
6	MeOH	trace
7	MeCN	11
8	DCM	41
9	DCE	45
10	PhCl	49
11	EtOAc	58
12	Methyl acetate	49
13	Hexyl acetate	52
14	Isobutyl acetate	52
15	Isopropyl acetate	56

^{*a*}Reaction Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), CuCl (10 mol%) in corresponding solvent (1.0 mL) at 100 °C, Ar, 12 h. ^{*b*}Determined by ¹H NMR analysis of the crude reaction mixture using CH_2Br_2 as internal standard.

	+ Boc _N Me —	CuCl (10 mol%) EtOAc, <i>temp.</i> Ar, 12 h	O N-Me
1a	2a		3aa
Entry	Temp.((°C)	Yield (%) ^b
1	25		trace
2	50		12
3	80		53
4	90		56
5	100		58
6	120		46

Table S2. Optimization on Reaction Temperature^a

^{*a*}Reaction Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), CuCl (10 mol%) in EtOAc (1.0 mL) at 100 °C, Ar, 12 h. ^{*b*}Determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard.

1a	+ Boc N ^{.Me} — Cl 2a	<i>Cat. (n mol%)</i> EtOAc, 100 °C Ar, 12 h	o N-Me 3aa
Entry	Cat.	n	Yield(%) ^b
1	PdCl ₂	10	6
2	NiCl ₂ ·6H ₂ O	10	9
3	FeCl ₃	10	trace
4	Mn(acac) ₃	10	trace
5	RuCl ₃	10	trace
6	CoCl ₂	10	trace
7	Fe(OTf) ₃	10	8
8	Zn(OTf) ₂	10	trace
9	AgOTf	10	18
10	CuI	10	57
11	CuBr	10	47
12	CuCN	10	47
13	CuCl ₂	10	49
14	CuSO ₄	10	37
15	Cu(OTf) ₂	10	trace
16	Cu(acac) ₂	10	41
17	Cu(MeCN) ₄ PF ₆	10	23
18	CuO	10	46
19	CuCl	10	58
20	CuCl	5	36
21	CuCl	20	58
22	CuCl	30	59
23	CuCl	100	65

^{*a*}Reaction Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), **Cat.** (n mol%) in EtOAc (1.0 mL) at 100 °C, Ar, 12 h. ^{*b*}Determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard.

Table S4. O	ptimization	of Additive ^a
-------------	-------------	--------------------------

	+ Boc _N , ^{Me} — CI	CuCl (10 mol%) Additive (n) EtOAc, 100 °C Ar, 12 h	O N-Me
1a	2a		3aa
Entry	additive	n	Yield(%) ^b
1	None	0	58
2	MeOH	1.0 equiv	59
3	FeCl ₃	20 mol%	trace
4	BiCl ₃	20 mol%	27
5	Mn	1.0 equiv	19
6	4Å MS	5 mg	57
7	4Å MS	10 mg	59
8	4Å MS	15 mg	62
9	4Å MS	20 mg	63

^{*a*}Reaction Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), CuCl (10 mol%), with corresponding additive in EtOAc (1.0 mL) at 100 °C, Ar, 12 h. ^{*b*}Determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard.

+	Boc _{、N} ´ ^{Me} Cl	CuCl (10 mol%) 4Å MS (15 mg) EtOAc (n mL) , 100°C Ar, 12h	O N-Me
1a	2a		3aa
Entry		n	Yield(%) ^b
1		1	62
2		0.8	58
3		0.6	59
4		0.4	74
5		0.3	85
6		0.2	85(78)
7		0.1	83

Table S5. Optimization on Reaction Concentration^a

^{*a*}Reaction Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), CuCl (10 mol%), 4Å MS (15 mg) in EtOAc (n mL) at 100 °C, Ar, 12 h. ^{*b*}Determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard (isolated yield in parentheses).

Table S6. Optimization of Reaction Time^a

+	Boc Me N . Cl	CuCl (10 mol%) 4Å MS (15 mg) EtOAc , 100°C Ar, <i>time</i>	O N-Me
1a	2a		3aa
Entry		time	Yield(%) ^b
1		12 h	85(78)
2		6 h	84(78)
3		3 h	82
4		30 min	66

^{*a*}Reaction Conditions: **1a** (0.1 mmol), **2a** (0.15 mmol), CuCl (10 mol%), 4Å MS (15 mg) in EtOAc (1.0 mL) at 100 °C, Ar. ^{*b*}Determined by ¹H NMR analysis of the crude reaction mixture using CH_2Br_2 as internal standard (isolated yield in parentheses).

3. Procedure for the Preparation of BocNR-Cl Reagents

BocNR-Cl reagents 2c, 2e, 2f, 2g, 2h and 2k were synthesized according to the general procedure A; 2d, 2i and 2j were synthesized according to the general procedure B.

3.1 General procedure A^[1]

To a 50 mL flame-dried round bottom flask equipped with a stir bar, 10 mmol amine was added. The flask was cooled to 0 °C. Then 10 mmol Boc₂O was added dropwise. Upon the completion of addition, the mixture was warmed up to room temperature and stirred for additional 2 minutes-8 hours. The reaction was monitored by TLC, until the starting material disappeared. Then the mixture was concentrated in vacuo to afford the desired *N*-Boc protected product **S1** as a viscous oil which can be used directly in the next step. Trichloroisocyanuric acid (11 mmol, 1.1 equiv) was added at 0 °C to a well stirred solution of the **S1** in CH₂Cl₂ (6 mL for 1 mmol amide) and the mixture was kept at room temperature overnight. Then the mixture was filtered on Celite and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **S2** as a colorless oil liquid.

3.2 General procedure B

$$\begin{array}{c} \text{DMAP (10 mol\%)} \\ \text{R-NH}_2 + \text{Boc}_2\text{O} & \xrightarrow{\text{TEA (3.0 equiv)}} \text{Ar, DCM} & \xrightarrow{\text{Boc}} \text{N}^{\text{C}}_{\text{H}} & \xrightarrow{\text{TCCA (1.1 equiv)}} & \xrightarrow{\text{Boc}} \text{N}^{\text{C}}_{\text{C}} \\ \hline 0 \text{ °C-r.t., DCM} & \xrightarrow{\text{C}} \text{C}_{\text{C}} \end{array}$$

A 100 mL Schlenck bottom flask with a stir bar was flame-dried and cooled down under Ar atmosphere. Amine (10 mmol) and triethylamine (3.04 g, 3.8 mL, 3.0 equiv) in CH₂Cl₂ (40 mL) were first added and stirred for 30 minutes under Ar atmosphere. Then Boc₂O (3.28 g, 3.5 mL, 1.5 equiv) and DAMP (122.2 mg, 10 mmol%) were added. Upon the completion of addition, the mixture was stirred for additional 8 hours. The reaction was monitored by TLC, until the starting material disappeared. The reaction mixture was washed with aqueous HCl (1 M), aqueous NaHCO₃ and aqueous NaCl solutions. The organic layer was dried over anhydrous Na₂SO₄ and concentrated to afford the crude product **S1** as a viscous oil which can be used directly in the next step. Trichloroisocyanuric acid (11 mmol, 1.1 equiv) was added at 0 °C to a well stirred solution of the **S1** in CH₂Cl₂ (6 mL for 1 mmol amide) and the mixture was kept at room temperature overnight. Then the mixture was filtered on Celite and the residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 20:1) to afford **S2** as a colorless oil liquid.

tert-butyl chloro(methyl)carbamate (2a)

Boc Me

The corresponding BocNR-Cl **2a** was obtained as colorless oil (1.47 g, 89%); ¹H NMR (400 MHz, CDCl₃) δ 3.18 (s, 3H), 1.40 (s, 9H). The data are consistent with the reported literature.^[2]

tert-butyl chlorocarbamate (2b)

Boc H

The corresponding BocNR-Cl **2b** was obtained as colorless oil (1.22g, 81%); ¹H NMR (400 MHz, CDCl₃) δ 5.93 (s, 1H), 1.47 (s, 9H). The data are consistent with the reported literature.^[3]

tert-butyl chloro(propyl)carbamate (2c)

The corresponding BocNR-Cl **2c** was obtained as colorless oil (1.72 g, 87%); ¹H NMR (400 MHz, CDCl₃) δ 3.51 – 3.43 (m, 2H), 1.67 – 1.57 (m, 2H), 1.42 (t, *J* = 2.3 Hz, 9H), 0.89 – 0.80 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 82.3, 55.4, 27.9, 20.5, 10.4.

tert-butyl butylchlorocarbamate (2d)

The corresponding BocNR-Cl **2d** was obtained as colorless oil (0.98 g, 48%); ¹H NMR (400 MHz, CDCl3) δ 3.51 (t, J = 7.1 Hz, 2H), 1.65 – 1.53 (m, 2H), 1.44 (s, 9H), 1.28 – 1.17 (m, 2H), 0.89 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.7, 82.3, 53.7, 29.22, 27.9, 19.2, 13.6.

tert-butyl chloro(pentyl)carbamate (2e)

The corresponding BocNR-Cl **2e** was obtained as colorless oil (2.1 g, 95%); ¹H NMR (400 MHz, CDCl₃) δ 3.52 (t, *J* = 7.1 Hz, 2H), 1.68 – 1.56 (m, 2H), 1.45 (s, 9H), 1.36 – 1.17 (m, 4H), 0.87 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 82.4, 53.9, 28.0, 27.3, 26.83, 22.2, 13.9.

tert-butyl chloro(hexyl)carbamate (2f)

The corresponding BocNR-Cl **2f** was obtained as colorless oil (1.8 g, 78%); ¹H NMR (400 MHz, CDCl₃) δ 3.52 (t, J = 7.1 Hz, 2H), 1.61 (t, J = 7.0 Hz, 2H), 1.45 (s, 9H), 1.27 (s, 6H), 0.90 – 0.80 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.8, 82.4, 54.0, 31.3, 28.0, 27.1, 25.6, 22.5, 13.9.

tert-butyl chloro(octyl)carbamate (2g)

The corresponding BocNR-Cl **2g** was obtained as colorless oil (2.1 g, 79%); ¹H NMR (400 MHz, CDCl₃) δ 3.53 (t, *J* = 7.1 Hz, 2H), 1.62 (t, *J* = 7.0 Hz, 2H), 1.46 (s, 9H), 1.27 (t, *J* = 6.2 Hz, 10H), 0.86 (t, *J* = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 154.9, 82.5, 54.1, 31.8, 29.2, 29.2, 28.1, 27.2, 26.1, 22.6, 14.1.

methyl 3-((tert-butoxycarbonyl)chloroamino)propanoate (2h)

The corresponding BocNR-Cl **2h** was obtained as colorless oil (1.28 g, 54%); ¹H NMR (400 MHz, CDCl₃) δ 3.93 – 3.85 (m, 2H), 3.67 (s, 3H), 2.80 – 2.71 (m, 2H), 1.47 (s, 9H).

tert-butyl benzylchlorocarbamate (2i)

The corresponding BocNR-Cl **2i** was obtained as colorless oil (1.1 g, 46%); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.20 (m, 5H), 4.72 (s, 2H), 1.50 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 154.5, 136.0, 128.4, 128.0, 127.8, 82.9, 57.4, 27.9.

tert-butyl chloro(cyclohexyl)carbamate (2j)

The corresponding BocNR-Cl **2j** was obtained as colorless oil (0.97 g, 41%); ¹H NMR (400 MHz, CDCl₃) δ 4.00 – 3.88 (m, 1H), 1.75 – 1.65 (m, 2H), 1.64 – 1.57 (m, 2H), 1.56 – 1.45 (m, 3H), 1.37 (d, *J* = 1.8 Hz, 9H), 1.26 – 1.14 (m, 2H), 0.98 (d, *J* = 13.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 154.4, 82.0, 59.5, 29.7, 27.8, 25.1.

tert-butyl chloro(phenyl)carbamate (2k)

The corresponding BocNR-Cl **2k** was obtained as colorless oil (1.95 g, 86%); ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, J = 9.0 Hz, 1H), 7.31 (d, J = 2.4 Hz, 1H), 7.19 (dd, J = 8.9, 2.5 Hz, 1H), 7.01 – 6.90 (m, 1H), 1.52 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.05, 133.89, 128.53, 127.67, 120.33, 81.33, 28.16.

4. General Procedure for Synthesis of Products 3

In the glove box, to a flame-dried 10 mL reaction tube were charged with 1 (0.2 mmol), 2 (0.3 mmol, 1.5 equiv), CuCl (2.0 mg, 0.02 mmol, 10 mol%), 4Å MS (15 mg,) and EtOAc (0.2 mL, 1.0 M). Then the tube was sealed, and taken out of glove box. The mixture was stirred at 100 °C under Ar atmosphere for 6 h. After complete consumption of 1 (determined by TLC), the reaction mixture was concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel flash column chromatography (typically using petroleum ether firstly, then PE/EtOAc = 1:1 as elution) or prepared thin layer chromatography to afford the desired products **3**.

5. Large-Scale and Gram-Scale Reactions

5.1 Large-scale reaction for the synthesis of 3aa

A 10 mL Schlenck reaction tube with a stir bar was flame-dried and cooled down under Ar atmosphere. In the glove box, to a 10 mL reaction tube were added **1a** (463 mg, 3.0 mmol), **2a** (745 mg, 4.5 mmol, 1.5 equiv), CuCl (30 mg, 0.3 mmol, 10 mol%), 4Å MS (45 mg) and EtOAc (0.6 mL, 5.0 M). The mixture was stirred for additional 12 h at 100 °C. After complete consumption of **1a** (determined by TLC), the reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate and concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1:1) to afford the pure product **3aa** as a white solid (457 mg, 67% yield).

5.2 Gram-scale reaction at lower catalyst loading

A 25 mL Schlenck reaction tube with a stir bar was flame-dried and cooled down under Ar atmosphere. In the glove box, to a 25 mL reaction tube were added **1a** (1.16 g, 7.5 mmol), **2a** (1.9 g, 11.25 mmol, 1.5 equiv), CuCl (18.8 mg, 0.19 mmol, 2.5 mol%), 4Å MS (45 mg) and EtOAc (1.5 mL, 5.0 M). The mixture was stirred for additional 12 h at 100 °C. After complete consumption of **1a** (determined by TLC), the reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate and concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1:1) to afford the pure product **3aa** as a white solid (1.16 g, 68% yield).

6. Derivatizations of Products

6.1 Synthesis of (±)-Cytoxazone regioisomer

In the glove box, to a flame-dried 10 mL reaction tube were charged with 1n' (0.2 mmol), 2b (49.5 mg, 0.3 mmol, 1.5 equiv), CuCl (2 mg, 0.02 mmol, 10 mol%), 4Å MS (15 mg,) and ethyl acetate (0.2 mL). Then the tube was sealed. The mixture was stirred at 100 °C under Ar atmosphere for 6 h. After complete consumption of 1n' (determined by TLC), the reaction mixture was concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel flash column chromatography (typically using petroleum ether firstly, then PE/EtOAc = 1:1 as elution) to afford the desired product (\pm)-*Cytoxazone* regioisomer **3n** as a viscous oil (17.0 mg, 38% yield).

6.2 Synthesis of β-amino alcohols by reduction/hydrolysis cascade treatment

A 10 mL Schlenck reaction tube with a stir bar was flame-dried and cooled down under Ar atmosphere. The LiAlH₄ (11.4 mg, 1.5 equiv) was added to the tube under Ar atmosphere. The reaction tube was cooled to 0 °C. Then along the wall of the reaction tube, anhydrous THF (0.5 mL) was slowly added with stirring. When the mixture is no longer bubbling vigorously, dissolve **3a** (0.2 mmol, 45.6 mg) in 0.5 mL of anhydrous THF, then addition of this solution dropwise to the suspension of LiAlH₄ at 0 °C. The mixture was stirred for additional 5 h at room temperature. The reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate and methanol, then concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 40:1) to afford the pure product **4** as a white solid (29.8 mg, 74% yield).

6.3 Synthesis of (±)-Epipen derivative

In the glove box, to a flame-dried 10 mL reaction tube were charged with 5ethenylbenzo[1,3]dioxole **10'** (0.2 mmol), **2a** (49.5 mg, 0.3 mmol, 1.5 equiv), CuCl (2 mg, 0.02 mmol, 10 mol%), 4Å MS (15 mg,) and ethyl acetate (0.2 mL). Then the tube was sealed. The mixture was stirred at 100 °C under Ar atmosphere for 6 h. After complete consumption of **10'** (determined by TLC), the reaction mixture was concentrated under vacuum to afford the crude mixture **S**₁. A 10 mL Schlenck reaction tube with a stir bar was flame-dried and cooled down under Ar atmosphere. The LiAlH₄ (11.4 mg, 1.5 equiv) was added to the tube under Ar atmosphere. The reaction tube was cooled to 0 °C. Then along the wall of the reaction tube, anhydrous THF (0.5 mL) was slowly added with stirring. When the mixture is no longer bubbling vigorously, dissolve **S**₁ in 0.5 mL of anhydrous THF, then addition of the solution dropwise to the suspension of LiAlH₄ at 0 °C. The mixture was stirred for additional 5 h at room temperature. The reaction mixture was filtered over a short pad of silica gel, washed with ethyl acetate and methanol and concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel column chromatography (CH₂Cl₂/MeOH = 20:1) to afford the pure product (±)-*Epipen* derivative as a viscous oil (16.8 mg, 43% yield).

6.4 Allylation of NH-2-oxazolidinone 3ab

Adapted from reference,^[4] the **3ab** (42.6 mg, 0.2 mmol), allyl bromide (48.4 mg, 0.4 mmol), 2 mL acetonitrile and 0.4 g potassium carbonate were placed in a 50 ml round-flask and equipped with reflux condenser. The mixture was refluxed at 80 °C for 12 h. After cooling to room temperature, the solid was filtered and the resulting filtrate concentrated in vacuum using rotary evaporator. The residue was purified by silica gel flash column chromatography (typically using petroleum ether firstly, then PE/EtOAc = 3:1 as elution) to afford the desired products **3al** as a viscous oil (36.5 mg, 72% yield).

6.5 Arylation of NH-2-oxazolidinone 3ab

Adapted from reference,^[5] the **3ab** (42.6 mg, 0.2 mmol), copper iodide (0.006 mg, 3 mol%), (\pm)*trans*-1,2-diaminocyclohexane (2.3 mg, 10 mol%), potassium carbonate (55.3 mg, 0.4 mmol) and bromobenzene (26 µL, 0.24 mmol) were dissolved in 1,4-dioxane (1.0 mL). The mixture was refluxed at 110 °C for 15 h. The reaction mixture was dissolved in ethyl acetate (10 mL) and filtered through silica gel plug, followed by washing with ethyl acetate (10 mL × 3 times). The reaction mixture was concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel flash column chromatography (using petroleum ether firstly, then PE/EtOAc = 3:1 as elution) to afford the desired products **3ak** as a white solid (47.4 mg, 82% yield).

7. Mechanistic Studies

7.1 Radical capture experiment

A 10 mL Schlenk tube was flame-dried and cooled down under Ar atmosphere. To the Schlenk tube were added **1a** (0.2 mmol), **2a** (49.5 mg, 0.3 mmol, 1.5 equiv), CuCl (2 mg, 0.02 mmol, 10 mol%), 4Å MS (15 mg,), 2,2,6,6-tetramethyl-1-piperidinyloxy (**TEMPO**, 31.4 mg, 0.2 mmol, 1.0 equiv) or butylated hydroxytoluene (**BHT**, 44.07 mg, 0.2 mmol, 1.0 equiv) and ethyl acetate (0.2 mL), then sealed. The mixture was stirred at 100 °C under Ar atmosphere for 6 h. No target product **3aa** and radical capture products were detected in crude reaction solution by ¹H NMR and GC-MS, nevertheless with a significant amount of feedstock **1a** recovery.

7.2 Stereoconvergent experiment of *E*/*Z* alkene mixtures

In the glove box, to a flame-dried 10 mL reaction tube were charged with alkene **1p'** (0.2 mmol, E/Z = 2:1), **2a** (49.5 mg, 0.3 mmol, 1.5 equiv), CuCl (2 mg, 0.02 mmol, 10 mol%), 4Å MS (15 mg,) and ethyl acetate (0.2 mL). Then the tube was sealed and taken out of glove box. The mixture was stirred at 100 °C under Ar atmosphere for 6 h. After complete consumption of **1p'** (determined by TLC), the reaction mixture was concentrated under vacuum to afford the crude mixture. The residue was purified by silica gel flash column chromatography (typically using petroleum ether to PE/EtOAc = 3:1 as elution) to afford the stereoconvergent product **3p** (13.1 mg, 32% yield). Only one single diastereoisomeric product was obtained, which was confirmed by crude NMR and pure NMR analysis. The relative configuration of **3p** was confirmed by NOESY experiment.

7.3 Competition experiment and Hammett analysis

In the glove box, to a flame-dried 10 mL reaction tube were charged with **2a** (49.5 mg, 0.15 mmol, 1.5 equiv), α -methyl-styrene **1** (in total: 0.1 mmol, 1.0 equiv; 0.05 mmol, 0.5 equiv each of two differently substituted α -methyl-styrene), CuCl (2 mg, 0.02 mmol, 10 mol%), 4Å MS (15 mg,) and ethyl acetate (0.2 mL). Then the tube was sealed and taken out of glove box. The mixture was stirred at 100 °C under Ar atmosphere for 20 min. The reaction mixture was concentrated under vacuum to afford the crude mixture. CH₂Br₂ was added as internal standard and the conversion of each substituted phenyl ether were directly calculated via the allyl proton peaks by ¹H NMR spectroscopy of the crude reaction mixtures. The residue was purified by silica gel flash column chromatography (typically using petroleum ether to PE/EtOAc = 1:1 as elution) when the ratio cannot be analyzed by crude ¹H NMR.

11 0	1 1		
t (min)	yi	eld	k(n Cl)/k(n Ma)
t (min)	<i>p</i> -Cl	<i>p</i> -Me	K(p-CI)/K(p-IVIC)
0	0	0	-
20	0.1565	0.4083	0.3833

Supplementary Table S7. Data for *p*-Cl vs *p*-Me

By the isolated yield after column purification.

Supplementary Table S8. Data for p-Ph vs p-CN

t (min)	yi	$l_{r(n, Dh)}/l_{r(n, CN)}$	
t (IIIII)	<i>p</i> -Ph	<i>p</i> -CN	$K(p-P\Pi)/K(p-CN)$
0	0	0	-
20	0.4143	0.0581	7.1308

By ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard.

Supplementary Table S9. Data for <i>p</i> -OMe vs <i>p</i> -H					
t (min)	yie	$k(n OM_0)/k(n H)$			
	<i>p</i> -OMe	<i>р</i> -Н	$\kappa(p-Oivie)/\kappa(p-II)$		
0	0	0	-		
20	0.2936	0.2303	1.2748		

011

By ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard.

Supplementary Table S10. Data for *p*-Me vs *p*-H

	vi			
t (min)	<i>p</i> -Me	<i>р</i> -Н	k(<i>p</i> -Me)/k(<i>p</i> -H)	
0	0	0	-	
20	0.2598	0.2403	1.0811	

By ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard.

Supplementary Table S11. Data for p-CN vs p-Me

t (min)	yi	k(n CN)/k(n Me)	
	<i>p</i> -CN	<i>p</i> -Me	K(p-CIN)/K(p-IVIC)
0	0	0	-
20	0.0359	0.2894	0.1240

By ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as internal standard.

Supplementary Table S12. Relative rates and log k values used for the plots in this manuscript

Entry	Substituent	k _{rel}	log(k _{rel})
1	<i>p</i> -Me	1.0811	0.0338
2	<i>p</i> -Ph	0.9559 ^[a]	-0.0196
3	<i>p</i> -Cl	$0.4144^{[b]}$	-0.3826
4	<i>p</i> -CN	0.1341 ^[c]	-0.8725
5	<i>p</i> -OMe	1.2748	0.1054

[a] Calculated from k(p-Ph)/k(p-CN)•k(p-CN)/k(p-Me)•k(p-Me)/k(p-H). [b] Calculated from k(p-Cl)/k(*p*-Me)•k(*p*-Me)/k(*p*-H). [c] Calculated from k(*p*-CN)/k(*p*-Me)•k(*p*-Me)/k(*p*-H).

Supplementary Table S13. Overview of Hammett sigma values used.^[6]

Entry	Substituent	σ
1	<i>p</i> -Me	-0.17
2	<i>p</i> -Ph	-0.01
3	<i>p</i> -Cl	0.23
4	<i>p</i> -CN	0.66
5	<i>p</i> -OMe	-0.27

Figure S1. Hammett plot vs sigma parameters

8. Green Metrics

8.1 E-factor & atom economy (AE)

E-factor was calculated using Waste Mass/Product Mass.

Atom economy was calculated using Mass of Desired Product/Total Mass of Reactants * 100%.

(a) Green Chem., 2017, 19, 803-808:

E-factor: $[5.929 (t-BuOH) + 0.531 (styrene) + 0.635 (K_2CO_3 + EDTA-Na) + 0.347 (H_2O_2) + 0.419 (MeCN) + 0.044 (cat.) + 0.093 (aniline) + 0.010 (CO_2) + 0.043 (K_3PO_4) + 1.896 (DMF) - 0.182 (product)] / 0.182 (product) = 53.7$

AE: 239.27 / (104.15 + 34.01 + 93.13 + 44.0) *100% = 86.9%

(b) J. Am. Chem. Soc., 2014, 136, 13186–13189:

E-factor: [5.192 (CH₂Cl₂+MeCN) + 0.042 (styrene) + 0.168 (SM1) + 0.014 (cat.) + 0.011 (ligand) + 0.050 (4Å MS) + 2.003 (THF) + 0.038 (TsOH) + 2.017 (THF+MeOH) + 0.012 (LiOH) - 0.0535 (product)]/ 0.0535 (product) = 177.4 AE: 163.18 / (104.15 + 381.41) *100% = 33.6%

(c) Our approach:

E-factor: [0.541 (EtOAc) + 0.463 (SM1) + 0.745 (SM2) + 0.030 (cat.) + 0.045 (4Å MS) - 0.457 (product)] / 0.457 (product) = 2.9 AE: 227.26 / (154.21 + 165.62) *100% = 71.1%

8.2 Sustainability assessment by safety hazard scores (ES and SHS scores)

In this manner, each procedure has been assigned a final score given by the sum of each ES and SHS, which gives a numerical quantification (the higher, the worse) of its environmental and safety compatibility.

Table S14. Sustainability assessment of the synthesis of 5-substituted 2-oxazolidinones from alkenes.

	Reaction media			Work	Work-up solvents	
	ES	SHS		ES	SHS	
(a) Ring-opening	g/cyclization	method via epox	ide			
t-BuOH	0.48	3.54	Et ₂ O	0.59	3.27	
Water			Hexane	22.85	5.39	
DMF	0.02	12.60	EtOAc	0.23	2.23	
Total	0.50	16.14		23.67	10.89	
E-factor:	53.7					
(b) Fe-catalysis f	from functio	onalized hydroxyld	amines			
CH_2Cl_2	0.80	6.28	EtOAc	0.23	2.23	
MeCN	1.81	2.32	CH ₂ Cl ₂	0.80	6.28	
THF	2.38	3.31	Hexane	22.85	5.39	
Water			Acetone	0.35	2.33	
MeOH	0.14	3.77	l			
Total	5.13	15.68		24.23	16.23	
E-factor:	177.4					
This method: Cu-catalysed olefin amino-oxygenation						
EtOAc	0.23	2.23	EtOAc	0.23	2.23	
			Hexane	22.85	5.39	
Total	0.23	2.23		23.08	7.62	
E-factor:	2.9					

9. Characterization of Products

3-methyl-5-(naphthalen-2-yl)oxazolidin-2-one (3aa)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3aa** as a colorless viscous oil (35.5 mg, 78% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.92 – 7.81 (m, 4H), 7.56 – 7.47 (m, 2H), 7.42 (dd, *J* = 8.5, 1.8 Hz, 1H), 5.65 (t, *J* = 8.1 Hz, 1H), 3.98 (t, *J* = 8.7 Hz, 1H), 3.52 (dd, *J* = 8.7, 7.3 Hz, 1H), 2.96 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 158.2, 135.9, 133.3, 133.0, 129.0, 128.1, 127.8, 126.7, 126.6, 124.8, 122.7, 74.3, 54.4, 31.1.

m.p. = 114-115 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₄H₁₃NO₂Na⁺: 250.0838; found: 250.0844.

3,5-dimethyl-5-(naphthalen-2-yl)oxazolidin-2-one (3ba)

Purified by silica gel column chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ba** as a white solid (32.8 mg, 68% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.91 (d, *J* = 2.0 Hz, 1H), 7.89 – 7.77 (m, 3H), 7.61 – 7.47 (m, 2H), 7.41 (dd, *J* = 8.7, 2.0 Hz, 1H), 3.73 (d, *J* = 8.5 Hz, 1H), 3.70 (d, *J* = 8.4 Hz, 1H), 2.90 (s, 3H), 1.84 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.6, 140.9, 132.9, 132.6, 128.7, 128.1, 127.5, 126.6, 126.3, 122.7, 122.0, 79.7, 60.0, 31.0, 28.6.

m.p. = 127-128 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₅H₁₅NO₂Na⁺: 264.0995; found: 264.1002.

3-methyl-5-phenyloxazolidin-2-one (3ca)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ca** as a white solid (21.3 mg, 60% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.44 – 7.31 (m, 5H), 5.47 (t, *J* = 8.1 Hz, 1H), 3.91 (t, *J* = 8.7 Hz, 1H), 3.44 (t, *J* = 8.1 Hz, 1H), 2.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 158.2, 138.6, 128.8, 128.7, 125.5, 74.1, 54.4, 31.0.

m.p. = 57-58 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{10}H_{11}NO_2Na^+$: 200.0682; found: 200.0697.

5-(2-bromophenyl)-3-methyloxazolidin-2-one (3da)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3da** as a colorless viscous oil (29.7 mg, 58% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.66 – 7.48 (m, 2H), 7.44 – 7.31 (m, 1H), 7.25 – 7.16 (m, 1H), 5.71 (dd, *J* = 9.0, 6.3 Hz, 1H), 4.12 (t, *J* = 8.9 Hz, 1H), 3.32 (dd, *J* = 8.9, 6.3 Hz, 1H), 2.89 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.9, 138.7, 132.8, 129.8, 127.9, 126.3, 120.3, 73.0, 53.5, 30.9.

m.p. = 56-57 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{10}H_{10}BrNO_2Na^+$: 277.9787; found: 277.9796.

5-(3-bromophenyl)-3-methyloxazolidin-2-one (3ea)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ea** as a faint yellow viscous oil (25.6 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.56 – 7.42 (m, 2H), 7.31 – 7.21 (m, 2H), 5.5 – 5.4 (m, 1H), 3.92 (t, *J* = 8.8 Hz, 1H), 3.43 (s, 1H), 2.92 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.8, 141.0, 131.8, 130.5, 128.5, 124.0, 122.9, 73.1, 54.2, 31.1.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₀H₁₀BrNO₂Na⁺: 277.9787; found: 277.9801.

5-(4-chlorophenyl)-3-methyloxazolidin-2-one (3fa)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3fa** as a white solid (22.0 mg, 52% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.37 – 7.28 (m, 2H), 7.12 – 7.03 (m, 2H), 5.45 (t, *J* = 8.1 Hz, 1H), 3.90 (t, *J* = 8.7 Hz, 1H), 3.41 (dd, *J* = 8.8, 7.4 Hz, 1H), 2.91 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) =164.0, 161.6, 158.0, 134.4 (d, J = 3.3 Hz), 127.5 (d, J = 8.4

Hz), 115.8 (d, *J* = 21.8 Hz), 73.6, 54.4, 31.0.

m.p. = 60-61 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{10}H_{10}CINO_2Na^+$: 234.0292; found: 234.0230.

3,5-dimethyl-5-phenyloxazolidin-2-one (3ga)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ga** as a viscous oil (18.7 mg, 46% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.37 (d, *J* = 4.3 Hz, 4H), 7.31 (q, *J* = 4.2 Hz, 1H), 3.64 (s, 2H), 2.88 (s, 3H), 1.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.6, 143.8, 128.6, 127.8, 123.9, 79.6, 60.1, 31.0, 28.7.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₁H₁₃NO₂Na⁺: 214.0838; found: 214.0854.

3,5-dimethyl-5-(p-tolyl)oxazolidin-2-one (3ha)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ha** as a viscous oil (26.3 mg, 64% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.33 – 7.24 (m, 2H), 7.3 – 7.1 (m, 2H), 3.63 (s, 2H), 2.88 (s, 3H), 2.35 (s, 3H), 1.74 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.8, 141.0, 137.7, 129.3, 124.0, 79.7, 60.3, 31.1, 28.8, 21.0.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{15}NO_2Na^+$: 228.0995; found: 228.1017.

5-([1,1'-biphenyl]-4-yl)-3,5-dimethyloxazolidin-2-one (3ia)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ia** as a white solid (32.1 mg, 60% yield).

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.68 – 7.53 (m, 4H), 7.51 – 7.40 (m, 4H), 7.40 – 7.31 (m, 1H), 3.69 (d, J = 8.4 Hz, 1H), 3.66 (d, J = 8.6 Hz, 1H), 2.90 (s, 3H), 1.79 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.6, 142.8, 140.8, 140.3, 128.8, 127.5, 127.3, 127.0, 124.4, 79.5, 60.1, 31.0, 28.6.

m.p. = 140-141 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₇H₁₇NO₂Na⁺: 290.1151; found: 290.1172.

3,5-dimethyl-5-(4-(trifluoromethoxy)phenyl)oxazolidin-2-one (3ja)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ja** as a viscous oil (29.2 mg, 53% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.41 (d, *J* = 8.5 Hz, 2H), 7.22 (d, *J* = 8.3 Hz, 2H), 3.65 (d,

J = 8.5 Hz, 1H), 3.61 (d, *J* = 8.5 Hz, 1H), 2.88 (s, 3H), 1.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.3, 148.6 (q, *J* = 1.9 Hz), 142.6, 125.6, 121.1, 120.4 (q,

J = 257.4 Hz), 79.1, 60.0, 31.0, 28.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -57.9.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{12}F_3NO_3Na^+$: 298.0661; found: 298.0686.
5-(4-methoxyphenyl)-3,5-dimethyloxazolidin-2-one (3ka)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 3:2) to afford **3ka** as a viscous oil (17.7 mg, 40% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.34 – 7.26 (m, 2H), 6.94 – 6.85 (m, 2H), 3.80 (s, 3H), 3.61

(d, *J* = 8.2 Hz, 1H), 3.60 (d, *J* = 8.2 Hz, 1H), 2.87 (d, *J* = 1.0 Hz, 3H), 1.72 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.8, 141.0, 137.7, 129.3, 124.0, 79.7, 60.3, 31.1, 28.8, 21.0.

m.p. = 61-62 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₂H₁₅NO₃Na⁺: 244.0944; found: 244.0962.

4-(3,5-dimethyl-2-oxooxazolidin-5-yl)benzonitrile (3la)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3la** as a viscous oil (21.6 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.75 – 7.63 (m, 2H), 7.54 – 7.46 (m, 2H), 3.68 (d, *J* = 8.6 Hz, 1H), 3.60 (d, *J* = 8.6 Hz, 1H), 2.88 (s, 3H), 1.75 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.0, 148.9, 132.6, 124.9, 118.2, 112.0, 79.0, 59.7, 31.0, 28.5.

m.p. = 146-148 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{12}N_2O_2Na^+$:239.0791; found: 239.0807.

3,5-dimethyl-5-(4-nitrophenyl)oxazolidin-2-one (3ma)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ma** as a white solid (29.8 mg, 63% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.27 – 8.17 (m, 2H), 7.65 – 7.50 (m, 2H), 3.71 (d, *J* = 8.7 Hz, 1H), 3.63 (d, *J* = 8.6 Hz, 1H), 2.89 (s, 3H), 1.77 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 156.9, 150.8, 147.5, 125.2, 124.0, 79.0, 59.7, 31.0, 28.6. m.p. = 67-69 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{12}N_2O_4Na^+$:259.0689; found: 259.0706.

5-(4-fluorophenyl)-3,5-dimethyloxazolidin-2-one (3na)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3na** as a viscous oil (20.9 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm)= 7.45 – 7.30 (m, 2H), 7.14 – 6.99 (m, 2H), 3.63 (d, *J* = 8.5 Hz, 1H), 3.60 (d, *J* = 8.4 Hz, 1H), 2.88 (s, 3H), 1.73 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 162.2 (d, *J* = 246.8 Hz), 157.5, 139.7 (d, *J* = 3.2 Hz), 125.9

(d, *J* = 8.3 Hz), 115.6 (d, *J* = 21.6 Hz), 79.3, 60.2, 31.1, 28.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -114.4.

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₂H₁₁FNO₂H⁺: 210.0925; found: 210.0942.

5-(4-chlorophenyl)-3,5-dimethyloxazolidin-2-one (3oa)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **30a** as a viscous oil (23.0 mg, 51% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.39 – 7.24 (m, 1H), 3.63 (d, *J* = 8.5 Hz, 1H), 3.59 (d, *J* = 8.5 Hz, 1H), 2.87 (s, 1H), 1.72 (s, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.3, 142.4, 133.7, 128.8, 125.5, 79.1, 60.0, 31.0, 28.6.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{12}CINO_2Na^+$: 248.0449; found: 248.0454.

5-(4-bromophenyl)-3,5-dimethyloxazolidin-2-one (3pa)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3pa** as a viscous oil (33.0 mg, 61% yield).

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.51 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.7 Hz, 2H), 3.65 (d, *J* = 8.5 Hz, 1H), 3.60 (d, *J* = 8.5 Hz, 1H), 2.89 (s, 3H), 1.73 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.3, 142.9, 131.7, 125.8, 121.8, 79.2, 59.9, 31.0, 28.5.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₂H₁₂BrNO₂Na⁺: 291.9944; found: 291.9962.

5-(3-chlorophenyl)-3,5-dimethyloxazolidin-2-one (3qa)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3qa** as a viscous oil (25.3 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.46 – 7.36 (m, 1H), 7.36 – 7.23 (m, 3H), 3.65 (d, *J* = 8.8 Hz, 1H), 3.62 (d, *J* = 8.3 Hz, 1H), 2.89 (s, 3H), 1.75 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.2, 145.9, 134.6, 130.0, 128.0, 124.4, 122.2, 79.0, 59.9, 31.0, 28.6.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{12}CINO_2Na^+$:248.0449; found: 248.0472.

5-(2-chlorophenyl)-3,5-dimethyloxazolidin-2-one (3ra)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ra** as a viscous oil (13.5 mg, 30% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.77 (dd, *J* = 7.7, 1.9 Hz, 1H), 7.39 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.34 – 7.23 (m, 2H), 3.88 (d, *J* = 9.2 Hz, 1H), 3.83 (d, *J* = 9.2 Hz, 1H), 2.90 (s, 3H), 1.84 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 156.7, 141.0, 130.8, 129.6, 129.3, 127.3, 126.8, 79.7, 58.8, 30.9, 26.9.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{12}CINO_2Na^+$: 248.0449; found: 248.0648.

5-(3,4-dichlorocyclohexa-1,5-dien-1-yl)-3,5-dimethyloxazolidin-2-one (3sa)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3sa** as a viscous oil (30.3 mg, 58% yield).

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.54 – 7.39 (m, 2H), 7.20 (dd, *J* = 8.4, 2.3 Hz, 1H), 3.63 (d, *J* = 8.6 Hz, 1H), 3.58 (d, *J* = 8.6 Hz, 1H), 2.87 (s, 3H), 1.71 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.1, 144.1, 133.0, 132.1, 130.8, 126.4, 123.6, 78.7, 59.9,

31.1, 28.6.

m.p. = 94-95 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₁H₁₃Cl₂NO₂Na⁺: 284.0216; found: 284.0222.

5-(2,2-dimethylbenzo[d][1,3]dioxol-5-yl)-3-methyloxazolidin-2-one (3ta)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ta** as a viscous oil. One batch of reaction afforded product in 52% yield (25.9 mg), another batch gave product in 48% yield (25.0 mg), thus the average yield is 50% yield.

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 6.79 – 6.66 (m, 3H), 5.36 (t, *J* = 8.1 Hz, 1H), 3.84 (td, *J* = 6.79 – 6.66 (m, 3H), 5.36 (t, *J* = 8.1 Hz, 1H), 3.84 (td, *J* = 6.79 – 6.66 (m, 3H), 5.36 (t, *J* = 8.1 Hz, 1H), 3.84 (td, *J* = 6.79 – 6.66 (m, 3H), 5.36 (t, *J* = 8.1 Hz, 1H), 3.84 (td, *J* = 6.79 – 6.66 (m, 3H), 5.36 (t, J = 8.1 Hz, 1H), 3.84 (td, J = 6.79 + 6.66 (m, 3H), 5.36 (t, J = 8.1 Hz, 1H), 3.84 (td, J = 6.79 + 6.66 (m, 3H), 5.36 (t, J = 8.1 Hz, 1H), 5.84 (td, J = 6.79 + 6.66 (m, 3H), 5.36 (t, J = 8.1 Hz, 1H), 5.84 (td, J = 6.79 + 6.66 (m, 3H), 5.84 (td, J = 6.79 + 6.66 (m, 3H), 5.86 (t, J = 8.1 Hz, 1H), 5.84 (td, J = 6.79 + 6.66 (m, 3H), 5.86 (t, J = 8.1 Hz, 1H), 5.84 (td, J = 6.79 + 6.66 (m, 3H), 5.86 (m, 3H), 5.86

8.7, 1.3 Hz, 1H), 3.43 (dd, *J* = 8.7, 7.4 Hz, 1H), 2.92 (s, 3H), 1.67 (s, 6H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 158.2, 148.1, 147.9, 131.6, 119.1, 118.5, 108.1, 105.9, 74.4, 54.5, 31.1, 25.8.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₃H₁₅NO₄Na⁺: 272.0893; found: 272.0902

5-ethyl-3-methyl-5-(p-tolyl)oxazolidin-2-one (3ua)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ua** as a viscous oil (25.4 mg, 58% yield).

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.22 (d, *J* = 8.3 Hz, 2H), 7.17 (d, *J* = 8.1 Hz, 2H), 3.65 (d, *J* = 8.4 Hz, 1H), 3.60 (d, *J* = 8.4 Hz, 1H), 2.85 (s, 3H), 2.34 (s, 3H), 2.06 – 1.91 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.7, 139.7, 137.3, 129.1, 124.3, 82.3, 58.9, 34.7, 30.9, 20.9, 7.7.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{13}H_{17}NO_2Na^+$: 242.1151; found: 242.1173.

5-isopropyl-3-methyl-5-phenyloxazolidin-2-one (3va)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3va** as a viscous oil (11.8 mg, 27% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.40 – 7.27 (m, 5H), 3.79 (d, J = 8.6 Hz, 1H), 3.66 (d, J = 8.6 Hz, 1H), 2.85 (s, 3H), 2.18 – 2.05 (m, 1H), 0.96 (d, J = 6.7 Hz, 3H), 0.80 (d, J = 6.9 Hz, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.7, 142.3, 128.2, 127.6, 125.0, 84.3, 57.0, 37.9, 30.8, 16.9, 16.2.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{13}H_{17}NO_2Na^+$: 242.1151; found: 242.1167.

3-methyl-5,5-diphenyloxazolidin-2-one (3wa)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 2:1) to afford **3wa** as a colorless solid (25.3 mg, 50% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.45 – 7.39 (m, 4H), 7.39 – 7.33 (m, 4H), 7.32 – 7.27 (m, 2H), 4.13 (s, 2H), 2.91 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.3, 142.6, 128.6, 128.1, 125.3, 82.7, 59.7, 31.0.

m.p. = 170-172 °C.

HRMS (ESI⁺): calculated $[M+H]^+$ for $C_{16}H_{14}NO_2H^+$: 254.1176; found: 254.1191.

5-(4-methoxyphenyl)-3,4-dimethyloxazolidin-2-one (3xa)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford 3xa as a colorless viscous oil (19.9 mg, 45% yield, >19:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.33 – 7.23 (m, 2H), 6.97 – 6.88 (m, 2H), 4.84 (d, *J* = 8.0 Hz, 1H), 3.82 (s, 3H), 3.57 – 3.50 (m, 1H), 2.87 (s, 3H), 1.33 (d, *J* = 6.2 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 160.1, 157.9, 129.3, 127.6, 114.2, 82.4, 61.2, 55.3, 28.7, 17.1.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₂H₁₅NO₃Na⁺: 244.0944; found: 244.0954.

The NOE spectrum indicates that H-2 and H-5 are correlated, while H-3 is correlated to H-4.

4-(hydroxymethyl)-3-methyl-5-phenyloxazolidin-2-one (3ya)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ya** as a colorless viscous oil (8.7 mg, 21% yield, >19:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.43 – 7.34 (m, 5H), 5.41 (d, *J* = 6.3 Hz, 1H), 4.01 – 3.90 (m, 1H), 3.82 – 3.69 (m, 1H), 3.62 – 3.53 (m, 1H), 3.08 – 3.00 (m, 1H), 2.93 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 158.5, 138.7, 128.9, 128.8, 125.6, 76.7, 66.7, 59.8, 29.3.

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₁H₁₃NO₃H⁺: 208.0968; found: 208.0967.

3-methyl-3,3a,4,8b-tetrahydro-2H-indeno[2,1-d]oxazol-2-one (3za)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3za** as a faint yellow solid (23.1 mg, 61% yield, >19:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.49 (d, *J* = 7.4 Hz, 1H), 7.39 – 7.26 (m, 3H), 5.82 (d, *J* =

 $7.5 \ {\rm Hz}, 1 {\rm H}), 4.50 - 4.41 \ (m, 1 {\rm H}), 3.16 \ (s, 2 {\rm H}), 2.89 \ (s, 3 {\rm H}).$

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.5, 140.2, 138.4, 130.1, 127.7, 126.2, 125.4, 80.7, 60.6, 35.9, 29.4.

m.p. = 56-58 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₁H₁₁NO₂Na⁺: 212.0682; found: 212.0694.

tert-butyl 3-methyl-2-oxo-2,3,3a,8b-tetrahydro-4H-oxazolo[4,5-b]indole-4-carboxylate (3a)

Product **3a** was synthesized according to the General Procedure for Synthesis of Products **3** but using CuCl (1.0 equiv) instead. Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3a** as a faint yellow oil (29.0 mg, 50% yield, >19:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.46 – 7.33 (m, 2H), 7.10 (t, *J* = 7.5 Hz, 1H), 5.96 (d, *J* =

7.4 Hz, 1H), 3.04 (s, 3H), 1.60 (s, 9H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 156.6, 152.9, 141.3, 131.2, 127.0, 126.3, 124.0, 116.5, 83.1, 75.6, 75.3, 30.4, 28.3.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₅H₁₈N₂O₄Na⁺: 313.1159; found: 313.1142.

7-bromo-3-methyl-3a,8b-dihydrobenzofuro[2,3-d]oxazol-2(3H)-one (3b)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3b** as viscous oil. One batch of reaction afforded product in 29% yield (15.6 mg), another batch gave product in 32% yield (17.2 mg), thus the average yield is 30% yield (>19:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.55 (d, *J* = 2.1 Hz, 1H), 7.43 (dd, *J* = 8.6, 2.2 Hz, 1H), 6.78 (d, *J* = 8.6 Hz, 1H), 6.03 (d, *J* = 6.5 Hz, 1H), 5.90 (d, *J* = 6.4 Hz, 1H), 3.05 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 158.0, 156.1, 135.2, 129.7, 124.8, 113.9, 112.8, 93.5, 76.9, 29.3.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₀H₈BrNO₃Na⁺: 291.9580; found: 291.9589.

5-(benzyloxy)-3-methyloxazolidin-2-one (3c)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford 3c as a colorless viscous oil. One batch of reaction afforded product in 34% yield (14.1 mg), another batch gave product in 47% yield (19.4 mg), thus the average yield is 41% yield.

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.40 – 7.30 (m, 5H), 5.52 (dd, *J* = 6.4, 2.4 Hz, 1H), 4.90 (d, *J* = 11.4 Hz, 1H), 4.61 (d, *J* = 11.4 Hz, 1H), 3.69 (dd, *J* = 10.0, 6.4 Hz, 1H), 3.40 (dd, *J* = 10.0, 2.4 Hz, 1H), 2.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 156.8, 136.0, 128.6, 128.4, 128.3, 95.4, 70.5, 53.0, 30.5. HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₃H₁₃NO₃Na⁺: 230.0788 found: 230.0800.

3,5-dimethyl-2-oxo-*N*-phenyloxazolidine-5-carboxamide (3d)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3d** as a colorless viscous oil (15.5 mg, 33% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.60 – 7.53 (m, 2H), 7.39 – 7.31 (m, 2H), 7.20 – 7.13 (m, 1H), 3.98 (d, *J* = 9.7 Hz, 1H), 3.46 (d, *J* = 9.3 Hz, 1H), 2.91 (s, 3H), 1.74 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 169.9, 155.9, 136.5, 129.1, 125.2, 120.0, 78.7, 56.0, 30.9, 24.7.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₂H₁₄N₂O₃Na⁺: 257.0897; found: 257.0896.

(E)-3-methyl-5-styryloxazolidin-2-one (3e)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3e** a viscous oil (22.4 mg, 55% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.42 – 7.24 (m, 6H), 6.76 – 6.67 (m, 1H), 6.25 – 6.15 (m, 1H), 5.13 – 5.03 (m, 1H), 3.74 (t, *J* = 8.6 Hz, 1H), 3.34 (t, *J* = 8.0 Hz, 1H), 2.90 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 158.2, 135.5, 134.2, 128.7, 128.6, 126.8, 125.2, 73.7, 52.6, 31.1.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{13}NO_2Na^+$: 226.0838; found: 226.0847.

(E)-5-(4-fluorostyryl)-3-methyloxazolidin-2-one (3f)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3f** a viscous oil (25.2 mg, 57% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.36 (dd, *J* = 8.5, 5.3 Hz, 2H), 7.02 (t, *J* = 8.5 Hz, 2H), 6.74 - 6.60 (m, 1H), 6.20 - 6.03 (m, 1H), 5.13 - 5.00 (m, 1H), 3.75 (t, *J* = 8.6 Hz, 1H), 3.35 (t, *J* = 7.2 Hz, 1H), 2.90 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 162.8 (d, J = 246.6 Hz), 158.1, 132.9, 131.6 (d, J = 3.4

Hz), 128.4 (d, *J* = 7.9 Hz), 124.9 (d, *J* = 2.2 Hz), 115.7 (d, *J* = 21.2 Hz), 73.5, 52.5, 31.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ (ppm) = -112.8.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{12}H_{12}FNO_2Na^+$: 244.0744; found: 244.0763.

(E)-5-(2-([1,1'-biphenyl]-4-yl)vinyl)-3-methyloxazolidin-2-one (3g)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford 3g a viscous oil (25.7 mg, 46% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.68 – 7.54 (m, 4H), 7.52 – 7.40 (m, 4H), 7.39 – 7.31 (m, 1H), 6.83 – 6.72 (m, 1H), 6.31 – 6.18 (m, 1H), 5.21 – 5.03 (m, 1H), 3.76 (t, *J* = 8.6 Hz, 1H), 3.37 (dd, *J* = 8.7, 7.2 Hz, 1H), 2.92 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 158.2, 141.3, 140.4, 134.5, 133.7, 128.9, 127.6, 127.4, 127.3, 127.0, 125.2, 73.8, 52.6, 31.2.

m.p. = 153-154 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{18}H_{17}NO_2Na^+$: 302.1151; found: 302.1170.

(E)-5-(3-methoxystyryl)-3-methyloxazolidin-2-one (3h)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3h** as a colorless viscous oil (33.6 mg, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.30 – 7.21 (m, 1H), 6.99 (d, *J* = 7.7 Hz, 1H), 6.92 (s, 1H), 6.85 (dd, *J* = 8.2, 2.4 Hz, 1H), 6.74 – 6.65 (m, 1H), 6.26 – 6.15 (m, 1H), 5.14 – 5.03 (m, 1H), 3.82 (s, 3H), 3.75 (t, *J* = 8.6 Hz, 1H), 3.35 (dd, *J* = 8.7, 7.2 Hz, 1H), 2.91 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 159.8, 158.1, 136.8, 133.9, 129.7, 125.4, 119.3, 114.1, 111.9, 73.5, 55.2, 52.5, 31.0.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₃H₁₅NO₃Na⁺: 256.0944; found: 256.0961.

3,5-dimethyl-5-(prop-1-en-2-yl)oxazolidin-2-one (3i)

The quantity of **1i**, **2a** were modified to 2.0 equiv and 0.2 mmol, the remaining conditions were maintained which is according to the General Procedure for Synthesis of Products **3**. Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3i** as a colorless viscous oil (17.4 mg, 56% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 5.08 (s, 1H), 4.96 – 4.87 (m, 1H), 3.45 (d, *J* = 7.3 Hz, 1H), 3.30 (d, *J* = 7.3 Hz, 1H), 2.87 (s, 3H), 1.77 (s, 3H), 1.53 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.7, 145.2, 111.3, 80.3, 57.3, 31.0, 25.6, 18.3.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_8H_{13}NO_2Na^+$: 178.0838; found: 178.0853.

3,5-dimethyl-5-(phenylethynyl)oxazolidin-2-one (3j)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3j** as a colorless viscous oil (31.4 mg, 73% yield).

¹**H** NMR (400 MHz, CDCl₃) δ (ppm) = 7.43 (dd, *J* = 7.6, 2.0 Hz, 2H), 7.39 – 7.27 (m, 2H), 3.80 (d, *J* = 8.5 Hz, 1H), 3.50 (d, *J* = 8.6 Hz, 1H), 2.92 (s, 3H), 1.79 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 156.9, 131.7, 128.9, 128.3, 121.4, 87.9, 85.4, 71.6, 59.5, 30.9, 27.9.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₃H₁₃NO₂Na⁺: 238.0838; found: 238.0847.

5-((4-methoxyphenyl)ethynyl)-3,5-dimethyloxazolidin-2-one (3k)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford 3k as a viscous oil (35.3 mg, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.39 – 7.29 (m, 2H), 6.84 – 6.76 (m, 2H), 3.76 (d, *J* = 7.9 Hz, 4H), 3.47 (d, *J* = 8.6 Hz, 1H), 2.89 (s, 3H), 1.75 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 159.9, 156.9, 133.2, 113.8, 113.3, 86.6, 85.4, 71.7, 59.4,

55.2, 30.8, 27.9.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{14}H_{15}NO_3Na^+$: 268.0944; found: 268.0953.

ethyl 2-methyl-2-(4-(3-methyl-2-oxooxazolidin-5-yl)phenoxy)propanoate (31)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **31** as a faint yellow oil (34.6 mg, 40% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.26 – 7.17 (m, 2H), 6.88 – 6.79 (m, 2H), 5.40 (t, *J* = 8.1 Hz, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.85 (t, *J* = 8.7 Hz, 1H), 3.43 (dd, *J* = 8.8, 7.6 Hz, 1H), 2.91 (s, 3H), 1.59 (s, 6H), 1.29 – 1.10 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 174.1, 158.2, 156.0, 131.8, 126.9, 119.1, 79.2, 74.1, 61.5, 54.4, 31.1, 25.3, 14.1.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{16}H_{21}NO_5Na^+$: 330.1312; found: 330.1319.

(8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl 4-(3-methyl-2-oxooxazolidin-5-yl)benzoate (3m)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3m** as a white solid (38.8 mg, 41% yield, 11:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.39 – 7.96 (m, 2H), 7.58 – 7.45 (m, 2H), 7.34 (dd, *J* = 8.1, 8.3 Hz, 1H), 7.03 – 6.90 (m, 1H), 5.60 – 5.52 (m, 1H), 3.98 (t, *J* = 9.3 Hz, 1H), 3.43 (dd, *J* = 9.9, 8.4 Hz, 1H), 2.92 (s, 4H), 2.58 – 2.36 (m, 1H), 2.25 – 2.09 (m, 1H), 2.13 – 1.91 (m, 2H), 1.71 – 1.38 (m, 3H), 0.90 (s, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 220.8, 164.8, 157.8, 148.6, 144.3, 138.1, 137.6, 130.7, 130.0, 126.5, 125.4, 121.6, 118.7, 73.4, 54.2, 50.4, 47.9, 44.1, 38.0, 35.8, 31.5, 31.1, 29.4, 26.3, 25.7, 21.6, 13.8.

m.p. = 125-126 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₉H₃₁NO₅Na⁺: 496.2094; found: 496.2088.

4-(hydroxymethyl)-5-(4-methoxyphenyl)-3-methyloxazolidin-2-one (3n)

The product **3n** was synthesized according to the General Procedure but at room temperature with 2.0 equivalent of **2b** instead. Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3n** as a viscous oil (17.0 mg, 38% yield, >19:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.33 (d, *J* = 8.7 Hz, 2H), 6.94 (d, *J* = 8.7 Hz, 2H), 5.55 (d, *J* = 8.6 Hz, 1H), 4.12 – 4.02 (m, 1H), 3.82 (s, 3H), 3.74 – 3.62 (m, 2H), 2.20 (dd, *J* = 8.7, 4.0 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 160.7, 157.3, 128.2, 127.3, 114.4, 77.9, 70.8, 57.4, 55.4.
HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₁H₁₃NO₄Na⁺: 246.0737; found: 246.0761.

5-(benzo[d][1,3]dioxol-5-yl)-3,5-dimethyloxazolidin-2-one (30)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **30** as a viscous oil (28.3 mg, 64% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 6.89 – 6.73 (m, 3H), 5.97 (s, 2H), 5.43 – 5.33 (m, 1H), 3.85 (t, *J* = 8.7 Hz, 1H), 3.40 (dd, *J* = 8.8, 7.5 Hz, 1H), 2.91 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 158.0, 148.2, 148.0, 132.3, 119.6, 108.3, 106.0, 101.3, 74.2, 54.4, 31.0.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₁H₁₁NO₄Na⁺: 244.0580; found: 244.0598

3,4,5-trimethyl-5-phenyloxazolidin-2-one (3p)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford 3p as a viscous oil (13.1 mg, 32% yield, > 19:1 dr).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.42 – 7.33 (m, 4H), 7.35 – 7.29 (m, 1H), 3.70 (q, *J* = 6.6 Hz, 1H), 2.80 (s, 3H), 1.61 (s, 3H), 1.35 (d, *J* = 6.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.4, 144.3, 128.6, 127.8, 124.0, 83.0, 63.1, 28.9, 22.3, 13.8.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₂H₁₅NO₂Na⁺: 228.0995; found: 228.0976.

The NOE spectra indicate that H-2 and H-5 are correlated, while H-3 is correlated with H-4.

5-(naphthalen-2-yl)oxazolidin-2-one (3ab)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ab** as a white solid (28.6 mg, 67% yield).

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.94 – 7.79 (m, 4H), 7.56 – 7.49 (m, 2H), 7.46 (dd, J = 8.5, 1.8 Hz, 1H), 5.80 (t, J = 8.1 Hz, 1H), 5.49 (s, 1H), 4.06 (t, J = 8.7 Hz, 1H), 3.63 (t, J = 8.1 Hz, 1H).
¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 159.4, 135.6, 133.4, 133.0, 129.1, 128.1, 127.8, 126.7, 126.7, 125.0, 122.8, 78.0, 48.2.

m.p. = 136-137 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{13}H_{11}NO_2Na^+$: 236.0682; found: 236.0683.

5-(naphthalen-2-yl)-3-propyloxazolidin-2-one (3ac)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ac** as a white solid (34.5 mg, 48% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.94 – 7.78 (m, 4H), 7.58 – 7.45 (m, 2H), 7.42 (dd, *J* = 8.5, 1.8 Hz, 1H), 5.74 – 5.55 (m, 1H), 3.97 (t, *J* = 8.8 Hz, 1H), 3.49 (dd, *J* = 8.7, 7.3 Hz, 1H), 3.40 – 3.14 (m, 2H), 1.67 – 1.52 (m, 2H), 0.94 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 158.1, 136.2, 133.3, 133.1, 129.1, 128.1, 127.8, 126.7, 126.6, 124.8, 122.7, 74.4, 52.1, 45.9, 20.7, 11.1.

m.p. = 98-99 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{16}H_{17}NO_2Na^+$: 278.1151; found: 278.1143.

3-butyl-5-(naphthalen-2-yl)oxazolidin-2-one (3ad)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ad** as a white solid (26.9 mg, 50% yield).

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.92 - 7.77 (m, 4H), 7.56 - 7.45 (m, 2H), 7.45 - 7.37 (m, 1H), 5.64 (t, J = 8.1 Hz, 1H), 3.97 (t, J = 8.8 Hz, 1H), 3.57 - 3.42 (m, 1H), 3.42 - 3.22 (m, 2H), 1.54 (dd, J = 8.6, 6.4 Hz, 2H), 1.41 - 1.31 (m, 2H), 0.94 (t, J = 7.3 Hz, 3H).
¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.9, 136.1, 133.2, 133.0, 129.0, 128.0, 127.7, 126.6,

126.5, 124.7, 122.6, 74.3, 52.0, 43.9, 29.3, 19.8, 13.6.

m.p. = 105-106 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{17}H_{19}NO_2Na^+$: 292.1308; found: 292.1312.

5-(naphthalen-2-yl)-3-pentyloxazolidin-2-one (3ae)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ae** as a white solid (27.2 mg, 48% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.91 – 7.80 (m, 4H), 7.55 – 7.46 (m, 2H), 7.42 (d, *J* = 8.5 Hz, 1H), 5.65 (t, *J* = 8.1 Hz, 1H), 3.98 (t, *J* = 8.8 Hz, 1H), 3.49 (t, *J* = 8.0 Hz, 1H), 3.44 – 3.19 (m, 2H), 1.56 (p, *J* = 7.3 Hz, 2H), 1.38 – 1.27 (m, 4H), 0.89 (t, *J* = 6.7 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.9, 136.1, 133.2, 133.0, 129.0, 128.0, 127.7, 126.6, 126.5, 124.8, 122.7, 74.3, 52.0, 44.1, 28.7, 27.0, 22.2, 13.9.

m.p. = 106-107 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{18}H_{21}NO_2Na^+$: 306.1465; found: 306.1452.
3-hexyl-5-(naphthalen-2-yl)oxazolidin-2-one (3af)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3af** as a white solid (25.6 mg, 43% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.94 – 7.81 (m, 4H), 7.57 – 7.48 (m, 2H), 7.42 (dd, J = 8.5, 1.8 Hz, 1H), 5.72 – 5.58 (m, 1H), 3.98 (t, J = 8.8 Hz, 1H), 3.49 (dd, J = 8.7, 7.3 Hz, 1H), 3.43 –

 $3.23 \ (m, 2H), \ 1.63 - 1.49 \ (m, 2H), \ 1.36 - 1.25 \ (m, 7H), \ 0.94 - 0.77 \ (m, 3H).$

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.9, 136.1, 133.2, 133.0, 129.0, 128.0, 127.7, 126.6, 126.5, 124.8, 122.7, 74.3, 52.1, 44.2, 31.4, 27.3, 26.2, 22.5, 14.0.

m.p. = 101-102 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{19}H_{23}NO_2Na^+$: 320.1621; found: 320.1633.

5-(naphthalen-2-yl)-3-octyloxazolidin-2-one (3ag)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ag** as a white solid (27.3 mg, 42% yield).

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.93 – 7.79 (m, 4H), 7.58 – 7.48 (m, 2H), 7.42 (d, J = 8.5 Hz, 1H), 5.65 (t, J = 8.2 Hz, 1H), 3.97 (t, J = 8.0 Hz, 1H), 3.49 (t, J = 8.6 Hz, 1H), 3.41 – 3.23 (m, 2H), 1.63 – 1.49 (m, 2H), 1.34 – 1.22 (m, 10H), 0.92 – 0.81 (m, 3H).
¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.9, 136.1, 133.2, 133.0, 129.0, 128.0, 127.7, 126.6, 126.5, 124.7, 122.6, 74.3, 52.0, 44.2, 31.7, 29.1, 29.1, 27.3, 26.6, 22.6, 14.0.

m.p. = 103-104 °C.

HRMS (ESI⁺): calculated $[M+H]^+$ for $C_{21}H_{27}NO_2H^+$: 326.2115; found: 326.2114.

methyl 3-(5-(naphthalen-2-yl)-2-oxooxazolidin-3-yl)propanoate (3ah)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ah** as a viscous oil (20.4 mg, 34% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.90 – 7.82 (m, 4H), 7.54 – 7.49 (m, 2H), 7.41 (dd, *J* = 8.5, 1.8 Hz, 1H), 5.64 (t, *J* = 8.1 Hz, 1H), 4.06 (t, *J* = 8.8 Hz, 1H), 3.66 (s, 3H), 3.65 – 3.61 (m, 1H), 3.61 – 3.54 (m, 2H), 2.71 – 2.60 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 172.0, 157.8, 135.7, 133.3, 133.0, 129.0, 128.0, 127.7, 126.7, 126.6, 124.9, 122.7, 74.7, 52.8, 51.9, 40.1, 32.6.

m.p. = 78-79 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₇H₁₇NO₄Na⁺: 322.1050; found: 322.1043.

3-benzyl-5-(naphthalen-2-yl)oxazolidin-2-one (3ai)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3ai** as a white solid (17.0 mg, 28% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.9 – 7.8 (m, 4H), 7.5 – 7.5 (m, 2H), 7.4 – 7.3 (m, 6H), 5.6 (t, *J* = 8.1 Hz, 1H), 4.6 (d, *J* = 14.8 Hz, 1H), 4.4 (d, *J* = 14.8 Hz, 1H), 3.8 (t, *J* = 8.8 Hz, 1H), 3.4 (dd, *J* = 8.8, 7.4 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 158.0, 143.3, 135.8, 135.6, 133.2, 133.0, 129.0, 128.9, 128.1, 128.0, 127.7, 126.6, 126.6, 124.8, 122.7, 74.6, 51.4, 48.4.

m.p. = 132-133 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₂₀H₁₇NO₂Na⁺: 326.1151; found: 326.1151.

3-cyclohexyl-5-(naphthalen-2-yl)oxazolidin-2-one (3aj)

Purified by prepared thin layer chromatography (petroleum ether/ethyl acetate = 1:1) to afford **3aj** as a white solid (9.5 mg, 16% yield).

¹H NMR (400 MHz, CDCl₃) δ (ppm) = 7.93 – 7.81 (m, 4H), 7.57 – 7.48 (m, 2H), 7.41 (dd, J = 8.5, 1.8 Hz, 1H), 5.72 – 5.58 (m, 1H), 3.95 (t, J = 8.7 Hz, 1H), 3.86 – 3.68 (m, 1H), 3.46 (dd, J = 8.7, 7.2 Hz, 1H), 1.92 – 1.75 (m, 4H), 1.65 (s, 1H), 1.46 – 1.30 (m, 4H), 1.14 – 1.00 (m, 1H).
¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 157.2, 136.3, 133.2, 133.0, 129.0, 128.0, 127.7, 126.6, 126.5, 124.7, 122.7, 74.6, 52.6, 48.2, 30.5, 30.1, 25.3, 25.3, 25.2.

m.p. = 106-107 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{19}H_{21}NO_2Na^+$: 318.1465; found: 318.1471.

5-(naphthalen-2-yl)-3-phenyloxazolidin-2-one (3ak)

Purified by silica-gel column chromatography (petroleum ether/ethyl acetate = 3:1) to afford **3ak** as a viscous oil (47.4 mg, 82% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 8.00 – 7.82 (m, 4H), 7.64 – 7.47 (m, 5H), 7.44 – 7.35 (m, 2H), 7.16 (t, *J* = 7.4 Hz, 1H), 5.88 – 5.76 (m, 1H), 4.46 (t, *J* = 8.9 Hz, 1H), 4.05 (dd, *J* = 9.0, 7.4 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 154.7, 138.1, 135.3, 133.4, 133.0, 129.3, 129.1, 128.1, 127.8, 126.8, 126.8, 125.2, 124.2, 122.7, 118.3, 74.2, 52.7.

m.p. = 139-142 °C.

HRMS (ESI⁺): calculated $[M+Na]^+$ for $C_{19}H_{15}NO_2Na^+$: 312.0995; found: 312.1011.

3-allyl-5-(naphthalen-2-yl)oxazolidin-2-one (3al)

Purified by silica-gel column chromatography (petroleum ether/ethyl acetate = 3:1) to afford **3al** as a viscous oil (36.5 mg, 72% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.95 – 7.80 (m, 4H), 7.59 – 7.49 (m, 2H), 7.42 (dd, *J* = 8.5, 1.8 Hz, 1H), 5.89 – 5.73 (m, 1H), 5.67 (dd, *J* = 8.8, 7.4 Hz, 1H), 5.29 – 5.19 (m, 2H), 4.02 – 3.87 (m, 3H), 3.48 (dd, *J* = 8.8, 7.4 Hz, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 157.7, 135.9, 133.3, 133.0, 131.8, 129.0, 128.1, 127.7, 126.7, 126.6, 124.8, 122.7, 118.9, 74.6, 51.7, 47.0.

m.p. = 72-74 °C.

HRMS (ESI⁺): calculated [M+Na]⁺ for C₁₆H₁₅NO₂Na⁺: 276.0995; found: 276.0978.

2-(methylamino)-1-(naphthalen-2-yl)ethan-1-ol (4)

Purified by silica-gel column chromatography ($CH_2Cl_2/MeOH = 40:1$) to afford **4** as a viscous oil (29.8 mg, 74% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 7.87 – 7.79 (m, 4H), 7.52 – 7.41 (m, 3H), 5.22 (t, *J* = 7.2 Hz, 1H), 4.63 (d, *J* = 4.9 Hz, 1H), 4.58 (d, *J* = 4.8 Hz, 1H), 3.41 (dd, *J* = 11.2, 6.7 Hz, 1H), 2.87 (dd, *J* = 11.2, 7.9 Hz, 1H), 2.55 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ (ppm) = 139.5, 133.3, 132.9, 128.4, 127.8, 127.7, 126.2, 125.7, 124.2, 123.7, 89.6, 62.7, 41.6.

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₃H₁₅NOH⁺: 202.1226; found: 202.1224.

1-(benzo[d][1,3]dioxol-5-yl)-2-(methylamino)ethan-1-ol (5)

Purified by silica-gel column chromatography ($CH_2Cl_2/MeOH = 20:1$) to afford **5** as a viscous oil (16.8 mg, 43% yield).

¹**H NMR** (400 MHz, CDCl₃) δ (ppm) = 6.90 (d, *J* = 1.6 Hz, 1H), 6.81 (dd, *J* = 7.9, 1.6 Hz, 1H), 6.77 (d, *J* = 7.9 Hz, 1H), 5.94 (s, 2H), 4.62 (dd, *J* = 10.6, 3.4 Hz, 1H), 2.51 – 2.41 (m, 1H), 2.37 – 2.34 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ (ppm) = 147.7, 146.9, 136.2, 119.2, 108.1, 106.5, 100.9, 69.3, 67.5, 45.2.

HRMS (ESI⁺): calculated [M+H]⁺ for C₁₀H₁₃NO₃H⁺: 196.0968; found: 196.0978.

10. Copies of NMR Spectra of All Products

3-methyl-5-(naphthalen-2-yl)oxazolidin-2-one (3aa)

3-methyl-5-phenyloxazolidin-2-one (3ca)

S86

3,5-dimethyl-5-phenyloxazolidin-2-one (3ga)

3,5-dimethyl-5-(p-tolyl)oxazolidin-2-one (3ha)

3,5-dimethyl-5-(4-(trifluoromethoxy)phenyl)oxazolidin-2-one (3ja)

F3CO

¹⁹F NMR (376MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

5-(4-methoxyphenyl)-3,5-dimethyloxazolidin-2-one (3ka)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

4-(3,5-dimethyl-2-oxooxazolidin-5-yl)benzonitrile (3la)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

` N∽Me , ∫

¹⁹F NMR (376MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210

5-(4-chlorophenyl)-3,5-dimethyloxazolidin-2-one (3oa)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

5-(4-bromophenyl)-3,5-dimethyloxazolidin-2-one (3pa)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

5-(3,4-dichlorocyclohexa-1,5-dien-1-yl)-3,5-dimethyloxazolidin-2-one (3sa)

5-(2,2-dimethylbenzo[d][1,3]dioxol-5-yl)-3-methyloxazolidin-2-one (3ta)

5-ethyl-3-methyl-5-(p-tolyl)oxazolidin-2-one (3ua)

5-isopropyl-3-methyl-5-phenyloxazolidin-2-one (3va)

26 26 26 26 26 26 26 26 26 26 26 26 26 2	.80 .78 .67 .65		97 96 81 79
~~~~~		0 0 0 0 0 0	0000
	$\sim$		$\searrow \mu$



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10





## 5-(4-methoxyphenyl)-3,4-dimethyloxazolidin-2-one (3xa)






4-(hydroxymethyl)-3-methyl-5-phenyloxazolidin-2-one (3ya)



3-methyl-3,3a,4,8b-tetrahydro-2H-indeno[2,1-d]oxazol-2-one (3za)



*tert*-butyl 3-methyl-2-oxo-2,3,3a,8b-tetrahydro-4H-oxazolo[4,5-b]indole-4-carboxylate (3a)



### 7-bromo-3-methyl-3a,8b-dihydrobenzofuro[2,3-d]oxazol-2(3H)-one (3b)

# 5-(benzyloxy)-3-methyloxazolidin-2-one (3c)



S113





# (E)-3-methyl-5-styryloxazolidin-2-one (3e)



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0







F

¹⁹F NMR (376MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210



S118



S119

### 3,5-dimethyl-5-(prop-1-en-2-yl)oxazolidin-2-one (3i)





200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10



# 5-((4-methoxyphenyl)ethynyl)-3,5-dimethyloxazolidin-2-one (3k)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10



ethyl 2-methyl-2-(4-(3-methyl-2-oxooxazolidin-5-yl)phenoxy)propanoate (31)

#### (8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-3-yl 4-(3-methyl-2-oxooxazolidin-5-yl)benzoate (3m)





### 4-(hydroxymethyl)-5-(4-methoxyphenyl)-3-methyloxazolidin-2-one (3n)





# 3,4,5-trimethyl-5-phenyloxazolidin-2-one (3p)



S127



S128





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

### 3-butyl-5-(naphthalen-2-yl)oxazolidin-2-one (3ad)





#### 5-(naphthalen-2-yl)-3-pentyloxazolidin-2-one (3ae)



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10



### 5-(naphthalen-2-yl)-3-octyloxazolidin-2-one (3ag)









S137

#### 5-(naphthalen-2-yl)-3-phenyloxazolidin-2-one (3ak)





¹H NMR (400MHz, CDCl₃)



#### 3-allyl-5-(naphthalen-2-yl)oxazolidin-2-one (3al)







210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10





### **11. References**

- (1) X. Jia, Q. Huang, J. Li, S. Li and Q. Yang, Synlett, 2007, 5, 806-808.
- (2) C. You and A. Studer. Chem. Sci., 2021, 12, 15765-15769.
- (3) D. Gwon, H. Hwang, H. K. Kim, S. R. Marder and S. Chang. *Chem. Eur. J.*, 2015, 21, 17200 17204.
- (4) S. Jeschke, A.-C. Gentschev and H.-D. Wiemhöfer, Chem. Commun., 2013, 49, 1190–1192.
- (5) A. Galushchinskiy, Y. Zou, J. Odutola, P. Nikačević, J.-W. Shi, N. Tkachenko, N. López, P. Farràs and O. Savateev, *Angew. Chem., Int. Ed.*, 2023, **62**, e202301815.
- (6) C. Hansch, A. Leo and R. W. Taft, Chem. Rev., 1991, 91, 165-195.