Supplementary Material for

Multiscale exploration of lignin dissolution mechanism based on novel

ternary deep eutectic solvents incorporating p-hydroxybenzoic acid

Hanwen Ge^a; Jiahui Wei^a; Shenglin Wang^a; Zexu Yan^a; Mingzhe Jiang^{a,b}; Lingxiao

Zhu ^a; Chao Liu ^{c,d,e}; Bin Li ^{c,d,e}; Caoxing Huang ^f; Huanfei Xu ^{a,*}

^a College of Chemical Engineering, Qingdao University of Science and Technology,

Qingdao, 266042, PR China

^b Department of Chemical Engineering, Gaomi Campus of Qingdao University of Science and Technology, Weifang, 261500, PR China

^c CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess

Technology, Chinese Academy of Sciences, Qingdao 266101, PR China

^d Shandong Energy Institute, Qingdao 266101, PR China

^e Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China

^f Co-Innovation Center for Efficient Processing and Utilization of Forest Resources,

College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR

China

* Corresponding author: <u>xuhuanfeixiaotu@163.com</u>

Content

1. Experimental sessions	4
1.1 Chemical composition analysis	4
1.2 Analysis methods	5
2. Tables and Figures	7
2.1 Tables	7
Table S1 Detailed information on the chemical components of DES	7
Table S2 Chemical composition and pretreatment performance of samples	8
Table S3 Physical property parameters of different DES	9
Table S4 Semiquantitative analysis of functional group in lignin	10
Table S5 RESP atomic charge of lignin dimer molecule	11
Table S6 RESP atomic charge of Ch ⁺ , LA and PB	18
Table S7 Assignments of ¹³ C- ¹ H correlated signals in the HSQC spectra of the	e lignin from
xylose residue	20
2.2 Figures	21
Fig. S1 Two-dimensional molecular structure diagram of lignin dimer	21
Fig. S2 Root mean square deviation (RMSD) of molecular dynamics simulation	22
Fig. S3 Electrostatic potential area distribution range plots of DES components.	23
Fig. S4 Electrostatic potential area distribution range plots of lignin dimer	24
Fig. S5 Fukui function and orbital-weighted dual descriptor plots of ATMAC	25
Fig. S6 Fukui function and orbital-weighted dual descriptor plots of ChCl	26
Fig. S7 Fukui function and orbital-weighted dual descriptor plots of EG	27
Fig. S8 Fukui function and orbital-weighted dual descriptor plots of LA	
Fig. S9 Fukui function and orbital-weighted dual descriptor plots of PB	29
Fig. S10 Fukui function and orbital-weighted dual descriptor plots of 4-O-5	
Fig. S11 Fukui function and orbital-weighted dual descriptor plots of 5-5	31
Fig. S12 Fukui function and orbital-weighted dual descriptor plots of β -1	
Fig. S13 Fukui function and orbital-weighted dual descriptor plots of β -5	
Fig. S14 Fukui function and orbital-weighted dual descriptor plots of β - β	

Fig. S15 Fukui function and orbital-weighted dual descriptor plots of β -O-4	35
Fig. S16 Percentage of H-bonds between DES components and different lignin dimer	36

1. Experimental sessions

1.1 Chemical composition analysis

The component analysis was based on the acid hydrolysis method of The National Renewable Energy Laboratory (NREL). A sample of 1 g of absolute dry mass was weighed into a pressure flask, and 3 mL of sulfuric acid (mass fraction 72%) was immediately added. The pressure flask was then placed in a 30°C water bath oscillator for a duration of 60 minutes to ensure complete hydrolysis of the raw material. After the concentrated acid hydrolysis, 84 mL of deionized water was added to the pressure flask and mixed evenly, diluting the sulfuric acid concentration to 4%. The pressure flask was sealed and reacted in an autoclave at 121 °C for 60 min. After the reaction, the pressure flask was cooled to room temperature. After the two-step acid hydrolysis, the residual undissolved solid consists of acid-insoluble lignin (AIL). The formula for calculating the content of AIL is presented as follows:

$$AIL = \frac{m_{final}}{m_{initial}} \times 100\%$$
⁽¹⁾

Where, $m_{initial}$ is absolute dry mass of raw material (g); m_{final} is mass of the freeze-dried sample after DES treatment (g).

The content of acid-soluble lignin (ASL) was quantified using ultraviolet spectrophotometry. The ultraviolet spectrophotometer (UV-Vis, 756S, Lengguang Technology, China) was powered on, adjusted to the required wavelength of 320 nm, and allowed to stabilize for 30 minutes. Took 2 mL of the supernatant of the acid-hydrolyzed sample and diluted it until the absorbance of the ultraviolet spectrophotometer was below 1 A at the time of initial detection. With deionized water as blank sample, the UV-Vis was set to zero, and then the sample absorbance was detected. The calculation formula of ASL content is as follows:

$$ASL = \frac{A_{sample}Vdf}{\lambda \varepsilon_{Lignin} m_{sample}} \times 100\%$$
⁽²⁾

Where, A_{sample} is absorbance (A); V is acidolysis liquid volume (L); df is dilution ratio; λ is light path (cm); ε_{Lignin} is lignin absorptivity, and its value is 30 L/(g·cm). m_{sample} is mass of the sample (g).

The calculation formula of lignin component content in raw materials and DES treated samples is as follows:

$$Total Lignin = (ASL + AIL) \times 100\%$$
(3)

After DES treatment, the calculation formula of the delignification rate of the sample is as follows:

Delignification

$$= (1 - \frac{Lgnin \ content \ in \ solid \ residue}{Lignin \ content \ in \ xylose \ residue \ (g) \times Solid \ recovery}) \times 100\%$$
(4)

1.2 Analysis methods

The pH value of DESs were measured using a pH meter (PHS-3C, LeiCi, China). The electrode was immersed in a container holding 10 mL of the DES, and the data were recorded after the pH meter had fully stabilized.

The ORP of DESs were measured using a pH meter (PHS-3C, LeiCi, China). The electrode was immersed in a container holding 10 mL of the DES, and the data were recorded after the ORP potential had fully stabilized.

The conductivity of DESs were measured using a benchtop conductivity meter (DDS-307, LeiCi, China). The conductivity electrode was immersed in a container holding 10 mL of DES for measurement, and the data were recorded after the conductivity meter had fully stabilized.

The viscosity of DESs were measured by a rotary viscometer (DV-79, Pingxuan, China). 15 mL of DES to be measured was added to the rotary viscometer, a suitable rotor was selected for viscosity measurement, and the data was recorded after the measurement value of the viscometer was stable.

The functional group changes of DES, raw materials, and DES treated samples were analyzed using Fourier transform infrared spectroscopy (FT-IR, Nicolet iS10, Thermo Fisher Scientific, USA). The infrared region range of FT-IR is 400-4000 cm⁻

¹, and the solid powder is detected and analyzed by KBr tablet method. The liquid sample pool method was used to detect and analyze the liquid.

The thermal stability of the raw material and DES treated samples were measured using thermogravimetric analysis (TGA 8000, PerkinElmer, USA). Approximately 5 mg of sample was placed in an alumina crucible and heated from ambient temperature to 600 °C with a heating rate of 10 °C/min.

The morphological features of the raw material and DES treated samples were analyzed using transmission electron microscope (TEM, JEM2100, JEOL, Japan), and TEM images were captured at an acceleration voltage of 200 kV.

70 mg of lignin samples were dissolved in DMSO-d₆. Prior to the characterization, the samples were sufficiently ultrasonicated to enable the lignin samples to dissolve in DMSO-d₆. 2D-heteronuclear single quantum correlation nuclear magnetic resonance (2D-HSQC NMR, Bruker Biospin AVANCE III HD 600 MHz, Switzerland) spectroscopy was employed to acquire the NMR spectra of lignin samples at 25°C. The acquisition parameters for the 2D ¹H⁻¹³C HSQC spectrum were set as follows: 190 ppm spectral width in F1 (¹³C) dimension with 256 data points and 12 ppm spectral width in F2 (¹H) dimension with 1024 data points, a 1.0 s pulse delay (D1), and 128 scans (NS).

2. Tables and Figures

2.1 Tables

DES	Molar	HBA		HBD			
	ratio	Abbreviation	CAS	Abbreviation	CAS	Abbreviation	CAS
ChCl-EG	1:2	ChCl	67-48-1	EG	107-21-1	\	\
ChCl-LA	1:2	ChCl	67-48-1	LA	50-21-5	\	\
ATMAC-EG	1:2	ATMAC	1516-27-4	EG	107-21-1	\	\
ATMAC-LA	1:2	ATMAC	1516-27-4	LA	50-21-5	\	\
ChCl-EG-PB	1:2:0.5	ChCl	67-48-1	EG	107-21-1	PB	99-96-7
ChCl-LA-PB	1:2:0.5	ChCl	67-48-1	LA	50-21-5	PB	99-96-7
ATMAC-EG-PB	1:2:0.5	ATMAC	1516-27-4	EG	107-21-1	PB	99-96-7
ATMAC-LA-PB	1:2:0.5	ATMAC	1516-27-4	LA	50-21-5	PB	99-96-7

Table S1 Detailed information on the chemical components of DES.

\- Not available.

Samples	Molar	Solid recovery	ASL	AIL	Lignin	Delignification
	ratio	(%)	(%)	(%)	(%)	(%)
Raw material	\	\	2.01±0.02	$17.40{\pm}0.78$	19.41±0.77	\
ChCl-LA	1:2	68.24 ± 0.84	1.40 ± 0.13	27.88 ± 0.81	29.28±0.67	33.38±2.23
ChCl-LA-PB	1:2:0.5	77.78 ± 5.05	0.98 ± 0.09	18.02 ± 1.17	19.01±1.13	61.91±3.62
ChCl-EG-PB	1:2:0.5	75.54 ± 3.27	1.28 ± 0.07	22.26±1.20	$23.54{\pm}1.24$	51.42±4.67
ATMAC-LA-PB	1:2:0.5	70.78 ± 2.90	1.16±0.04	22.27±1.01	23.44±0.97	48.44 ± 3.85
ATMAC-EG-PB	1:2:0.5	67.10±1.97	1.30 ± 0.07	21.79±1.05	23.09±1.10	46.55±0.93

Table S2 Chemical composition and pretreatment performance of samples.

ASL-Acid solution lignin.

AIL-Acid insoluble lignin.

\- Not available.

Samples	Molar ratio	pН	Viscosity	ORP	Conductivity
			(mPa·s)	(mV)	(µS/cm)
ChCl-LA	1:2	1.01	355	60.7	2340
ChCl-EG	1:2	3.55	204	34.6	7460
ATMAC-LA	1:2	1.19	343	53.6	1903
ATMAC-EG	1:2	3.93	183	21.5	8160
ChCl-LA-PB	1:2:0.5	0.46	387	268	1101
ChCl-EG-PB	1:2:0.5	2.44	270	108	2660
ATMAC-LA-PB	1:2:0.5	0.53	382	161	2670
ATMAC-EG-PB	1:2:0.5	2.5	267	14.3	4160

 Table S3 Physical property parameters of different DES.

ORP-Oxidation-reduction potential.

Samples	A ₁₁₆₄ /A ₁₅₁₃	A ₈₃₄ /A ₁₅₁₃	
Raw Material	0.950	1.103	
ChCl-LA	0.961	1.101	
ChCl-LA-PB	0.968	1.101	
ChCl-EG-PB	0.893	1.077	
ATMAC-LA-PB	0.973	1.039	
ATMAC-EG-PB	0.938	1.128	

Table S4 Semiquantitative analysis of functional group in lignin.

Lignin dimer	Residue	Туре	Atom name	RESP charge
4-O-5	1	CG2R61	С	-0.4016158011
	2	CG2R61	С	0.4380994856
	3	CG2R61	С	-0.1775717242
	4	CG2R61	С	0.4369249228
	5	CG2R61	С	-0.3954923813
	6	CG2R61	С	-0.0985670030
	7	HGR61	Н	0.1754736573
	8	HGR61	Н	0.1728140663
	9	HGR61	Н	0.1524435437
	10	OG301	0	-0.1669184289
	11	CG2R61	С	0.0782726506
	12	CG2R61	С	-0.3227003077
	13	CG2R61	С	0.1984453597
	14	CG2R61	С	0.1797754780
	15	HGR61	Н	0.1691581343
	16	CG2R61	С	0.0959334179
	17	CG2R61	С	-0.2187237423
	18	HGR61	Н	0.0919041862
	19	OG311	0	-0.4573024090
	20	HGP1	Н	0.3444589477
	21	OG301	0	-0.1932656699
	22	OG301	0	-0.2193694496
	23	OG301	0	-0.2204311489
	24	CG331	С	-0.1025751356
	25	HGA3	Н	0.0882607127
	26	HGA3	Н	0.0882607127
	27	HGA3	Н	0.0882607127
	28	CG331	С	-0.0802108222
	29	HGA3	Н	0.0747175478
	30	HGA3	Н	0.0747175478
	31	HGA3	Н	0.0747175478
	32	CG331	С	-0.0978749264
	33	HGA3	Н	0.0784967981
	34	HGA3	Н	0.0784967981
	35	HGA3	Н	0.0784967981
	36	CG2DC1	С	-0.2502539879
	37	HGA4	Н	0.1404411446
	38	CG2DC1	С	-0.2549859698
	39	HGA4	Н	0.1173641565
	40	CG321	С	0.4109493904
	41	HGA2	Н	0.0024243554
	42	HGA2	Н	0.0024243554

 Table S5 RESP atomic charge of lignin dimer molecule.

	43	OG311	Ο	-0.6617029243
	44	HGP1	Н	0.3878294039
5-5	1	CG2R61	С	0.1532435117
	2	CG2R61	С	-0.4569641267
	3	CG2R67	С	0.1661554857
	4	CG2R61	С	0.0334170730
	5	CG2R61	С	0.2366278552
	6	CG2R61	С	-0.3814925174
	7	HGR61	Н	0.1837858830
	8	HGR61	Н	0.1828648466
	9	CG2R67	С	0.1775531706
	10	CG2R61	С	-0.4623712970
	11	CG2R61	С	0.0243536782
	12	CG2R61	С	0.1560750548
	13	HGR61	Н	0.1850115143
	14	CG2R61	С	0.2442938897
	15	CG2R61	С	-0.3898518463
	16	HGR61	Н	0.1857301918
	17	OG311	0	-0.3995467182
	18	HGP1	Н	0.3136766267
	19	OG311	0	-0.4022515217
	20	HGP1	Н	0.3143911847
	21	OG301	0	-0.2106209128
	22	OG301	0	-0.2096463904
	23	CG331	С	-0.0721930600
	24	HGA3	Н	0.0742186389
	25	HGA3	Н	0.0742186389
	26	HGA3	Н	0.0742186389
	27	CG331	С	-0.0749410219
	28	HGA3	Н	0.0751737255
	29	HGA3	Н	0.0751737255
	30	HGA3	Н	0.0751737255
	31	CG321	С	0.0460621935
	32	HGA2	Н	0.0327493797
	33	HGA2	Н	0.0327493797
	34	CG321	С	0.0400353231
	35	HGA2	Н	0.0346067865
	36	HGA2	Н	0.0346067865
	37	CG2D1	С	-0.0552796397
	38	HGA4	Н	0.1159145875
	39	CG2D2	С	-0.5367415300
	40	HGA5	Н	0.1960846615
	41	HGA5	Н	0.1960846615
	42	CG2D1	С	-0.0541101087

43	HGA4	Н	0.1157711066
44	CG2D2	С	-0.5354152426
45	HGA5	Н	0.1957020040
46	HGA5	Н	0.1957020040
1	CG2R61	С	0.2159476807
2	CG2R61	С	-0.1890053109
3	CG2R61	С	-0.2515950291
4	CG2R61	С	-0.0747763492
5	CG2R61	С	-0.2539309732
6	CG2R61	С	0.1924196995
7	HGR61	Н	0.1663134660
8	HGR61	Н	0.1215751789
9	HGR61	Н	0.1475415823
10	CG311	С	0.1974812161
11	HGA1	Н	-0.0065336742
12	CG311	С	0.1455078448
13	HGA1	Н	0.0219756006
14	CG2R61	С	0.0856458301
15	CG2R61	С	-0.2544491682
16	CG2R61	С	-0.2318606518
17	CG2R61	С	0.2488668063
18	HGR61	Н	0.1310367256
19	CG2R61	С	-0.2876958328
20	HGR61	Н	0.1563314191
21	CG2R61	С	0.1883467641
22	HGR61	Н	0.1521209619
23	CG321	С	0.1164373478
24	HGA2	Н	0.0154309503
25	HGA2	Н	0.0154309503
26	CG321	С	0.2528645802
27	HGA2	Н	-0.0235117414
28	HGA2	Н	-0.0235117414
29	OG311	0	-0.6578184309
30	HGP1	Н	0.4157128274
31	OG311	0	-0.6805394011
32	HGP1	Н	0.4092528246
33	OG311	0	-0.5121076326
34	HGP1	Н	0.3972341535
35	OG311	0	-0.5110192334
36	HGP1	Н	0.3799498625
37	OG301	0	-0.3015295894
38	OG301	0	-0.2846602396
39	CG331	С	0.0516917300
40	HGA3	Н	0.0471692990

41	HGA3	Н	0.0471692990
42	HGA3	Н	0.0471692990
43	CG331	С	0.0547303626
44	HGA3	Н	0.0410635789
45	HGA3	Н	0.0410635789
46	HGA3	Н	0.0410635789
1	CG2RC0	С	0.1195400651
2	CG2RC0	С	-0.0723114070
3	CG2R61	С	0.4147408959
4	CG2R61	С	-0.3473647075
5	CG2R61	С	-0.1662650591
6	CG2R61	С	-0.2708414350
7	HGR61	Н	0.1641135707
8	HGR61	Н	0.1400195540
9	HGR61	Н	0.1606269996
10	CG3C51	С	-0.1503534458
11	HGA1	Н	0.0448135374
12	CG3C51	С	0.7635138124
13	HGA1	Н	-0.0749921852
14	OG3C51	0	-0.4052131708
15	CG2R61	С	-0.7091366313
16	CG2R61	С	0.5256794509
17	CG2R61	С	0.4931541915
18	CG2R61	С	-0.5462089857
19	CG2R61	С	-0.6075541317
20	CG2R61	С	0.5077344242
21	HGR61	Н	0.2242676054
22	HGR61	Н	0.1847752489
23	CG321	С	0.3297401973
24	HGA2	Н	-0.0547219399
25	HGA2	Н	-0.0547219399
26	OG301	0	-0.2983211963
27	OG301	0	-0.1128536817
28	OG301	0	-0.2467760282
29	OG311	0	-0.6075067331
30	HGP1	Н	0.3806133213
31	OG311	0	-0.5647982397
32	HGP1	Н	0.4135813070
33	CG331	С	-0.1345552677
34	HGA3	Н	0.0815099166
35	HGA3	Н	0.0815099166
36	HGA3	Н	0.0815099166
37	CG331	С	-0.0824470367
38	HGA3	Н	0.0747471220

39	HGA3	Н	0.0747471220
40	HGA3	Н	0.0747471220
41	CG331	С	0.0951158924
42	HGA3	Н	0.0253806775
43	HGA3	Н	0.0253806775
44	HGA3	Н	0.0253806775
45	CG2RC0	С	0.1195400651
1	CG3C52	С	-0.0340327349
2	OG3C51	Ο	-0.3335320208
3	CG3C51	С	0.1770702417
4	CG3RC1	С	-0.0237130884
5	CG3RC1	С	-0.0610777771
6	HGA2	Н	0.0701736849
7	HGA2	Н	0.0701736849
8	HGA1	Н	0.0612115001
9	CG3C51	С	0.3447679999
10	CG3C52	С	0.2778890905
11	OG3C51	Ο	-0.4448085432
12	HGA1	Н	0.0227088881
13	HGA1	Н	0.0447540482
14	CG2R61	С	-0.1801049713
15	CG2R61	С	0.1511613105
16	CG2R61	С	-0.0390741363
17	CG2R61	С	0.3597483836
18	CG2R61	С	-0.3931715017
19	CG2R61	С	-0.0294397819
20	HGR61	Н	0.1111393267
21	HGR61	Н	0.1540795877
22	OG301	0	-0.3267436889
23	OG311	0	-0.3543230743
24	HGP1	Н	0.3032507046
25	OG301	0	-0.1596952712
26	CG331	С	0.1308061868
27	HGA3	Н	0.0195111996
28	HGA3	Н	0.0195111996
29	HGA3	Н	0.0195111996
30	CG331	С	-0.2101436824
31	HGA3	Н	0.1154128983
32	HGA3	Н	0.1154128983
33	HGA3	Н	0.1154128983
34	HGA2	Н	-0.0135808117
35	HGA2	Н	-0.0135808117
36	CG2R61	С	-0.2975694817
37	CG2R61	С	-0.1871886555

38	CG2R61	С	-0.0682601588
39	CG2R61	С	-0.2006840190
40	CG2R61	С	0.2724704291
41	CG2R61	С	0.1886283515
42	HGR61	Н	0.1635301409
43	HGR61	Н	0.1344845530
44	HGR61	Н	0.1383809825
45	HGA1	Н	0.0220401567
46	OG301	Ο	-0.3352527078
47	OG311	Ο	-0.4557279689
48	HGP1	Н	0.3735833973
49	CG331	С	0.1171104070
50	HGA3	Н	0.0225898459
51	HGA3	Н	0.0225898459
52	HGA3	Н	0.0225898459
1	CG2R61	С	-0.1162303511
2	CG2R61	С	-0.2777943054
3	CG2R61	С	-0.0610821212
4	CG2R61	С	-0.1972251167
5	CG2R61	С	0.1704439456
6	CG2R61	С	0.1794667893
7	HGR61	Н	0.1466114328
8	HGR61	Н	0.1571697107
9	HGR61	Н	0.1519328879
10	CG311	С	0.3770623740
11	HGA1	Н	0.0160136687
12	CG311	С	0.2450380700
13	HGA1	Н	-0.0406164694
14	CG321	С	0.0961324576
15	HGA2	Н	0.0345425100
16	HGA2	Н	0.0345425100
17	OG301	Ο	-0.3756613697
18	OG311	Ο	-0.6658557807
19	HGP1	Н	0.3959150692
20	OG311	0	-0.6217398119
21	HGP1	Н	0.4140235387
22	OG311	0	-0.4940996020
23	HGP1	Н	0.3595380203
24	OG301	Ο	-0.2381577909
25	CG331	С	-0.0681790598
26	HGA3	Н	0.0769972433
27	HGA3	Н	0.0769972433
28	HGA3	Н	0.0769972433
29	CG2R61	С	0.5119145418

β-Ο-4

30	CG2R61	С	-0.5523251497
31	CG2R61	С	-0.3788705293
32	CG2R61	С	0.5175779236
33	HGR61	Н	0.1912684365
34	CG2R61	С	-0.0777605953
35	HGR61	Н	0.1692251279
36	CG2R61	С	-0.3782310091
37	HGR61	Н	0.1382481101
38	HGR61	Н	0.1590015738
39	OG301	0	-0.3410304815
40	CG331	С	0.0902812514
41	HGA3	Н	0.0326392879
42	HGA3	Н	0.0326392879

Molecule	Residue	Туре	Atom name	RESP charge
Ch^+	1	CG334	С	-0.3427485572
	2	HGP5	Н	0.1876820890
	3	HGP5	Н	0.1876820890
	4	HGP5	Н	0.1876820890
	5	CG334	С	-0.4144232513
	6	HGP5	Н	0.2059417305
	7	HGP5	Н	0.2059417305
	8	HGP5	Н	0.2059417305
	9	CG334	С	-0.3423703244
	10	HGP5	Н	0.1875454494
	11	HGP5	Н	0.1875454494
	12	HGP5	Н	0.1875454494
	13	NG3P0	Ν	0.0468555347
	14	CG324	С	-0.0754922022
	15	HGP5	Н	0.1400792013
	16	HGP5	Н	0.1400792013
	17	CG321	С	0.2535724856
	18	HGA2	Н	0.0097575240
	19	HGA2	Н	0.0097575240
	20	OG311	0	-0.6082879348
	21	HGP1	Н	0.4397129923
LA	1	CG2O2	С	0.6434646576
	2	CG311	С	0.4342605151
	3	HGA1	Н	-0.0518923551
	4	OG2D1	0	-0.5624228138
	5	OG311	0	-0.5522838795
	6	HGP1	Н	0.4168535241
	7	OG311	0	-0.6457860737
	8	HGP1	Н	0.4026471905
	9	CG331	С	-0.3839657941
	10	HGA3	Н	0.0997083430
	11	HGA3	Н	0.0997083430
	12	HGA3	Н	0.0997083430
PB	1	CG2R61	С	0.4369576912
	2	CG2R61	С	-0.3558120676
	3	CG2R61	С	-0.0856409014
	4	CG2R61	С	-0.0275691125
	5	CG2R61	С	-0.1394322294
	6	CG2R61	С	-0.2422541519
	7	HGR61	Н	0.1564318660
	8	HGR61	Н	0.1550134575
	9	HGR61	Н	0.1524277279

Table S6 RESP atomic charge of Ch^+ , LA and PB.

10	HGR61	Н	0.1693832438
11	CG2O2	С	0.6516836956
12	OG2D1	0	-0.5507293125
13	OG311	0	-0.5546307912
14	HGP1	Н	0.4087543776
15	OG311	0	-0.6028071871
16	HGP1	Н	0.4282236940

iesiaae.		
Structure	$\delta_{ m C}/\delta_{ m H}(m ppm)$	Assignment
$\mathbf{B}_{\boldsymbol{\beta}}$	53.1/3.11	C_{β} -H _{β} in resinol substructures (B)
C_{β}	53.4/3.51	C_{β} -H _{β} in phenylcoumaran substructures (C)
-OCH ₃	55.7/3.73	C-H in methoxyls
A_{γ}	59.8/3.60	C_{γ} -H _{γ} in β -O-4 substructures
X_5	62.6/3.39	C ₅ -H ₅ β -D-xylopyranoside substructures (X)
C_{γ}	63.5/3.69	C_{γ} – H_{γ} in phenylcoumaran (C)
A'_{γ}	65.5/4.06	C_{γ} -H _{γ} in γ -acylated β -O-4' substructures (A')
A_{α}	72.2/5.08	C_{α} -H _{α} in β -O-4 substructures (A)
X_2	73.7/3.19	C ₅ -H ₅ β -D-xylopyranoside substructures (X)
S _{2,6}	103.8/6.69	C _{2,6} -H _{2,6} in syringyl units (S)
G_2	110.7/7.12	C ₂ -H ₂ in guaiacyl units (G)
FA_2	111.3/7.31	C ₂ -H ₂ in ferulate (FA)
G _{5e}	113.7/6.37	C _{5e} -H _{5e} in guaiacyl units (G)
G ₆	115.5/6.83	C ₆ -H ₆ in guaiacyl units (G)
FA ₆	118.3/6.78	C ₆ -H ₆ in ferulate (FA)
H _{2,6}	122.9/7.11	$C_{2,6}$ -H _{2,6} in <i>p</i> -hydroxyphenyl units (H)
pCA _{2,6}	128.3/7.08	$C_{2,6}$ -H _{2,6} in <i>p</i> -coumarate (PCA)
$pCA_{\alpha}+FA_{\alpha}$	144.9/7.57	C_{α} -H _{α} in <i>p</i> -coumarate (PCA) and ferulate (FA)

Table S7 Assignments of ¹³C-¹H correlated signals in the HSQC spectra of the lignin from xylose residue.

2.2 Figures

Fig. S1 Two-dimensional molecular structure diagram of lignin dimer: (a) 4-O-5; (b) β -1; (c) β -O-4; (d) β - β ; (e) β -5; (f) 5-5.

Fig. S2 Root mean square deviation (RMSD) of molecular dynamics simulation.

Fig. S3 Electrostatic potential area distribution range plots of DES components: (a) ATMAC; (b) ChCl; (c) LA; (d) EG; (e) PB (Blue: positive potential region; Red: negative potential region).

Fig. S4 Electrostatic potential area distribution range plots of lignin dimer: (a) 4-O-5; (b) β -1; (c) 5-5; (d) β -5; (e) β - β ; (f) β -O-4 (Blue: positive potential region; Red: negative potential region).

Fig. S5 Fukui function and orbital-weighted dual descriptor plots of ATMAC (Green: positive values; Cyan: negative values).

Fig. S6 Fukui function and orbital-weighted dual descriptor plots of ChCl (Green: positive values; Cyan: negative values).

Fig. S7 Fukui function and orbital-weighted dual descriptor plots of EG (Green: positive values; Cyan: negative values).

Fig. S8 Fukui function and orbital-weighted dual descriptor plots of LA (Green: positive values; Cyan: negative values).

Fig. S9 Fukui function and orbital-weighted dual descriptor plots of PB (Green: positive values; Cyan: negative values).

Fig. S10 Fukui function and orbital-weighted dual descriptor plots of 4-O-5 (Green: positive values; Cyan: negative values).

Fig. S11 Fukui function and orbital-weighted dual descriptor plots of 5-5 (Green: positive values; Cyan: negative values).

Fig. S12 Fukui function and orbital-weighted dual descriptor plots of β -1 (Green: positive values; Cyan: negative values).

Fig. S13 Fukui function and orbital-weighted dual descriptor plots of β -5 (Green: positive values; Cyan: negative values).

Fig. S14 Fukui function and orbital-weighted dual descriptor plots of β - β (Green: positive values; Cyan: negative values).

Fig. S15 Fukui function and orbital-weighted dual descriptor plots of β -O-4 (Green: positive values; Cyan: negative values).

Fig. S16 Percentage of H-bonds between DES components and different lignin dimer: (a) 4-O-5; (b) 5-5; (c) β -1; (d) β -5; (e) β - β ; (f) β -O-4.