
Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup solvent	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml⁻¹)		chemical			(cm3)	(g ml ⁻¹)	
benzene	352.00	78.11	4.51	Zeolite beta	0.40				N2			3.39						0.00
propylene	208.00	42.08	4.94									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	560.00	120.19			0.40		0.00					3.39		0.00				0.00
									Step	Cumulative								

	Jicp	cumulative
Yield	91.37 🔵	91.4
Conversion	100.0	/
Selectivity	91.37	
AE	99.92 🔵	99.9
RME	88.30	88.30
PMI total	1.14	1.14
PMI Reaction	1.14	1.14
PMI reactants,		
reagents, catlyst	1.13	1.13
PMI reaction		
solvents	0.01	0.007
PMI Workup	0.00	0.000
PMI Workup		
chemical	0.00	0.000
PMI workup		
solvents	0.00	0.000

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

Experimental: WO2006002805A1.

With beta zeolite prepared from tetraethyl ammonium hydroxide, sodium aluminate, aluminum isopropylate and Ludox HS40, Time= 1h, T= 150 °C , Product distribution / selectivity

Patent; POLIMERI EUROPA S.P.A.; ENITECNOLOGIE S.P.A.; WO2006/2805; (2006); (A1) English View in Reaxys

	Mass	MW	Mol
Product	494.49	120.09	4.12
	mass		
Unreacted limiting			
reactant	0.00		

G. Spano, S. Ramello, G. Girotti, F. Rivetti, A. Carati Polimeri Europa S.p.A., Italy; Enitecnologie S.p.A. . 2006,

5 :Example nr. 5; 0.4 g of beta zeolite prepared according to what is described in example I, previously dried to 120°C for 16 hours, are charged into an electrically heated autoclave with an internal volume equal to 0.5 litres, equipped with a mechanical stirrer and with all the necessary devices for the feeding of the benzene and propylene reagents. The autoclave is closed, put under vacuum by suction with a pump connected externally, and 352 g of benzene are .bul. then charged by suction. The autoclave is pressurized with nitrogen until a pressure of about 6 bar is reached and the heating is initiated to the programmed temperature of 150°C. When the temperature inside the autoclave has stably reached the pre-selected value, 26 g of propylene are rap-idly fed, by means of a pressure tank, and the mixture is left to react for a time of exactly I hour, calculated starting from the end of the propylene feeding.At the end of the reaction, the product is discharged and analyzed by gas chromatography. The following products are present in the mixture at the end of the reaction: benzene, cumene, C6 and C9 oligomers of propylene, diisopropyl benzenes, other diisopropyl benzene isomers (C6-phenyl = aromatic products generally indicated with the formula Ci₂Hig) / triisopropyl benzenes, other triisopropyl benzene isomers (Cg-phenyl = aromatic products generally indicated with the formula Ci₅H₂4), polyalkylated products with a mo-lecular weight higher than triisopropyl benzene (heavy polyalkylated products). The propylene conversion proves to be higher than 97.0 percent, the selectivity to mono-alkylated product (cumene)with respect to the converted propylene is equal to 91.3percentand the selectivity to (cumene + diisopropyl benzenes + triisopropyl benzenes) with respect to the converted pro-pylene is equal to 97.5percent.The weight ratio, called R, between the sum of (diisopropyl benzenes + triisopropyl benzenes + C6-phenyl + Cg-phenyl + heavy polyalkylated products) and the sum of (cumene + disopropyl benzenes + triisopropyl benzenes + G6-phenyl + C9-phenyl + heavy polyalkylated products) proves to be equal to 0.052. This ratio R is a measurement of the total quantity of the polyalkylated by-products alone with respect to the to- tal products and alkylated by-products formed during thereaction.

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	Х
Use of stoichiometric quantities of reagents	Amber Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

Critical elements

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Al
+500 years	Green Flag	

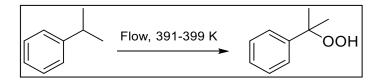
Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	Х

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List	
quenching			
filtration			
centrifugation	Croop Flag	×	
crystallisation	Green Flag	Х	
Low temperature distillation/evaporation/			
sublimation (< 140 °C at atmospheric			
solvent exchange, quenching into aqueous	Ambor Flog		
solvent	Amber Flag		
chromatography/ion exchange			
high temperature	Red Flag		
multiple recrystallisation			

Health & safety				List substances and H-codes	List substances and H-codes	List substa
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber		Propylene: H220	
			flagged H codes present		Propylelle. H220	
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway						
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,		Benzene: H372, H340, H350		
	H372	H371, H373		Belizelle. h572, h540, h550		
Environmental	H400, H410, H411, H420	H401, H412				
implications						


Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	Benzene

ances and H-codes

Yield, AE, RME, MI/PMI and OE

used, even in screening

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass ((g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
cumene	2.68E+07	120.09	2.23E+05						N2 from air			1.57E+07						0.00
O2 from air	5.22E+06	31.99	1.63E+05									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	3.20E+07	152.08			0.00		0.00					1.57E+07		0.00				0.00

	Step	Cumulative
Yield	93.65 🔴	85.6
Conversion	100.0	/
Selectivity	93.65	/
AE	100.00 🔵	99.9
RME	99.31	89.33
PMI total	1.50	1.62
PMI Reaction	1.50	1.62
PMI reactants,		
reagents, catlyst	1.01	1.12
PMI reaction		
solvents	0.49	0.499
PMI Workup	0.00	0.000
PMI Workup		
chemical	0.00	0.000
PMI workup		
solvents	0.00	0.000

		Pivil workup	
		solvents	0.00
olvents (First Pass)		Listashuart	a halaw
. ,		List solvent	s below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH,		
	tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt,		
	sulfolane		
Problematic solvents: (acceptable	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile,		
only if substitution does not offer	AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene,		
advantages)	MTBE, cyclohexane , chlorobenzene, formic acid, pyridine,		
-	Me-THF		
Hazardous solvents: These solvents	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF,		
have significant health and/or safety	DMA, NMP, methoxyethanol, hexane		
concerns.			
Highly hazardous solvents: The	Et_2O , Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ ,		
solvents which are agreed not to be	HMPA		
solvents which are agreed not to be	TIMPA		

Pr	
Unreact	
rea	

Experimental: DD258531A3.

Beispiel 1

Catalyst/enzyme (First Pass)		Tick
Catalyst or enzyme used, or reaction takes place	Green	v
without any catalyst/reagents.	Flag	^
Use of staishig matrix quantities of reagants	Amber	
Use of stoichiometric quantities of reagents	Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

	Mass	MW	Mol
roduct	3.18E+07	152.08	2.09E+05
	mass		
ted limiting			
actant	0.00		

H. Bartkowiak, B. Haase, R. Hofmann, H. J. Naumann, B. Raue VEB Leuna-Werke "Walter Ulbricht", Ger. Dem. Rep. 1988,

Die Oxidation des Cumens zu Cumenhydroperoxid erfolgt in einem stehenden 62 m³ großen Reaktor, der durch Siebbodenelemente in vier Reaktionsabschnitte geteilt ist, deren Reaktionsvolumen von oben nach unten 21, 21, 13 und 7 m³ beinhalten. Dem Reaktor werden stündlich 26770 kg Cumen mit einer Temperatur von 388 K, das 1,8 Ma.-% Cumenhydroperoxid enthält, zugeführt. Unten werden 4330 kg/h Luft mit einer Temperatur von 298K in den Reaktor eingeleitet. Oben verlassen den Reaktor 7 100 kg/h Abgas, bestehend aus Stickstoff, Sauerstoff, Cumen und Cumenhydroperoxid mit einer Temperatur von 398K. Mittels eines Kühlkreislaufes werden die Temperaturen in den einzelnen Reaktionsstufen zwischen 399K oben und 391K unten gehalten. Den Reaktor verlassen 24000 kg/h Oxidat mit einer Temperatur von 386K und einem Gehalt an Cumenhydroperoxid von 19,4Ma.-%. Das im Abgas enthaltene Cumen und Cumenhydroperoxid wird mittels Kühlwasser auskondensiert. Gleichfalls mittels Kühlwasser wird dem Kühlkreislauf die im Reaktor aufgenommene Wärme entzogen. Die Erwärmung des Cumens auf die Eintrittstemperatur von 388K erfolgt zunächst in einem Wärmeaustauschapparat mittels des den Reaktor verlassenden Oxidats, wobei sich das Cumen von 303K auf 349K erwärmt und dann in einem weiteren Wärmeaustauscher mittels Heizdampf. Das Oxidat wird dabei innerhalb von 15 Minuten auf eine Temperatur von 346K abgekühlt und gelangt danach in eine unterteilte, bei Drücken von 4 kPa und 1 kPa arbeitende Verdampferstufe, in der das Oxidat auf 89 Ma.-% Cumenhydroperoxid aufkonzentriert wird. Die Ausbeute an nutzbarem Cumenhydroperoxid beträgt bezüglich Cumen 93,7 Ma.-%. Der Verbrauch an Heizdampf zur Erzeugung des 89% igen Cumenhydroperoxids beträgt 4970 kg/h.

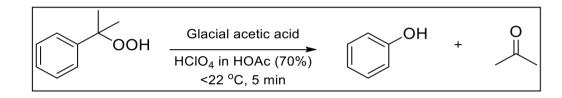
Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	
+500 years	Green Flag	х

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	х
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	Х
Batch	Amber Flag	

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching		
filtration		
centrifugation	Green Flag	x
crystallisation		^
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous		
solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		


Health & safety				List substances and H-codes	List substances and H-codes	List substances and I
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber flagged H codes present			
Explosive thermal runaway	H230, H240, H250	H241	then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370, H372	H341, H351, H361, H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412		Cumene (H411)		

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

d H-codes

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup solvent	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml ⁻¹)		chemical			(cm3)	(g ml⁻¹)	
Cumene hydroperoxide	15.20	152.08	9.99E-02	HCIO4	0.74				HOAc	100.00	1.05	105.00						0.00
									HOAc	0.10	1.05	0.11						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	15.20	152.08			0.74		0.00					105.11		0.00				0.00

	Step	Cumulative
Yield	95.65 🔵	81.8
Conversion	100.0	/
Selectivity	95.65	
AE	61.88 🔴	61.8
RME	59.21	52.89
PMI total	13.45	14.49
PMI Reaction	13.45	14.49
PMI reactants,		
reagents, catlyst	1.77	1.97
PMI reaction		
solvents	11.68	12.522
PMI Workup	0.00	0.000
PMI Workup		
chemical	0.00	0.000
PMI workup		
solvents	0.00	0.000

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
		HOAc
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

Catalyst/enzyme (First Pass)		Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	х
Use of stoichiometric quantities of reagents	Amber Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	х

	Mass	MW	Mol
Product	9.00	94.11	0.10
	mass		
Unreacted limiting reactant	0.00		

Experimental:

M. S. Kharasch, A. Fono, W. Nudenberg J. Org. Chem. 1950, 15, 748.

Decomposition of α -cumyl hydroperoxide in the presence of acetic acid and catalytic quantities of perchloric acid. a-Cumyl hydroperoxide (15.2 g., 0.1 mole), dissolved in 100 cc. of glacial acetic acid was treated with 0.1 cc. of a 5% solution of 70% perchloric acid in acetic acid. The temperature of the reaction mixture was kept below 22°. The peroxide titre of the mixture fell to zero after 5 minutes. Phenol (9 g., 95% yield) was isolated in crystalline form. Acetone was identified and estimated by means of its dinitrophenylhydrazone. An unidentified neutral oil (amounting to less than 3% of the starting material) was also obtained.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	
+500 years	Green Flag	Х

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	х
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow	Tick	
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5 [°] C or more below the solvent boiling point	Green Flag	Х
Work Up	List	

work Up		LIST
quenching		
filtration		
centrifugation		х
crystallisation	Green Flag	^
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Ambor Flag	
solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substan
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes present			
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway						HCIO
Toxic	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

ances and H-codes

ClO4, HOAc

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup solvent	Volume	Density	Mass (g)
Reactant First)								solvent		(g ml⁻¹)		chemical			(cm3)	(g ml⁻¹)	
Phenol	90.00	94.11	0.96	H2SO4	0.10			H2O (H2O2)	22.32	1.00	22.32	NaOH	0.08	H2O (NaOH)	0.08	1.00	0.08
H2O2	33.48	34.01	0.98	MIBK	4.60			H2O (H2SO4)	0.00	1.00	0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	123.48	128.12			4.70		0.00				22.32		0.08				0.08
Step Cumulative																	

$$\begin{array}{|c|c|c|c|} & OH & & \\ & + & H_2O_2 & \\ \hline & & \\ & &$$

Yield	53.95 🔴	44.2
Conversion	100.0	/
Selectivity	53.95	/
AE	85.94 🛑	59.1
RME	46.00	27.89
PMI total	2.65	24.03
PMI Reaction	2.65	24.03
PMI reactants,		
reagents, catlyst	2.26	3.80
PMI reaction		
solvents	0.39	20.234
PMI Workup	0.00	0.003
PMI Workup		
chemical	0.00	0.001
PMI workup		
solvents	0.00	0.001

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		H2O
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

	Mass	MW	Mol
Product	56.80	110.10	0.52
	mass		
Unreacted limiting			
reactant	0.00		

Experimental:

S. Umemura, N. Takamitsu, T. Hamamoto, N. Kuroda Ube Industries Ltd 1978, US4078006A.

EXAMPLE 37

In the same reaction vessel as in Example 34, 1852 g. of phenol (19.68), 4.6 g. of 4-methyl-2-pentanone (0.046), 55.8 g. of 60 percent hydrogen peroxide (0.985 mole), and 0.10 g. of concentrated sulfuric acid were placed. The mixture was stirred at 50° C. in an oil bath for 10 minutes. After neutralization of sulfuric acid by adding 0.16 g. of 50 percent aqueous sodium hydroxide, the mixture was subjected to distillation under reduced perssure to fraction water, 3.7 g. of 4-methyl-2-penta-none, 1762 g. of phenol (18.72 moles), 56.8 g. of catechol (0.516 mole) and 38.5 g. of hydroquinone (0.350 mole). The total yield of the dihydric phenols based on hydrogen peroxide was 88.0 percent, and that based on phenol was 90.2 percent.

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	х
Use of stoichiometric quantities of reagents	Amber Flag	
Use of reagents in excess	Red Flag	

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	S
+500 years	Green Flag	

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	х
Reaction run below -20 or above 140° C	Red Flag	

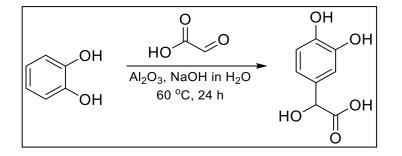
Batch/flow	Tick	
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	х

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching		
filtration		
centrifugation	Green Flag	х
crystallisation	Green Flag	^
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Ambor Flag	
solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substan
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes present			
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway						
Тохіс	H300, H310, H330	H301, H311, H331,				H2O2, H2O
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						


Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

ances and H-codes

20, MIBK, KHSO4

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)										(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
Catechol	5.00	110.10	45.41	Al2O3	2.04	NaOH	3.21	H2O (NaOH)	55.00	1.00	55.00	NaOH	0.80	H2O (NaOH)	20.00	1.00	20.00
glyoxylic acid	3.55	74.04	47.95					H2O (glyoxylic acid)	3.55	1.00	3.55	HCI	3.50	H2O (HCI)	8.00	1.00	8.00
											0.00			EtOAc	90.00	0.90	81.18
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	8.55	184.14			2.04		3.21				58.55		4.30				109.18

	Step	Cumulative
Yield	61.83 🔴	27.3
Conversion	76.0	/
Selectivity	81.36	/
AE	100.00 🔴	70.8
RME	59.65	23.75
PMI total	36.44	59.02
PMI Reaction	14.19	36.77
PMI reactants, reagents, catlyst	2.71	5.45
PMI reaction solvents	11.48	31.318
PMI Workup	22.25	22.254
PMI Workup chemical	0.84	0.845
PMI workup solvents	21.41	21.409

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	EtOAc, H2O
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

Catalyst/enzyme (First Pass)		Tick		Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag		Facile recovery of catalyst/enzyme Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag	х	catalyst/enzyme not recovered Amber Flag	
Use of reagents in excess	Red Flag			

	Mass	MW	Mol
Product	5.10	184.14	28.08
	mass		
Unreacted limiting			
reactant	1.20		

Experimental: Org. Process Res. Dev. 2000, 4, 534–543.

Catechol (5.00 g, 45.41 mmol) was dissolved in aqueous NaOH (3.21 g, 80.3 mmol in 55.0 mL of water) followed by addition of Al2O3 (2.04 g, 20 mmol). After 5 min glyoxylic acid (7.10 g of 50% aqueous solution, 48.0 mmol) was added to the reaction mixture, and the mixture was heated at 60 °C for 24 h under vigorous stirring. The reaction mixture was then allowed to precipitate for 10 min. and filtered to remove Al2O3. The obtained filter cake was washed with 1 M NaOH (20 mL). The basic washing water was combined with the water solution, and this was acidified to pH 3-4 with 6.0 mL of 37% HCl and extracted with ethyl acetate to recover the unreacted catechol (1.2 g). The aqueous solution was further acidified to pH 1 by 2 mL of concentrated HCl and extracted with ethyl acetate to isolate the mandelic acid derivative (5.1 g, 28.08 mmol).

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Al
+500 years	Green Flag	

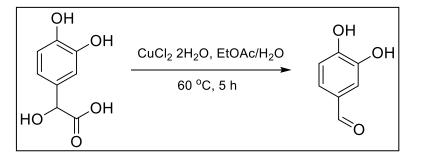
Energy (First Pass)

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	х
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	х

Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (< 140 °C at atmospheric	Green Flag	
solvent exchange, quenching into aqueous solvent	Amber Flag	х
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag	


Health & safety				List substances and H-codes	List substances and H-codes	List substar
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes present			
Explosive thermal	H230, H240, H250	H241	then green flag		Catechol H301, H311	
runaway					catechor H301, H311	
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,		Catechol H350	Catechol H341, H401	
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

tances and H-codes

Yield, AE, RME, MI/PMI and OE																	
Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
										(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
3,4-Dihydroxy mandelic acid	2.00	184.14	10.86	CuCl2 2H2O	11.11			EtOAc	140.00	0.90	126.28						0.00
								H2O	30.00	1.00	30.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	2.00	184.14			11.11		0.00				156.28		0.00				0.00
			_					Step	Cumulative								

	Step C	umulative
Yield	96.03 🔴	26.2
Conversion	100.0	/
Selectivity	96.03	
AE	75.01 🔴	53.1
RME	72.00	17.10
PMI total	117.63	198.22
PMI Reaction	117.63	167.31
PMI reactants,		
reagents, catlyst	9.10	15.29
PMI reaction		
solvents	108.53	152.025
PMI Workup	0.00	30.908
PMI Workup		
chemical	0.00	1.173
PMI workup		
solvents	0.00	29.735

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		H2O, EtOAc
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any		v
catalyst/reagents.	Flag	^
Use of stoichiometric quantities of reagents	Amber	
Use of stolenometric quantities of reagents	Flag	
Use of reagents in excess	Red Flag	

Facile recovery of catalyst/enzyme	Green Flag
catalyst/enzyme not recovered	Amber Flag

	Mass	MW	Mol
Product	1.44	138.12	10.43
	mass		
Unreacted limiting reactant			

Experimental: Org. Process Res. Dev. 2000, 4, 534–543.

3,4-Dihydroxy mandelic acid (2 g, 10.86 mmol) was dissolved in 140 mL of ethyl acetate, and 11.11 g of CuCl2 2H2O was dissolved in 30 mL of water. The two-phase system was vigorously stirred and heated at 60 °C for 5 h under nitrogen atmosphere. The organic phase was separated, and the solvent was removed. The HPLC analysis revealed a complete conversion of the mandelic acid derivative and the yield of protocatechualdehyde of 96%. The copper salt aqueous solution/suspension was recycled by oxidising Cu(I) to Cu(II) by air after the removal of the organic phase; the results were substantially unchanged.

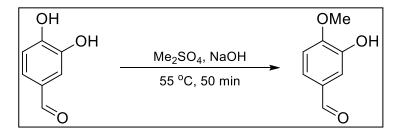
Tick X

			-
Critical	ele	men	its

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Cu
+500 years	Green Flag	

Energy (First Pass)				
Reaction run between 0 to 70°C	Green Flag	х		
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag			
Reaction run below -20 or above 140°C	Red Flag			

Batch/flow				
Flow	Green Flag			
Batch	Amber Flag	Х		


		Tick
Reaction run at reflux	Red Flag	
Reaction run 5 [°] C or more below the solvent boiling point	Green Flag	х
Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/	Green Flag	х
sublimation (< 140 °C at atmospheric solvent exchange, quenching into aqueous solvent	Amber Flag	
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag	

Health & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes			
Explosive thermal runaway	H230, H240, H250	H241	present then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361, H371, H373				
	H372					
Environmental implications	H400, H410, H411, H420	H401, H412		CuCl2 2H2O H400, H410		

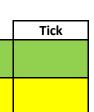
Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume		Mass (g)
										(g ml ⁻¹)		Chemical		solvent	(cm3)	(g ml⁻¹)	
Protocatechualdehyde	3.00	138.12	0.02			NaOH	0.88	DCM	3.30	1.33	4.39	Na2SO4	21.40	DCM	50.00	1.33	66.50
(Me)2SO4	2.70	126.13	0.02					H2O	5.00	1.00	5.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	5.70	264.25			0.00		0.88				9.39		21.40				66.50

	Step C	umulative
Yield	65.06 🔴	17.1
Conversion	71.2	/
Selectivity	91.37	/
AE	57.58 🔴	39.4
RME	37.71	10.62
PMI total	48.35	323.54
PMI Reaction	7.43	239.49
PMI reactants,		
reagents, catlyst	3.06	23.00
PMI reaction		
solvents	4.37	216.501
PMI Workup	40.92	84.050
PMI Workup		
chemical	9.96	11.599
PMI workup		
solvents	30.96	72.450

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		H2O
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
		DCM
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	


Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any	Green	
catalyst/reagents.	Flag	
Use of stoichiometric quantities of reagents	Amber	х
	Flag	~
Use of reagents in excess	Red Flag	

Facile recovery of catalyst/enzyme	Green Flag
catalyst/enzyme not recovered	Amber Flag

	Mass	MW	Mol
Product	2.15	152.15	0.01
	mass		
Unreacted limiting	0.00		
reactant	0.86		

Experimental: Org. Process Res. Dev. 2000, 4, 534–543.

The reaction was carried out as in (A) at 55 °C by using 21.7 mmol of protocatechualdehyde and 4.5 mmol of NaOH and by simultaneously adding dropwise 21.4 mmol of dimethyl sulphate and 17.5 mmol of NaOH. The conversion was 70.8%, and the selectivity 93.2% in *iso*-vanillin, 4.0% of vanillin, and 2.8% of veratraldehyde.

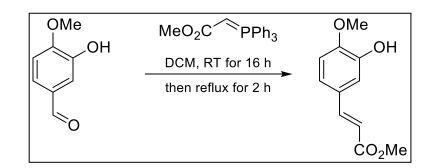
Crit	ical	ele	me	ents

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	S
+500 years	Green Flag	

Energy (First Pass)				
Reaction run between 0 to 70°C	Green Flag	х		
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag			
Reaction run below -20 or above 140°C	Red Flag			

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	х
Reaction run 5°C or more below the solvent boiling point	Green Flag	
Marklin		1:-+
Work Up		List
quenching filtration		
centrifugation	Green Flag	
crystallisation Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous solvent	Amber Flag	Х
chromatography/ion exchange	Pod Elag	
high temperature multiple recrystallisation	Red Flag	


Health & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes			
Explosive thermal runaway	H230, H240, H250	H241	present then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,		Me2SO4 H330, H350		
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361, H371, H373			Me2SO4 H301, H341	
	H372					
Environmental implications	H400, H410, H411, H420	H401, H412				

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
										(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
Isovanillin	10.00	152.15	65.70					DCM	220.00	1.33	292.60	SiO2	525.60	Hexane	4161.00	0.66	2725.46
carbmethoxy methylene triphenyl phosphorane	24.20	334.35	72.30								0.00			EtOAc	2409.00	0.90	2172.92
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	34.20	486.50			0.00		0.00				292.60		525.60				4898.37
			4					Step	Cumulative								

Yield	96.65 🔴
Conversion	100.0
Selectivity	96.65
AE	42.80 🔴
RME	38.60
PMI total	435.66
PMI Reaction	24.76
PMI reactants,	
reagents, catlyst	2.59
PMI reaction	
solvents	22.17
PMI Workup	410.91
PMI Workup	
chemical	39.82
PMI workup	
solvents	371.09

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		EtOAc
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
		DCM, hexane
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any	Green	
catalyst/reagents.	Flag	
Use of stoichiometric quantities of reagents	Amber Flag	Х
Use of reagents in excess	Red Flag	

Facile recovery of catalyst/enzyme	Ģ
catalyst/enzyme not recovered	A

Cumulative

	Mass	MW	Mol
Product	13.20	208.21	63.50
	mass		
Unreacted limiting reactant			

Experimental: Angew. Chem. Int. Ed. 2013, 52, 9845 –9848.

Isovanillin (**6**; 10.0 g, 65.7 mmol, 1.0 equiv.) and carbmethoxy methylene triphenyl phosphorane (24.2 g, 72.3 mmol, 1.1 equiv.) were dissolved in DCM (220 mL) and stirred at room temperature for 16 h. The mixture was then heated to reflux for 2 h. After cooling, the solvent was removed in vacuo and the crude product was purified by flash silica gel column chromatography (hexanes/EtOAc, 2:1 \rightarrow 3:2) to yield olefin **10** (13.2 g, 63.5 mmol, 97%) as a colorless solid.

	Tick
Green Flag	
Amber Flag	

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Р
+500 years	Green Flag	

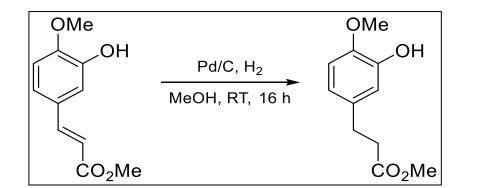
Energy (First Pass)		
Reaction run between 0 to 70°C	Green Flag	х
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		
Flow	Green Flag	
Batch	Amber Flag	Х

Reaction run at reflux	Red Flag	
Reaction run 5 [°] C or more below the solvent boiling point	Green Flag	

Work Up

work op		
quenching		
filtration		
centrifugation	Croop Flag	
crystallisation	Green Flag	
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Ambor Flag	
solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		


safety				List substances and H-codes	List substances and H-codes	List substances and H-co
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber flagged H codes			
Explosive thermal runaway	H230, H240, H250	H241	present then green flag			
Τοχίς	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370, H372	H341, H351, H361, H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412				

_	Use of chemicals of environmental concern		List substances of very high concern	
	Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag		

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume (cm3)	Density (g ml ⁻¹)	Mass (g)
methyl (E)-3-(3-hydroxy-4-methoxyphenyl)acrylate	13.20	208.21	0.06	Pd on charcoal	2.60			MeOH	150.00	0.79	118.80	Celite	126.80	DCM	317.00	1.33	421.61
hydrogen	4.32	2.02	20.73								0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	17.52	210.23			2.60		0.00				118.80		126.80				421.61

0.00	
	Step
Yield	99.84 🔴
Conversion	100.0
Selectivity	99.84
AE	99.04 🔴
RME	75.93
PMI total	51.68
PMI Reaction	10.44
PMI reactants,	
reagents, catlyst	1.51
PMI reaction	
solvents	8.93
PMI Workup	41.23
PMI Workup	
chemical	9.53
PMI workup	
solvents	31.70

	List solvents below
water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH,	
ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
	МеОН
DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF,	
heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane ,	
chlorobenzene, formic acid, pyridine, Me-THF	
dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP,	
methoxyethanol, hexane	
	DCM
Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	
	ethylene glycol, acetone, MEK, MIBK, AcOEt , sulfolane DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.		v
		^
Use of stoichiometric quantities of reagents	Amber	
	Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	х
catalyst/enzyme not recovered	Amber Flag	

Cumulative

10.5	
/	
28.8	
10.84	
725.59	
213.34	
19.63	
193.715	
195.715	
512.247	
57.774	
454.473	

	Mass	MW	Mol
Product	13.30	208.21	0.06
	mass		
Unreacted limiting reactant			

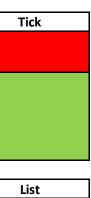
Experimental: Angew. Chem. Int. Ed. 2013, 52, 9845 –9848.

Olefin **10** (13.2 g, 63.4 mmol) was dissolved in MeOH (150 mL) and palladium on charcoal (2.60 g; 10%) was added. The reaction flask was evacuated and repurged with hydrogen (5x) and then stirred at room temperature under a hydrogen atmosphere for 16 h, filtered through Celite and washed thoroughly with DCM. The solvent was removed under reduced pressure, yielding compound **11** quantitatively (13.3 g, 63.3 mmol, 100%) as a colorless solid.

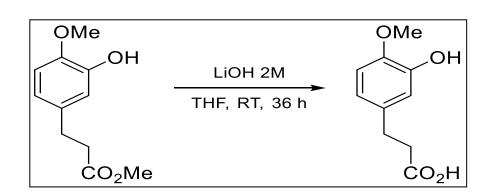
Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Pd
+500 years	Green Flag	

Energy (First Pass)		Tick
Reaction run between 0 to 70°C	Green Flag	х
Reaction run between -20 to 0 or 70 to 140° C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow				
Flow	Green Flag			
Batch	Amber Flag	Х		


Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up


Work Up		List
quenching		
filtration		
centrifugation	Green Flag	x
crystallisation	Green riag	^
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Amber Flag	
solvent	Alliber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

& safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
•	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes			
Explosive thermal runaway	H230, H240, H250	H241	present then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361, H371, H373				
	H372					
Environmental implications	H400, H410, H411, H420	H401, H412				

 Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Yield, AE, RME, MI/PMI and OE																	
Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up	Mass (g)	Workup solvent	Volume	Density	Mass (g)
												chemical			(cm3)	(g ml ⁻¹)	
methyl 3-(3-hydroxy-4-methoxyphenyl)propanoate	13.20	210.23	0.06			LiOH	1.68	THF	100.00	0.89	88.80	HCI	4.58	H2O (HCl)	62.80	1.00	62.80
								H2O (LiOH)	55.00	1.00	55.00	NaCl	26.93	EtOAc	150.00	0.90	135.30
											0.00	MgSO4	62.80	H2O(NaCl)	75.00	1.00	75.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	13.20	210.23		•	0.00		1.68		-	1	143.80		94.31			•	273.10
Least and the second	·		_		le contra de la co	a	h	Step	Cumulative		-	-	-	-			

1.68		
	Step	Cumulative
Yield	98.25	6.2
Conversion	100.0	/
Selectivity	98.25	/
AE	93.33	2 6.9
RME	91.67	9.94
PMI total	43.48	833.94
PMI Reaction	13.11	244.76
PMI reactants,		
reagents, catlyst	1.23	21.55
PMI reaction		
solvents	11.88	223.210
PMI Workup	30.36	589.179
PMI Workup		
chemical	7.79	70.820
PMI workup		
solvents	22.57	518.359
List solv	ents below	

Solvents (First Pass)

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH,	
	ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		H2O, EtOAc
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
		THF
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

Catalyst/enzyme (First Pass)		Tick			Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag		Facile recovery of catalyst/enzyme	Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag	х	catalyst/enzyme not recovered	Amber Flag	
Use of reagents in excess	Red Flag				

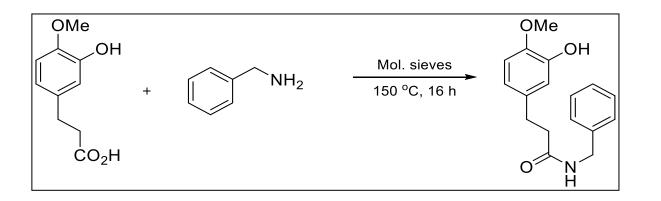
	Mass	MW	Mol
Product	12.10	196.20	0.06
	mass		
Unreacted limiting reactant			

Experimental: Angew. Chem. Int. Ed. **2013**, 52, 9845–9848.

Methyl ester **11** (13.2 g, 62.8 mmol) was dissolved in THF (100 mL) and a 2M solution of LiOH (35 mL) was added. The mixture was stirred for 16 h at room temperature. Since TLC indicated remaining starting material, another 20 mL of 2M LiOH was added and stirred for another 20 h. The mixture was acidified to pH 2-3 with 2M HCl and extracted with EtOAc (3x 50 mL). The combined organic phases were washed with brine (75 mL), dried over MgSO4, and concentrated under reduced pressure to yield free acid **12** (12.1 g, 61.7 mmol, 98%) as a colorless solid.

Supply remaining	Flag colour	Note element					
5-50 years	5-50 years Red Flag						
50-500 years	Amber Flag	Li					
+500 years	Green Flag						
Energy (First Pass)			Tick				
Reaction run between 0 to 70°C Green Flag							
Reaction run between -20 to 0 or 70 to 140°C	Reaction run between -20 to 0 or 70 to 140°C Amber Flag						
Reaction run below -20 or above 140°C Red Flag							
Batch/flow			Tick				
Flow Green Flag							
Batch	er Flag	Х					

Reaction run at reflux	Red Flag
Reaction run 5°C or more below the solvent boiling point	Green Flag
Work Up	
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (< 140 °C at atmospheric	Green Flag
solvent exchange, quenching into aqueous solvent	Amber Flag
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag


Health & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes present			
Explosive thermal runaway	H230, H240, H250	H241	then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361, H371, H373			methyl 3-(3-hydroxy-4-methoxyphenyl)propanoate H351	
	H372					
Environmental implications	H400, H410, H411, H420	H401, H412				

Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
												chemical		solvent	(cm3)	(g ml⁻¹)	
3-(3-hydroxy-4-methoxyphenyl)propanoic acid	12.10	196.20	0.06			Mol sieves	10.00				0.00	HCI	16.41	DCM	300.00	1.33	399.00
benzyl amine	39.65	107.15	0.37								0.00	NaHCO3	28.80	H2O(HCI)	450.00	1.00	450.00
											0.00	NaCl	35.90	H2O(NaHCO3)	300.00	1.00	300.00
											0.00	MgSO4	61.70	H2O	100.00	1.00	100.00
											0.00	SiO2	493.60	H2O (NaCl)	100.00	1.00	100.00
											0.00			DCM	5954.05	1.33	7918.89
											0.00			MeOH	215.95	0.79	171.03
Total	51.75	303.35			0.00		10.00				0.00		636.41				9438.92
			_			-		Step	Cumulative			•		_			

	Step
Yield	54.78
Conversion	100.0
Selectivity	54.78
AE	94.06 (
RME	18.65
PMI total	1050.47
PMI Reaction	6.40
PMI reactants,	
reagents, catlyst	6.40
PMI reaction	
solvents	0.00
PMI Workup	1044.08
PMI Workup	
chemical	65.95
PMI workup	
solvents	978.13

Solvents (First Pass)

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		H2O, MeOH
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
		DCM
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green	
Catalyst of enzyme used, of reaction takes place without any catalyst/reagents.	Flag	
Use of stoichiometric quantities of reagents	Amber	
Use of stoichiometric quantities of reagents		
Use of reagents in excess	Red Flag	x

Facile recovery of catalyst/enzyme	
catalyst/enzyme not recovered	

Cumulative				
	8.9			
	/			
	/			
	34.1			
	5.98			
	2094.88			
	312.04			
	32.17			
	279.880			
	1782.838			
	154.749			
	1628.089			

	Mass	MW	Mol
Product	9.65	285.34	0.03
	mass		
Unreacted limiting reactant			

Experimental: Angew. Chem. Int. Ed. 2013, 52, 9845 –9848.

Carboxylic acid **12** (12.1 g, 61.7 mmol, 1.0 equiv.) was heated together with benzyl amine (40.0 mL, 370 mmol, 6.0 equiv.) and 3Å molecular sieves (10.0 g) to 150 °C for 16 h. The mixture was cooled, diluted with DCM (300 mL), washed with 1M HCl (3x 150 mL), a saturated solution of NaHCO3 (2x 150 mL), water (100 mL) and brine (100 mL). The organic phase was dried over MgSO4 and the solvent removed *in vacuo*. The crude product was purified by flash silica gel column chromatography (DCM/MeOH, 98:2 ightarrow95:5) to give benzyl amide **13** (9.65 g, 33.8 mmol, 55%) as a colorless solid.

	Tick
Green Flag	
Amber Flag	

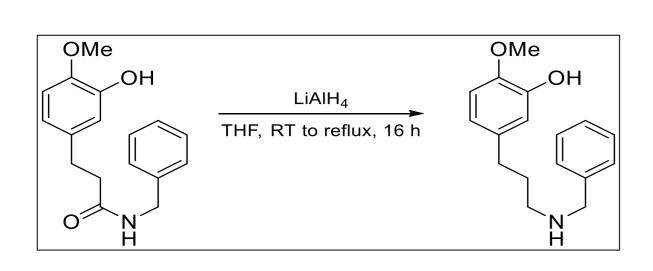
Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	
+500 years	Green Flag	C, N

Energy (First Pass)					
Reaction run between 0 to 70°C	Green Flag				
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag				
Reaction run below -20 or above 140°C	Red Flag	х			

Batch/flow		
Flow	Green Flag	
Batch	Amber Flag	Х

Reaction run at reflux	Red Flag
Reaction run 5 [°] C or more below the solvent boiling point	Green Flag

Work Up


quenching	
filtration	
centrifugation	Croop Flag
crystallisation	Green Flag
Low temperature distillation/evaporation/	
sublimation (< 140 °C at atmospheric	
solvent exchange, quenching into aqueous	Ambor Flag
solvent	Amber Flag
chromatography/ion exchange	
high temperature	Red Flag
multiple recrystallisation	

	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes			
Explosive thermal runaway	H230, H240, H250	H241	present then green flag		benzyl amine H301, H351, H361	
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370, H372	Н341, Н351, Н361, Н371, Н373		benzyl amine H310, H340		
Environmental implications	H400, H410, H411, H420	H401, H412				

Chemical identified as Substances of Very High Concern by ChemSec which are utilised Red Flag	

Yield, AE, RME, MI/PMI and OE																	
Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up	Mass (g)	Workup solvent	Volume	Density	Mass (g)
												chemical			(cm3)	(g ml ⁻¹)	
																	4
N-benzyl-3-(3-hydroxy-4-methoxyphenyl)propanamide	9.65	285.34	0.03					THF	300.00	0.89	266.40	Rochelle's salt	330.00	H2O (Rochelle's salt)	500.00	1.00	500.00
LiAlH4	2.57	37.95	0.07								0.00	MgSO4	33.80	EtOAc	400.00	0.90	360.80
											0.00	SiO2	270.40	H2O	200.00	1.00	200.00
											0.00	NaCl	71.80	H2O (NaCl)	200.00	1.00	200.00
											0.00			DCM	3145.90	1.33	4184.05
											0.00			MeOH	234.10	0.79	185.41
											0.00						0.00
Total	12.22	323.29			0.00		0.00				266.40		706.00				5630.25
			_			•		Step	Cumulative			-		_			

0.00		
	Step	Cumulative
Yield	92.90 🔴	8.2
Conversion	100.0	/
Selectivity	92.90	/
AE	83.94 🔴	31.0
RME	69.72	5.20
PMI total	776.39	3147.99
PMI Reaction	32.70	385.00
PMI reactants,		
reagents, catlyst	1.43	36.74
PMI reaction		
solvents	31.27	348.268
PMI Workup	743.69	2762.986
PMI Workup		
chemical	82.86	258.137
PMI workup		
solvents	660.83	2504.849

Solvents (First Pass)

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		EtOAc, H2O, MeOH
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	THF
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	DCM
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCI_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

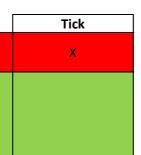
Catalyst/enzyme (First Pass)		Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag		Facile recovery of catalyst/enzyme
Use of stoichiometric quantities of reagents	Amber Flag		catalyst/enzyme not recovered
Use of reagents in excess	Red Flag	Х	

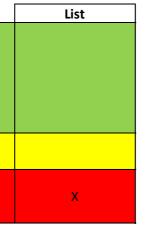
	Mass	MW	Mol
Product	8.52	271.36	0.03
	mass		
Unreacted limiting reactant			

Experimental: Angew. Chem. Int. Ed. 2013, 52, 9845 –9848.

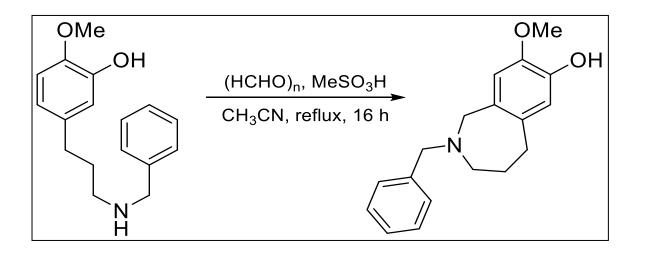
To a solution of amide 13 (9.65 g, 33.8 mmol, 1.0 equiv.) in THF (200 mL) was added slowly a suspension of LiAlH4 (2.57 g, 67.6 mmol, 2.0 equiv.) in THF (100 mL) at room temperature (gas evolution!). The reaction mixture was heated to reflux for 16 h. A sat. aqu. solution of Rochelle's salt (500 mL) was added and the mixture stirred vigorously for 1 h. The phases were separated and the aqueous layer was extracted with EtOAc (2x 200 mL). The combined organic layers were washed with water (200 mL) and brine (200 mL), dried over MgSO4 and the solvent was removed under reduced pressure. The crude product was purified by flash silica gel column chromatography (DCM/MeOH, 20:1, gradually increased to 10:1) to give secondary amine 14 (8.52 g, 31.4 mmol, 93%) as a colorless solid..

	Tick
Green Flag	
Amber Flag	


Flag colour	Note element
Red Flag	
Amber Flag	Li, Al
Green Flag	
	Red Flag Amber Flag


Energy (First Pass)				
Reaction run between 0 to 70°C	Green Flag	х		
Reaction run between -20 to 0 or 70 to 140° C	Amber Flag			
Reaction run below -20 or above 140°C	Red Flag			
Batch/flow		[Tick	
Flow	n Flag			
Batch	Ambe	er Flag	Х	

Reaction run at reflux	Red Flag
Reaction run 5°C or more below the solvent boiling point	Green Flag
Work Up	
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (<	Green Flag
solvent exchange, quenching into aqueous solvent	Amber Flag
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag


alth & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes			
Explosive thermal runaway	H230, H240, H250	H241	present then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370, H	1341, H351, H361, H371, H373			LiAlH4 H301, H331	
	H372			LiAlH4 H310, H330, H340		
Environmental implications	H400, H410, H411, H420	H401, H412				

Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Yield, AE, RME, MI/PMI and OE																	
Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up	Mass (g)	Workup solvent	Volume	Density	Mass (g)
												chemical			(cm3)	(g ml ^{⁻1})	
Amine	5.50	271.36	0.02			MeSO3H	2.14	CH3CN	180.00	0.79	141.48	NaHCO3	19.20	H2O (NaHCO3)	200.00	1.00	200.00
paraformaldehyde	0.67	30.03	0.07								0.00	NaCl	53.85	DCM	250.00	1.33	332.50
											0.00	MgSO4	20.30	H2O	150.00	1.00	150.00
											0.00	SiO2	162.40	H2O (NaCl)	150.00	1.00	150.00
											0.00			DCM	1845.00	1.33	2453.85
											0.00			MeOH	185.00	0.79	146.52
											0.00						0.00
Total	6.17	301.39		•	0.00		2.14		_		141.48		255.75				3432.87
			-			-	•	Ston	Cumulative		-						

	Step	Cumulative		
Yield	95.07 🔴	7.8		
Conversion	100.0	/		
Selectivity	95.07	/		
AE	94.02 🔴	31.3		
RME	88.65	5.13		
PMI total	701.72	3865.97		
PMI Reaction	27.38	413.49		
PMI reactants,				
reagents, catlyst	1.52	37.45		
PMI reaction				
solvents	25.86	376.042		
PMI Workup	674.34	3452.476		
PMI Workup	074.34	5452.470		
chemical	46.76	306.308		
PMI workup				
solvents	627.58	3146.168		

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH,	
	ethylene glycol, acetone, MEK, MIBK, AcOEt , sulfolane	
		H2O, MeOH
Problematic solvents: (acceptable only if substitution	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF,	
does not offer advantages)	heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane ,	Acetonitrile
	chlorobenzene, formic acid, pyridine, Me-THF	Acetomitme
Hazardous solvents: These solvents have significant	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP,	
health and/or safety concerns.	methoxyethanol, hexane	
		DCM
Highly hazardous solvents: The solvents which are	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	
agreed not to be used, even in screening		

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any	Green	
catalyst/reagents.	Flag	
Use of stoichiometric quantities of reagents	Amber	х
Use of stolenometric quantities of reagents	Flag	^
Use of reagents in excess	Red Flag	

Facile recovery of catalyst/enzyme	Green Flag
catalyst/enzyme not recovered	Amber Flag

	Mass	MW	Mol
Product	5.47	283.37	0.02
	mass		
Unreacted limiting reactant			

Experimental: Angew. Chem. Int. Ed. 2013, 52, 9845 –9848.

Amine **14** (5.50 g, 20.3 mmol, 1.0 equiv.) and paraformaldehyde (0.67 g, 22.3 mmol, 1.1 equiv.) were dissolved in acetonitrile (180 mL) and MeSO3H (1.45 mL, 22.3 mL, 1.1 equiv.) was added. The mixture was heated to reflux for 16 h. A saturated solution of NaHCO3 (200 mL) was added and the phases were separated. The aqueous phase was extracted with DCM (5 x 50 mL) and the combined organic layers were washed with water (150 mL) and brine (150 mL), dried over MgSO4 and the solvent was removed under reduced pressure. The crude product was purified by flash silica gel column chromatography (DCM/MeOH, 10:1) to give benzazepine 15 (5.47 g, 19.3 mmol, 95%) as a pale yellow solid.

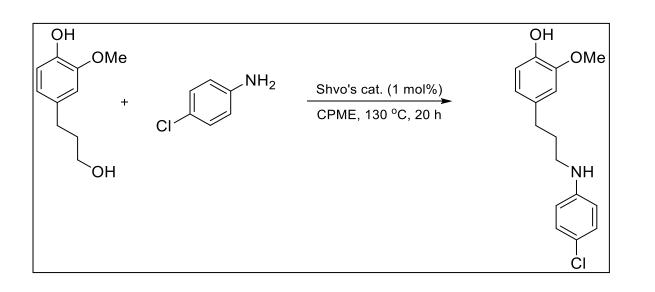
<u> </u>		
Critical	elements	

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	S
+500 years	Green Flag	

Energy (First Pass)				
Reaction run between 0 to 70°C	Green Flag			
Reaction run between -20 to 0 or 70 to 140° C	Amber Flag	х		
Reaction run below -20 or above 140°C	Red Flag			

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	×
Reaction run 5°C or more below the solvent boiling point	Green Flag	
Modella		Link
Work Up		List
quenching		
filtration		
centrifugation	Green Flag	
crystallisation		
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous solvent	Amber Flag	
chromatography/ion exchange		
	Red Flag	х
high temperature multiple recrystallisation	incuiring	^
manipiered ystallisation		


Health & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes			
Explosive thermal runaway	H230, H240, H250	H241	present then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361, H371, H373		Paraformaldehyde H350	Paraformaldehyde H341	
	H372			Paratormatdenyde HSS0		
Environmental implications	H400, H410, H411, H420	H401, H412				

Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Sustainable approach: Step 1

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume (cm3)	Density (g ml⁻¹)	Mass (g)
p-chloroaniline	0.05	127.57	4.00E-04	Shvo's catalyst	4.34E-03				СРМЕ	2.00	0.86	1.72	SiO2 plug	0.80	EtOAc	10.00	0.90	9.02
Dihydroconiferyl alcohol	0.09	182.22	4.80E-04									0.00	SiO2 (column)	3.20	pentane	28.00	0.63	17.53
												0.00			EtOAc	12.00	0.90	10.82
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	0.14	309.79			0.00		0.00			•	•	1.72		4.00				37.37

Yield 97.00 97. Conversion 100.0 97. Selectivity 97.00 94. AE 94.18 94. RME 81.76 81. PMI total 381.90 381. PMI Reaction 16.45 16.
Selectivity 97.00 AE 94.18 94. RME 81.76 81. PMI total 381.90 381.
AE 94.18 94. RME 81.76 81. PMI total 381.90 381.
RME 81.76 81. PMI total 381.90 381.
PMI total 381.90 381.
PMI Reaction 16.45 16.
PMI reactants,
reagents, catlyst 1.26 1.
PMI reaction
solvents 15.19 15.
PMI Workup 365.44 365.
PMI Workup
chemical 35.33 35.
PMI workup
solvents 330.11 330.

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH,	
	ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		EtOAc
Problematic solvents: (acceptable only if substitution	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF,	
does not offer advantages)	heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane ,	СРМЕ
	chlorobenzene, formic acid, pyridine, Me-THF	CHVIL
Hazardous solvents: These solvents have significant	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP,	
health and/or safety concerns.	methoxyethanol, hexane	
		pentane
Highly hazardous solvents: The solvents which are	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	
agreed not to be used, even in screening		

Catalyst/enzyme (First Pass)		Tick
Catalyst or enzyme used, or reaction takes place without any	Green	v
catalyst/reagents.	Flag	^
Use of stoichiometric quantities of reagents	Amber	
Use of storchometric quantities of reagents	Flag	
Use of reagents in excess	Red Flag	

Facile recovery of catalyst/enzyme	Green Flag
catalyst/enzyme not recovered	Amber Flag

	Mass	MW	Mol
Product	0.11	291.78	3.88E-04
	mass		
Unreacted limiting			
reactant			

Experimental: ACS Cent. Sci. 2019, 5, 1707–1716.

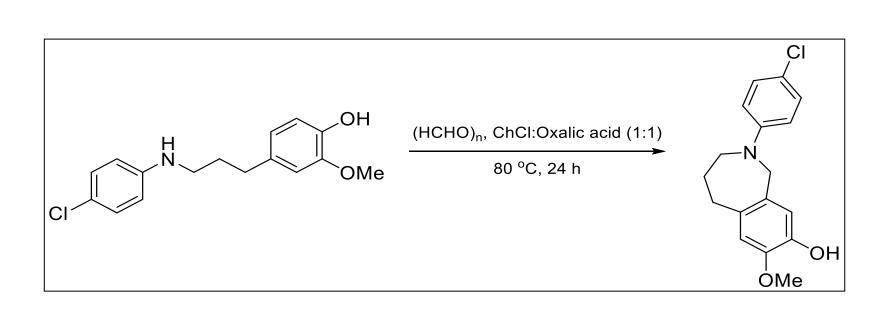
An oven-dried 20 mL Schlenk tube, equipped with a stirring bar, was charged with p-chloroaniline (0.4 mmol, 1 equiv.), **1G** (0.48 mmol, 1.2 equiv.), Shvo's catalyst (C1, 0.004 mmol, 1 mol%) and cyclopentyl methyl ether (CPME, 2 mL). The solid materials were weighed into the Schlenk tube under air and the Schlenk tube was subsequently connected to an argon line and vacuum-argon exchange was performed three times. Liquid starting materials and the solvent were charged under an argon stream. The Schlenk tube was capped and the mixture was rapidly stirred at room temperature for 1 min, then it was placed into a pre-heated oil bath at 130 °C and stirred for 20 h. The reaction mixture was cooled down to room temperature and the crude mixture was filtered through silica gel, eluted with ethyl acetate (10 mL), and the solvent was removed in vacuo. The residue was purified by flash column chromatography (70:30 = pentane : EtOAc) to provide the pure amine product (113 mg, 97% yield).

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	Ru
50-500 years	Amber Flag	
+500 years	Green Flag	

Reaction run between 0 to 70°CGreen FlagReaction run between -20 to 0 or 70 to 140°CAmber FlagXReaction run below -20 or above 140°CRed FlagI	Energy (First Pass)							
	Green Flag							
Reaction run below -20 or above 140°C Red Flag	Amber Flag	х						
	Red Flag							
		Amber Flag						

Batch/flow					
Flow	Green Flag				
Batch	Amber Flag	Х			

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5 [°] C or more below the solvent boiling point	Green Flag	
		r
Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (< 140 °C at atmospheric	Green Flag	
solvent exchange, quenching into aqueous solvent	Amber Flag	
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag	x


alth & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes			
Explosive thermal runaway	H230, H240, H250	H241	present then green flag		dihydroconiferyl alcohol: H351	
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361, H371, H373			p-chloroaniline: H301, H311, H331	
	H372					
Environmental implications	H400, H410, H411, H420	H401, H412		p-chloroaniline: H400, H350	p-chloroaniline: H412	
Use of chemicals of environmental concern			List substances of ver	ry high concern		

Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Sustainable approach: Step 2

Yield, AE, RME, MI/PMI and OE																		
Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up	Mass (g)	Workup solvent	Volume	Density	Mass (g)
													chemical			(cm3)	(g ml⁻¹)	
aminoalkylphenol	0.10	291.78	3.43E-04			ChCl:Oxalic acid	1.00					0.00	NaHCO3	0.19	H2O	2.00	1.00	2.00
paraformaldehyde	0.01	30.03	3.43E-04									0.00	SiO2	2.74	H2O (NaHCO3)	2.00	1.00	2.00
												0.00			EtOAc	30.00	0.90	27.06
												0.00			EtOAc (column)	13.72	0.90	12.38
												0.00			pentane (column)	20.58	0.63	12.88
												0.00						0.00
												0.00						0.00
Total	0.11	321.81			0.00		1.00					0.00		2.94				56.32

	Step	Cumulative
Yield	87.00 🔵	84.4
Conversion	100.0	/
Selectivity	87.00	/
AE	94.40 🔴	89.4
RME	82.44	68.57
PMI total	663.35	1082.25
PMI Reaction	12.20	29.20
PMI reactants,		
reagents, catlyst	12.20	12.49
PMI reaction		
solvents	0.00	16.709
PMI Workup	651.15	1053.053
PMI Workup		
chemical	32.26	71.121
PMI workup		
solvents	618.88	981.932

olvents (First Pass) Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene	List solvents below
	glycol, acetone, MEK, MIBK, AcOEt, sulfolane	H2O, EtOAc
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	1120, Elone
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	pentane

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag	Х
Use of reagents in excess	Red Flag	

Facile recovery of catalyst/enzyme
catalyst/enzyme not recovered

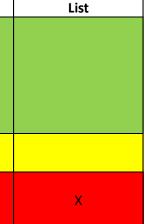
	Mass	MW	Mol
Product	0.09	303.79	2.98E-04
	mass		
Unreacted limiting reactant			

Experimental: ACS Cent. Sci. 2019, 5, 1707–1716.

An oven-dried vial equipped with a stirring bar, was charged with aminoalkylphenol (0.343 mmol), paraformaldehyde (0.343 mmol) and ChCl/Oxalic acid (1:1 molar ratio, 1g) under air. Then the vial was capped and the mixture was rapidly stirred at room temperature for 1 min, then it was heated to 70 °C and stirred for 20 h. The reaction mixture was cooled down to room temperature, water (2 mL) and saturated solution of NaHCO3 (2 mL) was added and then the reaction mixture was stirred for one hour at room temperature. The crude mixture was extracted with ethyl acetate (3 × 10 mL) and the solvent was removed in *vacuo.* The residue was purified by flash column chromatography (pentane : ethyl acetate = 60:40) affording the target product (91 mg, 87% yield).

	Tick
Green Flag	
Amber Flag	х


Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	
+500 years	Green Flag	Х


Energy (First Pass)			Tick			
Reaction run between 0 to 70°C	Green Flag	х				
Reaction run between -20 to 0 or 70 to	Amber Flag					
Reaction run below -20 or above 14	Red Flag					
Batch/flow	Creation	. Elec	Tick			
Flow	Greer	i Flag				
atch Amber Flag X						

Reaction run at reflux	Red Flag
Reaction run 5°C or more below the solvent boiling point	Green Flag
Work Up	
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (< 140 °C at atmospheric pressure)	Green Flag
solvent exchange, quenching into aqueous solvent	Amber Flag
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag

safety				List substances and H-codes
	Red Flag	Amber Flag	Green Flag	
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber flagged H	
			codes present then green flag	
Explosive thermal runaway	H230, H240, H250	H241		
Τοχίς	H300, H310, H330	H301, H311, H331,		
Long Term toxicity	H340, H350, H360, H370,	Н341, Н351, Н361, Н371, Н373		Paraformaldehyde H350
	H372			Paraiorinalueriyue HSS0
Environmental implications	H400, H410, H411, H420	H401, H412		

Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

List substances and H-codes	List substances and H-codes
Paraformaldehyde H341	

Classical pathway: Step 1

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume (cm3)	Density (g ml ⁻¹)	Mass (g)
furfural	200.00	96.08	2.08	Cu2Cr2O5 cat.	1.50							0.00						0.00
					1.50													
hydrogen gas	8.48	2.01	4.22									0.00						0.00
												0.00						0.00
Total	208.48	98.09		1	1.50		0.00					0.00		0.00				0.00

0100		
	Step	Cumulative
Yield	97.1	97.1
Conversion	98.3	/
Selectivity	98.8	
AE	100.0	100.0
RME	95.1	95.1
PMI total	1.1	1.1
PMI Reaction	1.1	1.1
PMI reactants,		
reagents, catlyst	1.1	1.1
PMI reaction		
solvents	0.0	0.0
PMI Workup	0.0	0.0
PMI Workup		
chemical	0.0	0.0
PMI workup		
solvents	0.0	0.0

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me- THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

Catalyst/enzyme (First Pass)	[Tick		Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	х	Facile recovery of catalyst/enzyme Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag		catalyst/enzyme not recovered Amber Flag	
Use of reagents in excess	Red Flag			

Un

	Mass	MW	Mol
Product	198.20	98.10	2.02
	mass		
reacted limiting			
reactant	3.45		

Experimental: Leo J. Frainier, Herman H. Fineberg, United States Pat. US4251396A, 1981

Furfuryl alcohol was prepared from furfural using the copper chromite catalyst of this invention. The copper chromite catalyst used was prepared as de-scribed in Examples 1 and 2. The furfuryl alcohol was prepared in a 300 milliliter AE autoclave. The auto-clave was thoroughly cleaned and dried. It was then charged with 200 grams of furfural, 1.5 grams of a cop-per chromite catalyst prepared as described in Exam-ples 1 and 2, and 1 gram of calcium oxide. The furfural (freshly distilled) was obtained from Profursa, a Spanish concern. Fisher technical calcium oxide was used. The autoclave was pressurized to 400 to 430 psig with hy-drogen. The temperature was raised and maintained at 180° C. After five and a third hours, 98.3% of the furfu-ral was converted. The selectivity of the converted furfural to furfuryl alcohol was 98.8%.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Cu, Cr
+500 years	Green Flag	

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	Х

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	X

		Tick
Reaction run at reflux	Red Flag	х
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching		
filtration		
centrifugation	Croop Flag	x
crystallisation	Green Flag	^
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Amber Flag	
solvent	AIIIDEI FIAg	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substances a
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	furfural H226 - H301 - H312 -		
			flagged H codes present	H315 - H319 - H330 - H335 -		
			then green flag	H351 - H412	Hydrogen gas H220 - H280	
Explosive thermal	H230, H240, H250	H241		Copper chromite H272 - H335 -		
runaway				H410		
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						

Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

s and H-codes

Classical pathway: Step 2

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass ((g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
furfuryl alcohol	153.00	98.10	1.56						ethanol	600.00	0.79	474.00	Na2CO3	86.00	water	500.00	1.00	500.00
dimethylamine																		
hydrochloride	128.00	81.54	1.57									0.00	MgSO4	1560.00	diethyl-ether	1500.00	0.71	1065.00
paraformaldehyde	140.00	30.03	4.66									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	421.00	209.67			0.00		0.00					474.00		1646.00				1565.00
		,							Sten	Cumulative					•			

Me₂NH HCl 1 equiv. (HCHO)_n 3 equiv. OH ΌH EtOH, reflux, 20 h

	Step	Cumulative
Yield	43.4 🔴	42.1
Conversion	100.0	/
Selectivity	43.4	
AE	74.0 🔴	74.0
RME	24.9	24.48
PMI total	39.1	39.19
PMI Reaction	8.5	8.61
PMI reactants, reagents, catlyst	4.0	4.10
PMI reaction solvents	4.5	4.514
PMI Workup	30.6	30.581
PMI Workup chemical	15.7	15.676
PMI workup solvents	14.9	14.905

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		ethanol, water
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me- THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	diethvl-ether

Catalyst/enzyme (First Pass)		Tick		Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag		Facile recovery of catalyst/enzyme Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag		catalyst/enzyme not recovered Amber Flag	
Use of reagents in excess	Red Flag	х		

	Mass	MW	Mol
Product	105.00	155.19	0.68
	mass		
reacted limiting			
reactant	0.00		

Experimental: S. Hirai, H. Hirano, H. Arai, Y. Kiba, H. Shibata, Y. Kusayanagi, M. Yotsuji, K. Hashiba and K. Tanada, US Patent 4643849, 1987

With 600 ml of ethanol were mixed 153 g of furfuryl alcohol, 128 g of dimethylamine hydrochloride and 70 g of paraformaldehyde, and the resulting mixture was subjected to reaction under reflux for 2 hours. Thereafter, 70 g of paraformaldehyde was further added, and the mixture thus obtained was subjected to reaction under reflux for 18 hours. After completion of the reaction, the solvent was removed by distillation under reduced pressure, and 500 ml of water and 86 g of anhydrous sodium carbonate were added to the resulting residue. The oily substance separated was extracted with three 500-ml portions of diethyl ether, and the extracts were combined and then dried over anhydrous magnesium sulfate, after which the solvent was removed by distillation under reduced pressure. The oily substance thus obtained was distilled under reduced pressure to obtain 105 g (yield 43.4%) of 5-(dimethylamino)methyl-2-furfuryl alcohol having a boiling point of 128.degree.-133.degree. C./15 mmHg.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	
+500 years	Green Flag	x

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	х
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	Х
Reaction run 5°C or more below the solvent boiling point	Green Flag	
Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (< 140 °C at atmospheric	Green Flag	Х
solvent exchange, quenching into aqueous solvent	Amber Flag	х
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag	

ealth & safety				List substances and H-codes	List substances and H-codes	List substances
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	paraformaldehyde H228 - H302	furfuryl alcohol H302 + H312 -	
			flagged H codes present	+ H332 - H315 - H317 - H318 -	Н319 - Н331 - Н335 - Н351 -	dimethylamine hydr
			then green flag	H335 - H341 - H350	H373	H315 - H
Explosive thermal	H230, H240, H250	H241				
runaway						ethanol H22
Тохіс	H300, H310, H330	H301, H311, H331,				diethyl-ether H22
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412				

Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

es and H-codes /drochloride H302 -- H319 /225 - H319 224, H302, H336

Classical pathway: Step 3

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g
Reactant First)									solvent		(g ml⁻¹)		chemical		solvent	(cm3)	(g ml⁻¹)	
5-																		
limethylamino)methyl-																		
2-furfuryl alcohol	15.50	155.19	0.0999						HCI	40.00	1.49	59.60	Na2CO3	16.00	diethyl-ether	500.00	0.71	355.00
cysteamine																		
hydrochloride	11.36	113.61	0.1000									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	26.86	268.80			0.00		0.00					59.60		16.00				355.00
i									Step	Cumulative					8			

	Step	Cumulative
Yield	54.2 🔴	22.8
Conversion	100.0	/
Selectivity	54.2	
AE	79.7 🔴	66.3
RME	43.2	15.53
PMI total	39.4	90.47
PMI Reaction	7.5	17.62
PMI reactants,		
reagents, catlyst	2.3	6.45
PMI reaction		
solvents	5.1	11.170
PMI Workup	32.0	72.845
PMI Workup		
chemical	1.4	22.326
PMI workup		
solvents	30.6	50.519

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	water
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-	
Hazardous solvents: These solvents have significant health and/or safety	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	Et2O

Catalyst/enzyme (First Pass)		Tick		Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag		Facile recovery of catalyst/enzyme Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag	х	catalyst/enzyme not recovered Amber Flag	
Use of reagents in excess	Red Flag			

	Mass	MW	Mol
Product	11.60	214.32	0.05
	mass		
nreacted limiting			
reactant	0.00		

Experimental:

B. J. Price, J. W. Clitherow and J. Bradshaw, US Patent 4128658, 1978

2-[[[5-(Dimethylamino)methyl-2-furanyl]methyl]thio]e-thanamine

5-(Dimethylamino)methyl-2-furanmethanol (15.5 g) was added dropwise to a stirred, ice-cold solution of cysteamine hydrochloride (11.36 g) in concentrated hydrochloric acid (40 ml). After standing at 0° for 18 hr, excess anhydrous sodium carbonate was added and the resultant solid extracted with diethyl ether. Removal of solvent followed by distillation of the residue gave 2-[[[5-(dimethylamino)methyl-2-furanyl]methyl]thio]e-thanamine (11.6 g) b.p. 104–106° (0.1 mm). Picrate salt m.p. 142–144°.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	S
+500 years	Green Flag	

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	x
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

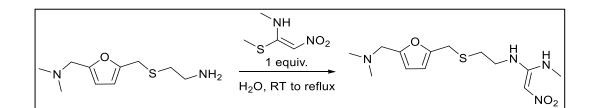
Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5 [°] C or more below the solvent boiling point	Green Flag	x

Work Up		List
quenching		x
filtration	Green Flag	
centrifugation		
crystallisation		
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Amber Flag	
solvent	AITIDEI FIAg	
chromatography/ion exchange	Red Flag	
high temperature		
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substances a
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			cysteamine hydrod
			flagged H codes present			H317, H319
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway						hydrochloric acid H2
Тохіс	H300, H310, H330	H301, H311, H331,				Diethyl ether H224
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	


rochloride H302, 319, H335

H290 - H314 - H335 224 - H302 - H336

Classical pathway: Step 4

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
2-{[5-																		
(dimethylamino)methyl-																		
2-furyl]-															4-Methyl-2-			
methylthio}ethylamine	321.00	214.32	1.50						water	400.00	1.00	400.00	charcoal	10.00	pentanone	2000.00	0.80	1600.00
N-Methyl-1-(methylthio)-																		
2-nitroethenamine	230.00	148.18	1.55									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	551.00	362.50			0.00		0.00					400.00		10.00				1600.00
· · · · · · · · · · · · · · · · · · ·									Ston	Cumulativo					•			

	Step	Cumulative
Yield	80.7 🔴	18.4
Conversion	100.0	/
Selectivity	80.7	
AE	86.7 🔴	66.7
RME	69.0	16.55
PMI total	6.7	82.32
PMI Reaction	2.5	16.54
PMI reactants,		
reagents, catlyst	1.5	6.06
PMI reaction		
solvents	1.1	10.488
PMI Workup	4.2	65.772
PMI Workup		
chemical	0.0	18.886
PMI workup		
solvents	4.2	46.886

lvents (First Pass)	List solvents below	
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		Water, 4-Methyl-2-pentanone
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me- THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

	Mass	MW	Mol
Product	380.00	314.40	1.21
	mass		
reacted limiting			
reactant	0.00		
		-	

erimental:

B. J. Price, J. W. Clitherow and J. Bradshaw, US Patent 4128658, 1978.

N-[2-[[[5-(Dimethylamino)methyl-2-furanyl]methyl]thi-o]ethyl]-N'-methyl-2-nitro-1,1-ethenediamine

N-Methyl-1-(methylthio)-2-nitro-1,1-ethenediamine N-Methyl-1-(methylthio)-2-nitroetheneamine (230 g) in water (400 ml) was stirred and heated at 45° -50°. 2-[[[5-(Dimethylamino) methyl-2-furanyl[methyl]thi-o]ethanamine (321 g) was added dropwise over 4 hr and the resultant solution stirred for a further $3\frac{1}{2}$ hr. The solution was then heated at reflux for $\frac{1}{2}$ hr, cooled to 70° and 4-methylpentan-2-one (2 liters) added. The water was removed by azeotropic distillation under reduced

pressure (260 torr) and the resultant solution treated with charcoal (10 g) at 50°. The solution was filtered and cooled to 10°. N-[2-[[[5-(dimethylamino)methyl-2-furanyl]methyl]thio]ethyl]-N'-methyl-2-nitro-1,1-ethenediamine (380 g) was filtered off and dried m.p. 69°--70°.

Catalyst/enzyme (First Pass)					
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag				
Use of stoichiometric quantities of reagents	Amber Flag	х			
Use of reagents in excess	Red Flag				

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	S
+500 years	Green Flag	

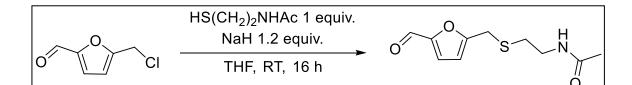
Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	х
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5°C or more below the solvent boiling point	Green Flag	
Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/	Green Flag	x
sublimation (< 140 °C at atmospheric		

crystallisation		
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substances
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			N-Methyl-1-m
			flagged H codes present			nitroethenamine
Explosive thermal	H230, H240, H250	H241	then green flag			4-Methyl-2-pentanc
runaway						H332 - I
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						


Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

es and H-codes methylthio-2ine H315 - H319 none H225 - H319 -- H335

Alternative approach: Step A

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction	Volume (cm ³)	Density	Mass (g)	-	Mass (g)	-	Volume	Density	Mass (g)
Reactant First)								solvent		(g ml⁻¹)		chemical		solvent	(cm3)	(g ml⁻¹)	
5-(chloromethyl)furfural	0.4912	144.55	0.00340			NaH	0.10300	THF	30.00	0.88	26.40	NaCl	54.00	water (brine)	150.00	1.00	150.00
N-acetylcysteamine	0.4051	119.19	0.00340								0.00	Na2SO4	3.40	DCM	100.00	1.33	133.00
											0.00	charcoal	0.10				0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	0.8963	263.74			0.00		0.10				26.40		57.50				283.00
			_					Step	Cumulative					-			

	Step	Cumulative
Yield	91.2	91.2
Conversion	100.0	100.0
Selectivity	91.2	91.2
AE	86.2	86.2
RME	78.6	78.6
PMI total	522.4	522.4
PMI Reaction	38.9	38.9
PMI reactants,		
reagents, catlyst	1.4	1.4
PMI reaction		
solvents	37.5	37.5
PMI Workup	483.5	483.5
PMI Workup		
chemical	81.7	81.7
PMI workup		
solvents	401.9	401.9

olvents (First Pass)		List solvents below	
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane		
		water	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-		
	THF	THF	
Hazardous solvents: These solvents have significant health and/or safety	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane		
concerns.		DCM	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA		

Catalyst/enzyme (First Pass)		Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag	х
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

Mark Mascal, Saikat Dutta, Green Chem., 2011, 13, 3101 Sodium hydride (95%) (103 mg, 4.08 mmol) was added to a solution of Nacetylcysteamine (0.4051 g, 3.40 mmol) in dry THF (20 mL) under argon. The resulting suspension was stirred at RT for 30 min and a solution of CMF 12 (0.4912 g, 3.40 mmol) in dry THF (10 mL) was added dropwise over a 10 min period. The resulting light yellow solution was allowed to stir overnight at RT. The solvent was evaporated and saturated brine (50 mL) was added. The mixture was extracted with CH2Cl2 (2 × 50 mL) and the organic layers were combined and washed with saturated brine (100 mL). The organic layer was dried over Na2SO4. Charcoal (100 mg) was added and the mixture was stirred for 20 min and filtered. The solvent was evaporated to give **14** as a yellow liquid (0.7042 g, 91 %).

	Mass	MW	Mol
Product	0.70420	227.27	0.00310
	mass		
reacted limiting			
reactant	0.00		

Experimental:

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	S
+500 years	Green Flag	

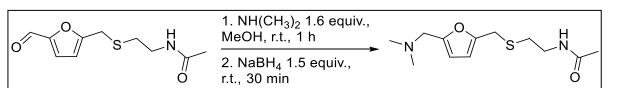
Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	x
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	x
Work Up		List
quenching		
filtration		
centrifugation		
crystallisation	Green Flag	
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	0 ma la su 51	
solvent	Amber Flag	х
chromatography/ion exchange		
high temperature	Red Flag	

Health & safety				List substances and H-codes	List substances and H-codes	List substances
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber		THF H225 - H302 - H319 - H335 -	
			flagged H codes present		H336 - H351	NaH H228 - H260
Explosive thermal	H230, H240, H250	H241	then green flag		5-Chloromethylfurfural H227,	N-Acetylcysteamin
runaway					H302, H314, H318, H351	H33
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						

multiple recrystallisation


Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

es and H-codes 50 - H290 - H314 nine H315 - H319 -335

Alternative approach: Step B

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume (cm3)	Density (g ml ⁻¹)	Mass (g)
5-[[(2- Acetamidoethyl)thio]me thyl]-N,N-dimethyl-2-																		
furanmethanamine	0.2105	227.27	0.00093						MeOH	20.00	0.79	15.80			DCM	50.00	1.33	66.50
Dimethylamine	0.67	45.08	0.01486									0.00						0.00
NaBH4	0.06	37.83	0.00159									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	0.9405	310.18			0.00		0.00					15.80		0.00				66.50

	Step	Cumulative
Yield	90.3 🔵	82.4
Conversion	100.0	/
Selectivity	90.3	/
AE	82.6 🔴	74.0
RME	22.8	21.49
PMI total	388.1	899.78
PMI Reaction	78.0	115.25
PMI reactants,		
reagents, catlyst	4.4	4.80
PMI reaction		
solvents	73.7	110.450
PMI Workup	310.0	784.534
PMI Workup		
chemical	0.0	80.130
PMI workup		
solvents	310.0	704.404

	l na

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		MeOH
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me- THF	
Hazardous solvents: These solvents have significant health and/or safety	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
concerns.		DCM
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

	Mass	MW	Mol
Product	0.2145	256.36	0.00084
	mass		
reacted limiting			
reactant	0.00		

Experimental:

Mark Mascal, Saikat Dutta, Green Chem., 2011, 13, 3101

Me2NH (1.0 mL) was added to a solution of 14 (0.2105 g, 0.926 mmol) in dry methanol (20 mL) and the mixture was stirred at RT for 1 h. The resulting red solution was cooled to 0 °C and NaBH4 (98 %) (55 mg, 1.42 mmol) was added over a 5 min period. The mixture was allowed to come to RT and stirred for 30 min. The solvent was evaporated while keeping the bath temperature below 45 °C. The residue was dissolved in CH2Cl2 (50 mL) and filtered to remove inorganic impurities. The solvent was evaporated to give 15 (0.2145 g, 90 %) as a pale yellow oil.

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag	х
Use of reagents in excess	Red Flag	

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	<mark>S,</mark> В
+500 years	Green Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

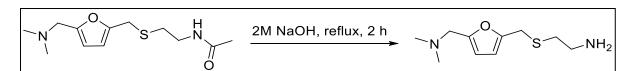
Energy (First Pass)		Tick
Reaction run between 0 to 70°C	Green Flag	х
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140 [°] C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	X

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	х

Work Up		List	
quenching			
filtration			
centrifugation		x	
crystallisation	ystallisation Green Flag		
Low temperature distillation/evaporation/			
sublimation (< 140 °C at atmospheric			
solvent exchange, quenching into aqueous	Amber Flag		
solvent	Amber Flag		
chromatography/ion exchange			
high temperature	Red Flag		
multiple recrystallisation			

Health & safety				List substances and H-codes	List substances and H-codes	List substances
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	DCM H225 - H301 + H311 +	Dimethylamine H220 - H280 -	
			flagged H codes present	H331 - H370	Н315 - Н318 - Н332 - Н335 -	
Explosive thermal	H230, H240, H250	H241	then green flag	NaBH4 H260 - H301 - H314 -		
runaway				H360FD		
Тохіс	H300, H310, H330	Н301, Н311, Н331,		×		
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412				


Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

es and H-codes

Alternative approach: Step C

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume (cm3)	Density (g ml ⁻¹)	Mass (g)
5-[[(2- aminoethyl)thio]methyl]- N,N-dimethyl-2- furanmethanamine	0.2473	256.36	0.00096			NaOH	0.80	water	10.00	1.00	10.00	NaCl (brine)	2.00	DCM	90.00	1.33	119.70
											0.00	Na2SO4	1.00	water (brine)	5.00	1.00	5.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	0.2473	256.36			0.00		0.80				10.00		3.00				124.70

	Step	Cumulative
Yield	93.5 🔵	77.1
Conversion	100.0	/
Selectivity	93.5	
AE	83.6 🔴	61.8
RME	78.2	16.81
PMI total	717.4	1866.68
PMI Reaction	57.1	203.21
PMI reactants, reagents, catlyst	5.4	10.27
PMI reaction		
solvents	51.7	192.938
PMI Workup	660.3	1663.471
PMI Workup		
chemical	15.5	117.974
PMI workup		
solvents	644.8	1545.496

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		water
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me- THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
		DCM
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

	Mass	MW	Mol
Product	0.1934	214.32	0.00090
	mass		
reacted limiting			
reactant	0.00		
		-	

Experimental:

Mark Mascal, Saikat Dutta, Green Chem., 2011, 13, 3101

A solution of 15 (0.2473 g, 0.965 mmol) in freshly prepared 2N aq NaOH (10 mL) was heated at reflux for 2 h. The mixture was cooled to RT and extracted with CH2Cl2 (3×30 mL). The organic layers were combined and washed with saturated brine, dried over Na2SO4, and evaporated to give 5 (0.1934 g, 94 %) as a pale yellow oil.

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag	х
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

Critical elements

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	S
+500 years	Green Flag	

Energy (First Pass)					
Reaction run between 0 to 70°C	Green Flag				
Reaction run between -20 to 0 or 70					

Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	х
Reaction run below -20 or above 140°C	Red Flag	

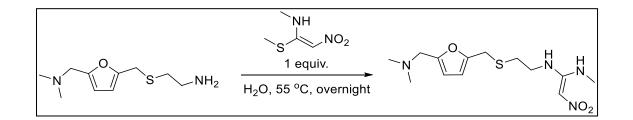
Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching		
filtration		
centrifugation		
crystallisation	Green Flag	
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Ambor Flog	
solvent	Amber Flag	x
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substances
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes present		DCM: H351	
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway						
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412				

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	


Tick

es and H-codes

Alternative approach: Step D

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml⁻¹)		chemical		solvent	(cm3)	(g ml⁻¹)	
											_							
5-[[(2-																		
aminoethyl)thio]methyl]-																		
N,N-dimethyl-2-																		
furanmethanamine	0.1501	214.32	0.00070						water	15.00	1.00	15.00	NaCl (brine)	11.00	CHCl3	60.00	1.49	89.40
N-Methyl-1-methylthio-																		
2-nitroethenamine	0.1041	148.18	0.00070									0.00	Na2SO4	0.70	water (brine)	30.00	1.00	30.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	0.2542	362.50			0.00		0.00					15.00		11.70				119.40

0.00		
	Step	Cumulative
Yield	87.9 🔴	67.7
Conversion	100.0	/
Selectivity	87.9	/
AE	86.7 🔴	63.5
RME	76.1	19.41
PMI total	756.4	2203.58
PMI Reaction	78.8	235.69
PMI reactants,		
reagents, catlyst	1.3	8.50
PMI reaction		
solvents	77.5	227.184
	77.5	227.101
PMI Workup	677.5	1967.891
PMI Workup		
chemical	60.5	151.979
PMI workup		
solvents	617.1	1815.912

Exper Mark A solu

A solution of 5 (0.1501 g, 0.700 mmol) in distilled water (10 mL) was added dropwise over a period of 10 min to a suspension of 1-methylthio-1-methylamino-2nitroethylene 7 (0.1041 g, 0.703 mmol) in distilled water (5 mL) with stirring. The resulting light yellow solution was placed in an oil bath at 55 °C and the mixture was stirred at that temperature overnight. Saturated brine (30 mL) was added and the mixture was extracted with CHCl3 (3×20 mL). The combined organic layer was dried over Na2SO4. Evaporation of the solvent gave 1 as a pale yellow oil (0.1935 g, 88 %)

lvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		water
Problematic solvents: (acceptable	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile,	
only if substitution does not offer	AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene,	
advantages)	MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-	
	THF	
Hazardous solvents: These solvents	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF,	
have significant health and/or safety	DMA, NMP, methoxyethanol, hexane	
concerns.		
Highly hazardous solvents: The	Et_2O , Benzene, CCI_4 , chloroform, DCE, nitromethane, CS_2 ,	
solvents which are agreed not to be	НМРА	
used, even in screening		CHCl3

	Mass	MW	Mol
Product	0.1935	314.40	0.00062
	mass		
reacted limiting			
reactant	0.00		

Experimental:

Mark Mascal, Saikat Dutta, Green Chem., 2011, 13, 3101

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	
Use of stoichiometric quantities of reagents	Amber Flag	х
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

·----

Critical elements

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	S
+500 years	Green Flag	

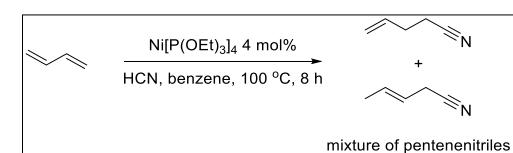
Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	х
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	x
_Work Up		List
quanching		

Work Up	List	
quenching		
filtration		
centrifugation	Green Flag	
crystallisation		
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Amber Flag	v
solvent	AITIDEI FIAg	Х
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substances
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes present			
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway				CHCl3: H372	CHCl3: H331, H351, H361, H412	
Toxic	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412				


Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

es and H-codes

Classical approach: Step 1

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (<mark>g)</mark> React	ion	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)								solve	ent		(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml⁻¹)	
1,3-butadiene	54.00	54.09	1.00	Ni[P(OEt)3]4	20.00			benze	ene	50.00	0.88	43.80						0.00
HCN	18.50	27.02	0.68									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	72.50	81.11			20.00		0.00					43.80		0.00				0.00

0.00		
	Step	Cumulative
Yield	39.0	39.0
Conversion	100.0	/
Selectivity	39.0	
AE	100.0	100.0
RME	43.5	43.5
PMI total	4.3	4.3
PMI Reaction	4.3	4.3
PMI reactants,		
reagents, catlyst	2.9	2.9
PMI reaction		
solvents	1.4	1.4
PMI Workup	0.0	0.0
PMI Workup		
chemical	0.0	0.0
PMI workup		
solvents	0.0	0.0

lvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
lazardous solvents: These solvents ave significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	Benzene

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	х
Use of stoichiometric quantities of reagents	Amber Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	х
catalyst/enzyme not recovered	Amber Flag	

Experimental: William, C. D. &

A mixture of 20 g. of Ni[P(OEt)₃]₄ 50 ml. benzene, 108 g. of liquid butadiene, and 54 ml. of liquid HCN is charged to a cooled, 400 ml., stainless steel pressure tube. The tube is heated at 100° C. for 8 hours, then cooled and vented. The dark red, crude liquid is distilled at 0.1 mm. at a pot temperature up to 100° C. to obtain a mixture of products composed of: 0.65 g. of trans-2methyl-2-butenenitrile, 46.0 g. of 2-methyl-3 - butenenitrile, 3.1 g. of cis-2-methyl-2-butenenitrile, 58.3 g. of trans-3-pentenenitrile, and 0.61 g. of cis-3-pentenenitrile. These products represent 49 cycles (moles of product/ moles of catalyst) of the catalyst to produce nitrile products. Products are separated by gas chromatography and identified by gas chromatographic retention time, mass spectrometry, infrared spectrometry, nuclear magnetic resonance spectroscopy. Table I reports the results obtained for the hydrocyanation of butadiene using a representative group of tetrakis (organophosphite)nickel(O) catalysts using the conditions described in Example I. In each case, a temperature of 100° C. for 8 hours is used. In Table I, Et stands for ethyl, Bu for butyl, iPr for isopropyl, ϕ for phenyl, and Me for methyl.

Experimental: Green Chem...2

The PEP yearbook 2012 gives the following process summary for the HMDA production from butadiene according to the Dupont process. It is worthwhile to note that this model is quite approximate and not fully representative of the new generations of HMDA processes. Butadiene and hydrogen cyanide react at 80 C and 7.8 atm using a Ni-tri-o-tolylphosphite (NTOTP) catalyst to form pentenenitriles (PNs) and unconverted reactants are recycled. PNs are distilled to remove methylbutenenitrile, which is isomerized into PNs over a Ni catalyst and distilled for PNs recovery. PNs from hydrocyanation and isomerization are hydrocyanated to adiponitrile (ADN) at 41-65 C and 1 atm using a NTOTP catalyst and triphenylborane (TPB) promoter. After PN separation, the reaction product is extracted with cyclohexane to separate NTOTP, which is recovered by evaporating the cyclohexane. The raffinate is distilled to recover PNs for recycling, to remove ADN isomers, and to recover ADN. The spent catalyst and TBP are recovered by a series of steps, including ammoniation, evaporation, calcination, and reaction with triotolylphosphite. Further hydrogenation of the ADN into HMDA can be carried out in the temperature range 90-200° C under hydrogen pressure of about (range 250-400 atm) in the presence of ammonia in an ammonia-to-ADN weight ratio of at least about 1.8/1. The product yield is about 85% based on butadiene and 88.7% based on HCN.

	Mass	MW	Mol
Product	31.55	81.12	0.39
	mass		
Unreacted limiting			
reactant	0.00		

William, C. D. & Richard, V. L., JR. Hydrocyanation of olefins using selected nickel phosphite catalysts. US3496215 (A) (1965).

Products	$Ni[P(OEt)_3]_4$
Cis-3-pentenenitrile, g	.77
4-pentenenitrile, g	.34 .
Trans-3-pentenenitrile, g	30.1
Cis-2-methyl-2-butenenitrile, g	. 34
2-methyl-3-butenenitrile, g	22.3
Trans-2-methyl-2-butenenitrile, g	. 26
Reagents:	
HCN, ml	27
Butadiene, g	54
Catalyst, g	20

Green Chem., 2015, 17, 4760–4772, DOI: 10.1039/c5gc01549a

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Ni, P
+500 years	Green Flag	

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	х
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	X

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching		
filtration		
centrifugation		
crystallisation	Green Flag	x
Low temperature distillation/evaporation/		
sublimation (< 140 $^{\circ}$ C at atmospheric		
solvent exchange, quenching into aqueous	Amber Flag	
solvent	AIIIDEI FIAg	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	1,3-Butadiene H220 - H280 -		
			flagged H codes present	H340		
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway				HCN H224, H330, H400, H410		
Тохіс	H300, H310, H330	H301, H311, H331,		Benzene H302,H315, H319,		
				Н361, Н370, Н372, Н340, Н350,		
				H336, H304, H411, H225		
Long Term toxicity	Н340, Н350, Н360, Н370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						

_	Use of chemicals of environmental concern	List substances of very high concern	
	Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Classical approach: Step 2

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume (cm3)	Density (g ml ⁻¹)	Mass (g)
3-pentenenitrile	20.00	81.12	0.25	Ni[P(OC6H5)3]4	0.65			N2	3620.00	1.25E-03	4.53						0.00
HCN	6.87	27.02	0.25	Zn(CH3COO)2x2H2O	2.19						0.00						0.00
				P(OC6H5)3	3.10						0.00						0.00
											0.00						0.00
Total	26.87	108.14			5.94		0.00		•	·	4.53		0.00				0.00

 $Zn(CH_3COO)_2 \times 2H_2O 0.4 \text{ mol}\%$ $Ni(P(OC_6H_5)_3)_4 0.2 mol\%$ $P(OCH_5)_3 4 mol\%$ HCN 1 equiv., N₂, 115 ^oC, 3 h

N

mixture of pentenenitriles

	Step	Cumulative
Yield	60.8 🔴	23.7
Conversion	75.7	/
Selectivity	80.3	/
AE	100.0 🔵	100.0
RME	60.3	30.67
PMI total	2.3	6.40
PMI Reaction	2.3	6.40
PMI reactants, reagents, catlyst	2.0	4.41
PMI reaction solvents	0.3	1.993
PMI Workup	0.0	0.000
PMI Workup chemical	0.0	0.000
PMI workup	0.0	0.000
solvents	0.0	0.000

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place	Green	v
without any catalyst/reagents.	Flag	Х
Use of stoichiometric quantities of reagents	Amber	
Ose of stolchometric quantities of reagents	Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	х
catalyst/enzyme not recovered	Amber Flag	

	Mass	MW	Mol
Product	16.20	108.14	0.15
	mass		
Unreacted limiting			
reactant	4.87		

Experimental:

Yuan-tsan Chia, William Charles Drinkard, Edward Noonan Squire, Hydrocyanation of olefins, US3766237A, 1973

A 50 ml, three-necked, round bottom flask fitted with a reflux condenser connected to a Dry Ice trap, an inlet, and a magnetic stirrer, is set up in an oil bath maintained at 115° C. and purged with dry, deoxygenated nitrogen. The flask is charged with 2.19 g. (0.001 mole) of $Zn(CH_3COO)_2x2H_2O$ followed by 0.650 g. (0.0005 mole) of Ni(P(OCH5)3)4, 20 g. (0.25 mole) of 3-pentenenitrile, and 3.1 g (0.01mole) of P(OCH5)3. A stream of dry, deoxygenated nitrogen gas is bubbled through 10 ml. of liquid hydrogen cyanide contained in a 20 ml. receiver cooled in an ice bath. The nitrogen gas flow is adjusted to 20 ml. of nitrogen per minute to give a gaseous hydrogen cyanide feed rate equivalent to about 1.0 ml. measured at 0° C. of liquid hydrogen cyanide per hour. The resulting mixture of gases is passed through a bed of phosphorus pentoxide to eliminate traces of moisture and then is swept across the surface of the reaction mixture in the flask. After three hours, the reaction is shut down.

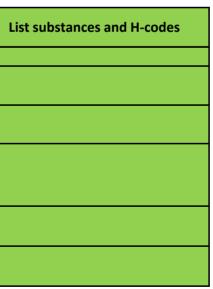
Gas chromatographic analysis indicates a yield of 16.2 g. of adiponitrile (79 percent as based on 3-pentenenitrile converted) and 4.4g. of 2-methylglutaronitrile. The number of cycles is 92.

Experimental:

Green Chem., 2015, 17, 4760–4772, DOI: 10.1039/c5gc01549a

The PEP yearbook 2012 gives the following process summary for the HMDA production from butadiene according to the Dupont process. It is worthwhile to note that this model is quite approximate and not fully representative of the new generations of HMDA processes. Butadiene and hydrogen cyanide react at 80 C and 7.8 atm using a Ni-tri-o-tolylphosphite (NTOTP) catalyst to form pentenenitriles (PNs) and unconverted reactants are recycled. PNs are distilled to remove methyl-butenenitrile, which is isomerized into PNs over a Ni catalyst and distilled for PNs recovery. PNs from hydrocyanation and isomerization are hydrocyanated to adiponitrile (ADN) at 41-65 C and 1 atm using a NTOTP catalyst and triphenylborane (TPB) promoter. After PN separation, the reaction product is extracted with cyclohexane to separate NTOTP, which is recovered by evaporating the cyclohexane. The raffinate is distilled to recover PNs for recycling, to remove ADN isomers, and to recover ADN. The spent catalyst and TBP are recovered by a series of steps, including ammoniation, evaporation, calcination, and reaction with triotolylphosphite. Further hydrogenation of the ADN into HMDA can be carried out in the temperature range 90-200° C under hydrogen pressure of about (range 250-400 atm) in the presence of ammonia in an ammonia-to-ADN weight ratio of at least about 1.8/1. The product yield is about 85% based on butadiene and 88.7% based on HCN.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	Zn
50-500 years	Amber Flag	Ni, P
+500 years	Green Flag	


Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	x
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow	Tick	
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5°C or more below the solvent boiling point	Green Flag	
Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (< 140 °C at atmospheric solvent exchange, quenching into aqueous	Green Flag	x
solvent chromatography/ion exchange high temperature multiple recrystallisation	Red Flag	

ealth & safety				List substances and H-codes	List substances and H-codes	
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	1,3-Butadiene H220 - H280 -	3-Pentenenitrile H226, H302,	
			flagged H codes	H340	H331	
Explosive thermal	H230, H240, H250	H241	present then green flag			
runaway				HCN H224, H330, H400, H410		
Τοχίς	H300, H310, H330	H301, H311, H331,				
				Zn(OAc)2 H302, H318, H411		
Long Term toxicity	H340, H350, H360, H370, H372	H341, H351, H361, H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412				

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Classical approach: Step 3

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml⁻¹)		chemical		solvent	(cm3)	(g ml⁻¹)	
adiponitrile	216.00	108.14	2.00	Fe catalyst	20.00							0.00						0.00
ammonia gas	216.00	17.03	12.68									0.00						0.00
hydrogen gas	19.66	2.02	9.73									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	451.66	127.19			20.00		0.00					0.00		0.00				0.00

N A A	[Fe] cat., 150 °C, 64 min NH ₃ + H ₂ (5000 psig total pressure)	
~ ~ 🔌	-	$H_2N \qquad \qquad$

	Step	Cumulative
Yield	97.8 🔴	23.1
Conversion	100.0	/
Selectivity	97.8	
AE	91.4 🔵	91.4
RME	50.3	24.15
PMI total	2.1	7.22
PMI Reaction	2.1	7.22
PMI reactants, reagents, catlyst	2.1	5.32
PMI reaction solvents	0.0	1.897
PMI Workup	0.0	0.000
PMI Workup chemical	0.0	0.000
PMI workup solvents	0.0	0.000

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me- THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	х
Use of stoichiometric quantities of reagents	Amber Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	Х
catalyst/enzyme not recovered	Amber Flag	

	Mass	MW	Mol
Product	227.00	116.21	1.95
	mass		
reacted limiting			
reactant			

Experimental:

Donald Bernard Bivens; Leo Wesley Patton; William Erbie Thomas, Hydrogenation of adiponitrile, US3758584A, 1970

A batch hydrogenation is conducted using 216 g. adiponitrile, 216 g ammonia, and 20 g of catalyst in a one liter stirred autoclave, at 150° C. and 5000 psig total pressure(pH, = 3500 psig; pNH + ADN = 1500 psig). The reaction is apparently complete in 64 minutes, having consumed the theoretical quantity of hydrogen based on ADN.

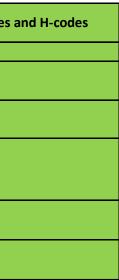
Experimental:

Green Chem., 2015, 17, 4760–4772, DOI: 10.1039/c5gc01549a

The PEP yearbook 2012 gives the following process summary for the HMDA production from butadiene according to the Dupont process. It is worthwhile to note that this model is quite approximate and not fully representative of the new generations of HMDA processes. Butadiene and hydrogen cyanide react at 80 C and 7.8 atm using a Ni-tri-o-tolylphosphite (NTOTP) catalyst to form pentenenitriles (PNs) and unconverted reactants are recycled. PNs are distilled to remove methyl-butenenitrile, which is isomerized into PNs over a Ni catalyst and distilled for PNs recovery. PNs from hydrocyanation and isomerization are hydrocyanated to adiponitrile (ADN) at 41-65 C and 1 atm using a NTOTP catalyst and triphenylborane (TPB) promoter. After PN separation, the reaction product is extracted with cyclohexane to separate NTOTP, which is recovered by evaporating the cyclohexane. The raffinate is distilled to recover PNs for recycling, to remove ADN isomers, and to recover ADN. The spent catalyst and TBP are recovered by a series of steps, including ammoniation, evaporation, calcination, and reaction with triotolylphosphite. Further hydrogen pressure of about (range 250-400 atm) in the presence of ammonia in an ammonia-to-ADN weight ratio of at least about 1.8/1. The product yield is about 85% based on butadiene and 88.7% based on HCN.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	
+500 years	Green Flag	Х

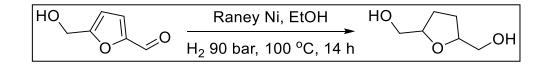
Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	x


Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching		
filtration		
centrifugation	centrifugation	
crystallisation	Green Flag	X
Low temperature distillation/evaporation/		
sublimation (< 140 $^{\circ}$ C at atmospheric		
solvent exchange, quenching into aqueous	Ambor Flog	
solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substances a
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	NH3 gas H280, H314, H331,		
			flagged H codes present	H410	Adiponitrile H301, H332	
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway					Hydrogen gas H220 - H280	
Τοχίς	Н300, Н310, Н330	Н301, Н311, Н331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,	-			
	H372	H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412				


Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Bio-based approach: Step I

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g
Reactant First)									solvent		(g ml⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
				Raney														
				nickel														
5-HMF	0.500	126.11	0.0040	catalyst	0.050				ethanol	30.00	0.79	23.70						0.00
hydrogen gas	0.75	2.02	0.37129									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	1.25	128.13			0.05		0.00					23.70		0.00				0.00

	Step	Cumulative
Yield	96.0	99.0
Conversion	100.0	/
Selectivity	96.0	/
AE	103.1	100.0
RME	40.2	40.2
PMI total	49.7	49.7
PMI Reaction	49.7	49.7
PMI reactants,		
reagents, catlyst	2.6	2.6
PMI reaction		
solvents	47.1	47.1
301701113	47.1	47.1
PMI Workup	0.0	0.0
PMI Workup		
chemical	0.0	0.0
PMI workup		
solvents	0.0	0.0

Ange HMF 100 r flush press show

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH,	
	BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	EtOH
Problematic solvents: (acceptable	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile,	
only if substitution does not offer	AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene,	
Hazardous solvents: These solvents	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF,	
have significant health and/or safety	DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ ,	
solvents which are agreed not to be	НМРА	
used even in screening		

Catalyst/enzyme (First Pass)	[Tick		Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	х	Facile recovery of catalyst/enzyme Green Flag	х
Use of stoichiometric quantities of reagents	Amber Flag		catalyst/enzyme not recovered Amber Flag	
Use of reagents in excess	Red Flag			

	Mass	MW	Mol
Product	0.50300	132.16	0.00381
	mass		
reacted limiting reactant			

Experimental:

Angew. Chem. Int. Ed. 2011, 50, 7083 –7087, DOI: 10.1002/anie.201102156

HMF (500 mg, 4 mmol) dissolved in ethanol (30 mL) and Raney nickel catalyst (50 mg) were added to a 100 mL stainless steel autoclave (Parr). The reactor was

flushed three times with nitrogen and subsequently with hydrogen. After flushing, the reactor was pressurized to 90 bar, and the reaction mixture was stirred and heated to 100 C for 14 h. GC analysis showed 100% conversion and 99% selectivity to THFDM.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Ni
+500 years	Green Flag	

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	х
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow	Tick	
Flow	Green Flag	
Batch	Amber Flag	х

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching		
filtration		
centrifugation		v
crystallisation	Green Flag	Х
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Ambor Flog	
solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substances a
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	Raney nickel cat. H251, H317,		
			flagged H codes present	H351, H372, H412	Hydrogen gas H220 - H280	Ethanol H22
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway						
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

es and H-codes

Bio-based approach: Step II

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ^{⁻1})	
				Rh-Re/SiO2														
THFDM	0.100	132.16	0.0008	catalyst	0.025				water	2.00	1.00	2.00						0.00
				Nafion SAC-13														
hydrogen gas	0.55	2.02	0.27228	catalyst	0.02							0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	0.65	134.18			0.04		0.00					2.00		0.00				0.00

	Rh-Re/SiO ₂ cat.,	
	Nafion SAC-13 cat.,	
	H ₂ , 80 °C,	
HO	10 bar for 1 h, then 80 bar for 20 h	
ОСОН		$HO^{\prime} \sim \sim \sim \sim 000$

	Step	Cumulative
Yield	88.9 🔵	88.0
Conversion	100.0	/
Selectivity	88.9	
AE	88.1 🔴	88.1
RME	12.2	9.96
PMI total	33.8	95.10
PMI Reaction	33.8	95.10
PMI reactants,		
reagents, catlyst	8.7	10.67
PMI reaction		
solvents	25.2	84.424
Solvents	25.2	04.424
DMIM orkun	0.0	0.000
PMI Workup	0.0	0.000
PMI Workup		
chemical	0.0	0.000
PMI workup		
solvents	0.0	0.000

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	water
Problem the character (second child	DMC0 such because DMDU As0U As00 Asstantibile As0Ms	Water
Problematic solvents: (acceptable only if substitution does not offer	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane ,	
lazardous solvents: These solvents ave significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place	Green	~
without any catalyst/reagents.	Flag	*
Use of stoichiometric quantities of reagents	Amber	
Ose of stoichiometric quantities of reagents	Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	х
catalyst/enzyme not recovered	Amber Flag	

	Mass	MW	Mol
Product	0.07950	118.17	0.00067
	mass		
Unreacted limiting reactant			

Experimental:

Angew. Chem. Int. Ed. 2011, 50, 7083 –7087, DOI: 10.1002/anie.201102156

The same procedure was used as described above for the hydrogenation of THFDM to 1,2,6-HT, but with an additional 15 mg of acid catalyst added.

THFDM (100 mg, 0.8 mmol), Rh-Re/SiO2 catalyst (25 mg), water (2 mL), and a Teflon stirring bar were added to a 8 mL glass vial capped with a septum. The vial was then pierced with a small needle and placed in a stainless steel autoclave. The lid of the autoclave was closed and stirring was started at 1000 rpm. After pressurizing three times with first nitrogen and then hydrogen, the autoclave was pressurized to 10 bar and the temperature was raised to 80 C. After 1 h, the pressure was raised to 80 bar and the reactions were continued for 20 h. The autoclave was then allowed to cool to ambient temperature and the pressure was released.

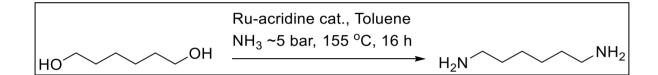
Supply remaining	Flag colour	Note element
5-50 years	Red Flag	Rh
50-500 years	Amber Flag	Re
+500 years	Green Flag	

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	×
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	х

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	х

Work Up		List
quenching		
filtration		
centrifugation		v
crystallisation	Green Flag	Х
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Amber Flag	
solvent	AIIIDEI FIAg	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		


Health & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber flagged H codes		Hydrogen gas H220 - H280	
Explosive thermal runaway	H230, H240, H250	H241	present then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370, H372	H341, H351, H361, H371, H373				
Environmental implications	H400, H410, H411, H420	H401, H412				

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

Bio-based approach: Step III

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml ⁻¹)	
1,6-hexanediol	0.8100	118.17	0.0069	Ru-acridine cat.	0.0310				toluene	20.00	0.87	17.30						0.00
ammonia gas	0.3747	17.03	0.0220									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	1.1847	135.20			0.0310		0.00					17.30		0.00				0.00

0.00	Step	Cumulative
Yield	82.9	70.7
Conversion	100.0	/0./
Selectivity	82.9	/
AE	85.9	79.0
RME	55.7	7.76
PMI total	28.1	143.54
PMI Reaction	28.1	143.54
PMI reactants,		
reagents, catlyst	1.8	13.71
PMI reaction		
solvents	26.2	129.824
PMI Workup	0.0	0.000
PMI Workup		
chemical	0.0	0.000
PMI workup		
solvents	0.0	0.000

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
		toluene
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place	Green	×
without any catalyst/reagents.	Flag	X
Use of stoichiometric quantities of reagents	Amber	
Ose of stoichiometric quantities of reagents	Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

	Mass	MW	Mol
Product	0.66	116.20	0.0057
	mass		
Unreacted limiting			
reactant	0.00		

Experimental: ACS Catal. 2016, 6, 2802-2810 DOI: 10.1021/acscatal.6b00189

An 810 mg portion (6.9 mmol) of 1,6-hexanediol was mixed in a Premex steel autoclave with 31 mg of chlorocarbonylhydrido[4,5-bis(dicyclohexylphosphinomethyl)acridine]ruthenium(II) and 20 mL of toluene. The autoclave was closed, cooled to 0 °C, and pressurized for 1 h with ammonia gas (\sim 5 bar). The autoclave was heated to 155 $^\circ$ C and stirred for 16 h. After the mixture was cooled, the solvent was removed in vacuo and the product mixture analyzed by NMR spectroscopy with naphthalene as internal standard. The amount of 1,6-hexanediamine in the crude mixture was 88% on the basis of used 1,6-hexanediol. After Kugelrohr distillation 660 mg of the product was obtained as colorless crystals.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	Ru
50-500 years	Amber Flag	Р
+500 years	Green Flag	

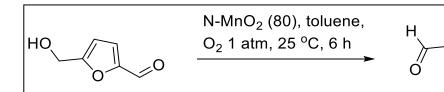
Energy (First Pass)		Tick
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	x

Batch/flow	Tick	
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	×
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching		
filtration		
centrifugation		
crystallisation	Green Flag	x
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous	Ambor Flag	
solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

Health & safety				List substances and H-codes	List substances and H-codes	List substance
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	NH3 gas H280, H314, H331,	Toluene H225 - H304 - H315 -	
			flagged H codes	H410	H336 - H361d - H373 - H412	Ru complex H
Explosive thermal	H230, H240, H250	H241	present then green flag			
runaway						
Toxic	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361, H371,				
	H372	H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						


Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

nces and H-codes H315, H319, H335

Bio-based approach: Step A

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume (cm3)	Density (g ml⁻¹)	Mass (g)
5-HMF	0.060	126.11	0.0005	N-MnO2(80)	0.150	oxygen gas	4.12	toluene	2.00	0.87	1.73						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	0.06	126.11			0.15		4.12				1.73		0.00				0.00

	Step	Cumulative
Yield	99.9	99.9
Conversion	100.0	/
Selectivity	99.9	
AE	98.4	98.4
RME	98.3	98.3
PMI total	102.7	102.7
PMI Reaction	102.7	102.7
PMI reactants, reagents, catlyst	73.3	73.3
PMI reaction solvents	29.4	29.4
PMI Workup	0.0	0.0
PMI Workup chemical	0.0	0.0
PMI workup solvents	0.0	0.0

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	toluene
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	х
Use of stoichiometric quantities of reagents	Amber Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	х
catalyst/enzyme not recovered	Amber Flag	

	Mass	MW	Mol
Product	0.059	124.09	0.00048
	mass		
Unreacted limiting reactant			

Experimental:

Qingping Ke, Yangxin Jin, Fei Ruan, Minh Ngoc Ha, Dandan Li, Peixin Cui, Yali Cao, Hao Wang, Tongtong Wang, Van Noi Nguyen, Xinya Han, Xi Wang, Ping Cui, Boosting the activity of catalytic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran over nitrogen-doped manganese oxide catalysts, Green Chem., 2019,21, 4313-4318, https://doi.org/10.1039/C9GC01041F

The mixtures of HMF (60 mg, 0.5 mmol), N-MnO2 (80) catalyst (150 mg), and toluene (2 mL) were added in a 10 mL Schlenk tube at 25 ± 2 °C for 6 h, the oxygen with flux of 8 mL/min was bubbled in the tube by Internal pipeline. Afterwards, the catalyst was separated from the mixture by filtration. The crude products without further purification, and their reactant conversions and product selectivities were determined by a chromatograph-mass spectrometer (Agilent 7890B, USA), and 1H NMR spectra recorded on a BrukerALX400 spectrometer operating at 400 MHz.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	Mn
50-500 years	Amber Flag	
+500 years	Green Flag	

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	x
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

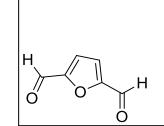
Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	Х

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	x
Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (< 140 °C at atmospheric solvent exchange, quenching into aqueous	Green Flag	X
solvent	Amber Flag	
chromatography/ion exchange high temperature	Red Flag	

Health & safety				List substances and H-codes	List substances and H-codes	List substance
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes present		MnO2 H302 + H332, H373	Oxygen gas
Explosive thermal	H230, H240, H250	H241	then green flag		Toluene H225 - H304 - H315 -	
runaway					H336 - H361d - H373 - H412	
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						

Use of chemicals of environmental concern		List substances of very high concern
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

as H270 - H280


Bio-based approach: Step B

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass (g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)								solvent		(g ml⁻¹)		chemical		solvent	(cm3)	(g ml⁻¹)	
DFF	0.031	124.09	0.00025	Co/ZrO2	0.030	N-butylamine	0.055	MeOH	3.80	0.79	3.00			DCM	5.00	1.33	6.65
ammonia gas	0.2	17.03	0.01251								0.00			water	5.00	1.00	5.00
hydrogen gas	0.08	2.02	0.04								0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
											0.00						0.00
Total	0.33	143.14			0.03		0.055				3.00		0.00				11.65

Step

Cumulative

Co/ZrO₂, N-butylamine (3 equiv.) NH₃ (0.6 MPa), H₂ (2 MPa) MeOH, 100 °C, 10 h H_2N

	Jicp	cumulative
Yield	94.9 🔵	94.8
Conversion	100.0	/
Selectivity	94.9	/
AE	88.1 🔴	86.9
RME	9.1	9.10
PMI total	503.8	609.28
PMI Reaction	114.2	219.65
PMI reactants,		
reagents, catlyst	13.8	88.78
PMI reaction		
solvents	100.4	130.872
PMI Workup	389.6	389.632
PMI Workup		
chemical	0.0	0.000
PMI workup		
solvents	389.6	389.632

Solvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH,	
	BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		MeOH, water
Problematic solvents: (acceptable	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe,	
only if substitution does not offer	THF, heptane, Me-cyclohexane, toluene, xylene, MTBE,	
advantages)	cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
Hazardous solvents: These solvents	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA,	
have significant health and/or safety	NMP, methoxyethanol, hexane	
concerns.		DCM
Highly hazardous solvents: The	Et_2O , Benzene, CCl_4 , chloroform, DCE, nitromethane, CS_2 , HMPA	
solvents which are agreed not to be		
used, even in screening		

Catalyst/enzyme (First Pass)		Tick
Catalyst or enzyme used, or reaction takes place without any catalyst/reagents.	Green Flag	x
Use of stoichiometric quantities of reagents	Amber Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	х
catalyst/enzyme not recovered	Amber Flag	

	Mass	MW	Mol
Product	0.030	126.15	0.00024
	mass		
Unreacted limiting reactant			

Experimental:

Haifeng Qi, Fei Liu, Leilei Zhang, Lin Li, Yang Su, Jingyi Yang, Rui Hao, Aiqin Wang, Tao Zhang, Modulating trans-imination and hydrogenation towards the highly selective production of primary diamines from dialdehydes, Green Chem., 2020,22, 6897-6901, DOI https://doi.org/10.1039/D0GC02280B

In the typical reaction for reductive amination of dialdehydes, 0.25 mmol 2,5-diformylfuran (DFF) (Bidepharm), 0.75 mmol butylamine, 30 mg catalyst, and 3 g methanol were put into an autoclave (Parr reactor with a volume of 50 mL). The autoclave was purged with NH3 for three times, and charged with 0.6 MPa NH3 and 2 MPa H2 at room temperature. After sealing the autoclave, the reaction mixture was stirred at a rate of 800 r/min and heated at 373 K for 10 h with continuous stirring. After the reaction, the liquid-phase products were analyzed with a GC system (Agilent 7890A) equipped with a HP-5 column (30 m × 0.25 um × 0.25 mm i.d) and a FID detector by using dodecane as an internal standard. After the typical reaction, the Co/ZrO2 catalyst was removed by centrifugation, and the upper liquid was distilled by

rotatory evaporator. Then, 5 ml CH2Cl2 and 5 ml H2O were add to the residue, and the BAMF was extracted in H2O phase. The pure BAMF solid was obtained by recrystallization

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Co, Zr
+500 years	Green Flag	

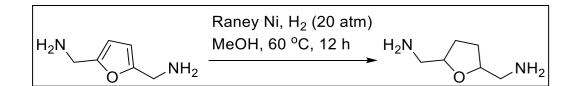
Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	х
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	х

		Tick
Reaction run at reflux	Red Flag	x
Reaction run 5°C or more below the solvent boiling point	Green Flag	

Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/	Green Flag	x
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous solvent	Amber Flag	
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag	

Health & safety				List substances and H-codes	List substances and H-codes	List substance
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber flagged	NH3 gas H280, H314, H331,		
			H codes present then green	H410	Hydrogen gas H220 - H280	
Explosive thermal	H230, H240, H250	H241	flag	MeOH H225 - H301 + H311 +		
runaway				H331 - H370		
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						


Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

ances and H-codes

Bio-based approach: Step C

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction	Volume (cm ³)	Density	Mass (g)	Work up	Mass (g)	Workup	Volume	Density	Mass (g)
Reactant First)									solvent		(g ml ⁻¹)		chemical		solvent	(cm3)	(g ml⁻¹)	
FDA	0.127	126.16	0.0010	Raney Ni	0.120				MeOH	5.00	0.79	3.95						0.00
hydrogen gas	0.050	2.02	0.02450									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	0.18	128.18			0.12		0.00					3.95		0.00				0.00

0.00		
	Step	Cumulative
Yield	88.5 🔵	83.9
Conversion	100.0	/
Selectivity	88.5	
AE	101.6 🔴	88.4
RME	65.7	8.03
PMI total	36.6	702.57
PMI Reaction	36.6	275.99
PMI reactants,		
reagents, catlyst	2.6	98.66
PMI reaction		
solvents	34.1	177.334
PMI Workup	0.0	426.580
PMI Workup		
chemical	0.0	0.000
PMI workup		
solvents	0.0	426.580

olvents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
		MeOH
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me- THF	
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
Highly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place	Green	X
without any catalyst/reagents.	Flag	Х
Use of stoichiometric quantities of reagents	Amber	
Use of stolenometric quantities of reagents	Flag	
Use of reagents in excess	Red Flag	

		Tick
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

U	nr

Experimental: Peng Li, Armin T. Liebens, A process for producing a tetrahydrofuran compound comprising at least two amine functional groups, WO2018113599A1, 2017

Experimental:

The first step involves the oxidation of HMF into DFF. The second step involves the amination of DFF into AM-THF, which is similar to 1,6 HDO amination into HMDA previously described. The last step from AM-THF to HMDA has also been described previously. Dealing with the first step, DFF may be produced industrially from the oxidation of pure HMF in an oxygenated solvent. Another option could start from a HMF mixture issued from the dehydration of HFS. The main advantage is that HMF is not extracted from the reaction mixture and the solvent used for the dehydration is also used for the oxygenation step. However, this one-pot reaction is more complicated. In our case, our choice was to model the first case starting from pure HMF. The oxidation (50 DC; atmospheric pressure; 8 h, MnO2 catalyst) was assumed to be realized in a batch reactor (dichloromethane : HMF weight ratio of 8 : 1), achieving a yield to DFF of 80%. The catalyst might be then filtered, regenerated and recycled. The solvent might be further recovered by distillation and recycled with a 99.9% yield. The separation of unreacted HMF would be performed by a precipitation step. After the reaction, the dissolved mixture would be cooled to precipitate DFF. The HMF is expected to remain soluble in the liquid phase. The recovered HMF might be dried for water removal and recycled.

The third step consists of an opening of the AM-THF molecular ring by reaction over a hydrodeoxygenation catalyst in the presence of a halogenated solvent. Such a reaction has been recently addressed by Rennovia patent. The patent claims the possibility of converting tetrahydrofuran 2,5-dicarboxilic acid (THFDCA) into linear adipic acid molecule with a yield of 99% over a Pd catalyst supported on silica beads. The reaction was realized at 160 C for 3 h under hydrogen iodide: THFDCA equimolar ratio. The reactor was pressurized with hydrogen until 48 atm. Here we have assumed that such reactions conditions and yield could be attained for the conversion of AM-THF into HMDA due to the very similar reaction mechanism. Finally, even if the Rennovia's patent does not tackle the separation step, we can reasonably propose that hydrogen iodide and H2 gas could be recovered after reaction by reactor depressurization, recompression and recycling into reactor. A recovery rate of 99.9% was assumed for hydrogen iodide as base case. After the reaction, the crude HMDA would be purified in a distillation column, crystallized and dried.

	Mass	MW	Mol
Product	0.116	130.19	0.00089
	mass		
eacted limiting			
reactant			

Into a 30ml autoclave, 2,5-bis(aminomethyl)furan (127 mg, 1.01 mmol) and doped Raney Ni (120 mg) from Ningbo HanYi were added and dissolved in methanol (5 ml). The mixture was stirred at 60°C under 20 atms H₂ atmosphere for 12 h. The reaction mixture, after completion of the reaction, was analysed by GC and 2,5-bis(aminomethyl) tetrahydrofuran was obtained in 89% yield.

Green Chem., 2015, 17, 4760-4772, DOI: 10.1039/c5gc01549a

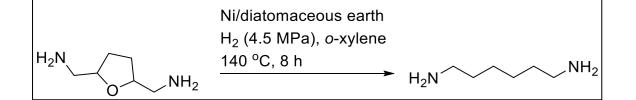
Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Ni
+500 years	Green Flag	

Energy (First Pass)	Tick	
Reaction run between 0 to 70°C	Green Flag	x
Reaction run between -20 to 0 or 70 to 140°C	Amber Flag	
Reaction run below -20 or above 140°C	Red Flag	

Batch/flow	Tick	
Flow	Green Flag	
Batch	Amber Flag	х

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5°C or more below the solvent boiling point	Green Flag	x
Work Up		List
quenching filtration centrifugation crystallisation Low temperature distillation/evaporation/ sublimation (< 140 °C at atmospheric	Green Flag	x
solvent exchange, quenching into aqueous solvent	Amber Flag	
chromatography/ion exchange high temperature multiple recrystallisation	Red Flag	

Health & safety				List substances and H-codes	List substances and H-codes	List substances a
	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber	MeOH H225 - H301 + H311 +		
			flagged H codes present	H331 - H370	Hydrogen gas H220 - H280	
Explosive thermal	H230, H240, H250	H241	then green flag			
runaway						
Toxic	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361,				
	H372	H371, H373				
Environmental	H400, H410, H411, H420	H401, H412				
implications						


_	Use of chemicals of environmental concern	List substances of very high concern	
	Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	

s and H-codes

Bio-based approach: Step D

Yield, AE, RME, MI/PMI and OE

Reactant (Limiting Reactant First)	Mass (g)	MW	Mol	Catalyst	Mass (g)	Reagent	Mass	(g)	Reaction solvent	Volume (cm ³)	Density (g ml ⁻¹)	Mass (g)	Work up chemical	Mass (g)	Workup solvent	Volume (cm3)	Density (g ml ⁻¹)	Mass (g)
				Ni/diatomaceous														
2,5-diaminomethyltetrahydrofuran	0.140	130.19	0.0011	earth	0.050				o-xylene	5.00	0.88	4.40						0.00
hydrogen gas	0.037	2.02	0.01812									0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
												0.00						0.00
Total	0.18	132.21			0.05		0.00					4.40		0.00				0.00

0.00		
	Step	Cumulative
Yield	94.0 🔴	78.9
Conversion	98.0	/
Selectivity	95.9	
AE	87.9 🔴	77.9
RME	66.5	6.60
PMI total	39.3	875.55
PMI Reaction	39.3	367.11
PMI reactants,		
reagents, catlyst	1.9	118.33
PMI reaction		
solvents	37.4	248.781
PMI Workup	0.0	508.439
PMI Workup		
chemical	0.0	0.000
PMI workup		
solvents	0.0	508.439

vents (First Pass)		List solvents below
Preferred solvents	water, EtOH, nBuOH, AcOipr, AcOnBu, PhOMe, MeOH, tBuOH, BnOH, ethylene glycol, acetone, MEK, MIBK, AcOEt, sulfolane	
Problematic solvents: (acceptable only if substitution does not offer advantages)	DMSO, cyclohexanone, DMPU, AcOH, Ac2O, Acetonitrile, AcOMe, THF, heptane, Me-cyclohexane, toluene, xylene, MTBE, cyclohexane , chlorobenzene, formic acid, pyridine, Me-THF	
		o-Xylene
Hazardous solvents: These solvents have significant health and/or safety concerns.	dioxane, pentane, TEA, diisopropyl ether, DME, DCM, DMF, DMA, NMP, methoxyethanol, hexane	
ghly hazardous solvents: The solvents which are agreed not to be used, even in screening	Et ₂ O, Benzene, CCl ₄ , chloroform, DCE, nitromethane, CS ₂ , HMPA	

Catalyst/enzyme (First Pass)	Tick	
Catalyst or enzyme used, or reaction takes place without any	Green	Y
catalyst/reagents.	Flag	х
Use of stoichiometric quantities of reagents	Amber	
Use of stoichiometric quantities of reagents	Flag	
Use of reagents in excess	Red Flag	

	Tick	
Facile recovery of catalyst/enzyme	Green Flag	
catalyst/enzyme not recovered	Amber Flag	

	Mass	MW	Mol
Product	0.117	116.21	0.001
	mass		
Unreacted limiting reactant	0.003		

Experimental:

Xu, Jie; Xu, Yongming; Ma, Jiping; Jia, Xiuquan; Gao, Jin; Miao, Hong; Xia, Fei, Method for preparing aliphatic amine compound from furfurylamine compound by catalytic hydrogenolysis, From Faming Zhuanli Shenqing, 111100015, 05 May 2020.

Into a 10 mL reactor 0.14 g of 2,5-diaminomethyltetrahydrofuran, 0.05 g Ni/diatomaceous earth, 5 mL o-xylene were added; the reactor was filled with hydrogen to 4.5M Pa, under constant stirring. The reaction was carried out at 140 °C for 8.0 h. After the reaction was completed, it was cooled to room temperature. The reaction solution was centrifuged, and the supernatant was taken for gas chromatography analysis. The conversion rate of 2,5-diaminomethyltetrahydrofuran was 98%. The selectivity to 1,6-hexanediamine was 94%.

Supply remaining	Flag colour	Note element
5-50 years	Red Flag	
50-500 years	Amber Flag	Ni
+500 years	Green Flag	

Energy (First Pass)				
Reaction run between 0 to 70°C	Green Flag			
Reaction run between -20 to 0 or 70 to 140° C	Amber Flag	×		
Reaction run below -20 or above 140°C	Red Flag			

Batch/flow		Tick
Flow	Green Flag	
Batch	Amber Flag	x

		Tick
Reaction run at reflux	Red Flag	
Reaction run 5 [°] C or more below the solvent boiling point	Green Flag	Х

Work Up		List
quenching		
filtration		
centrifugation		
crystallisation	Green Flag	x
Low temperature distillation/evaporation/		
sublimation (< 140 °C at atmospheric		
solvent exchange, quenching into aqueous		
solvent	Amber Flag	
chromatography/ion exchange		
high temperature	Red Flag	
multiple recrystallisation		

lealth & safety				List substances and H-codes	List substances and H-codes	List substances and H-codes
· · · · · ·	Red Flag	Amber Flag	Green Flag			
Highly explosive	H200, H201, H202, H203	H205, H220, H224	If no red or amber			
			flagged H codes		Hydrogen gas H220 - H280	
Explosive thermal runaway	H230, H240, H250	H241	present then green flag			
Тохіс	H300, H310, H330	H301, H311, H331,				
Long Term toxicity	H340, H350, H360, H370,	H341, H351, H361, H371,				
	H372	H373				
Environmental implications	H400, H410, H411, H420	H401, H412				
-						

Use of chemicals of environmental concern	List substances of very high concern	
Chemical identified as Substances of Very High Concern by ChemSec which are utilised	Red Flag	