Electronic Supplementary Information

Deoxygenative dual CO₂ conversions: methylenation and switchable *N*-formylation/*N*-methylation of tryptamines

Kazuto Takaishi,* Hajime Morishita, Kosuke Iwaki and Tadashi Ema*

Division of Applied Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Tsushima, Okayama 700-8530, Japan

Table of contents

1.	General information	S2
2.	Synthesis and characterization of 3a and 4a	S3
3.	X-ray crystal structures and conformational analysis	S 6
4.	Optimization of reaction conditions	S9
5.	Synthesis and characterization of 3b-l, 4b-l, 7, and 8	S11
6.	Isotope-labeling and control experiments	S24
7.	CO ₂ reduction with PhSiH ₃	S 30
8.	One-pot three-step synthesis	S 31
9.	DFT calculations	S35
10.	¹ H and ¹³ C NMR spectra	S43
11.	Coordinates of optimized structures	S113
12.	References	S142

1. General information

Instrumentation. Melting points were measured on a Yanaco melting point apparatus (uncorrected). Optical rotations were measured on a Horiba SEPA-300. IR spectra were recorded on a Shimadzu IRAffinity-1. NMR spectra were recorded on a JEOL JNM-ECS400 or a JNM-ECZ600R/S3. Data are reported as follows: chemical shifts in ppm using the residual solvent peak as an internal standard, integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quin = quintet, m = multiplet, br = broadened), and coupling constants (Hz). High-resolution mass spectra were performed on a JEOL JMS-700N (FAB and EI) or a Bruker ultrafleXtreme (ESI-TOF). TLC analyses were carried out on glass sheets coated with silica gel 60 F_{254} (AS ONE, 0.25 mm), and visualization was accomplished with UV light. Column chromatography was performed on silica gel (Fuji Silysia BW-127 ZH, 100–270 mesh). Preparative HPLC (GPC) was performed on a LC-5060 HPLC system (Japan Analytical Industry) using a JAIGEL-2HH (\emptyset 20 mm × 600 mm) (Japan Analytical Industry). Chiral HPLC analysis was performed on a LC-20AT/SPD-20A (Shimadzu) using a CHIRALPAK IA or a CHIRALPAK IC (Daicel).

Materials. Most reagents were purchased and used without further purification unless otherwise specified. Hydrosilanes were dried over molecular sieves 3Å. ¹³CO₂ (99%) was purchased from Taiyo Nippon Sanso Corporation. LiAlD₄ (98%) was purchased from Strem Chemicals to prepare PhSiD₃.^{S1} Substrates **2f**,^{S2} **2g**,^{S3} **2h**,^{S4} **2i**,^{S4} and **2j**^{S5} were synthesized according to the literature.

DFT calculations. The calculations were performed using Gaussian16, revision C01 at the B3LYP/6-31+G(d,p) level with the self-consistent reaction filed (SCRF) method (H₂O). M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2019.

2. Synthesis and characterization of 3a and 4a

Procedure for the synthesis of formyltryptoline 3a from CO₂ and tryptamine (2a) (Table 1, entry 4)

Catalyst **1** (3.0 mg, 1.4 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 µL, 2.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2a** (40.1 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The NMR yield was determined by using styrene as an internal standard (83%). The residue was purified by column chromatography (SiO₂, EtOAc/CHCl₃ = 1/1) to afford **3a** (39.8 mg, 199 µmol, 80%) as a colorless powder. ¹H NMR and ¹H-¹H NOESY spectra in CDCl₃ at 25 °C revealed that **3a** was present as an equilibrium mixture of the *Z*-form (80%) and the *E*-form (20%) (Fig. S1).

Mp 172–175 °C; **IR** (KBr) 3267, 2961, 2931, 2874, 1728, 1659, 1441, 1394, 1261, 1213, 1047, 1026, 802, 744 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.31 (s, 0.2H), 8.27 (s, 0.8H), 8.06 (br s, 0.8H), 7.93 (br s, 0.2H), 7.49 (d, *J* = 8.0 Hz, 0.2H), 7.47 (d, *J* = 7.9 Hz, 0.8H), 7.34 (d, *J* = 7.8 Hz, 1H), 7.22–7.09 (m, 2H), 4.76 (s, 1.6H), 4.61 (s, 0.4H), 3.93 (t, *J* = 5.9 Hz, 0.4H), 3.76 (t, *J* = 5.8 Hz, 1.6H), 2.92–2.82 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.8, 136.4, 136.3, 128.8, 128.7, 126.9, 126.8, 122.3, 122.1, 119.9, 119.7, 118.3, 118.0, 111.2, 111.1, 109.4, 108.0, 44.3, 43.9, 38.7, 38.6, 22.3, 20.9; **HR MS** (ESI[–]) Calcd for C₁₂H₁₁N₂O: 199.0877 [M – H][–]. Found: 199.0865.

Fig. S1 ¹H-¹H NOESY spectrum of **3a** (400 MHz, CDCl₃, 25 °C).

Procedure for the synthesis of methyltryptoline 4a from CO₂ and tryptamine (2a) (Table 1, entry 10)

Catalyst **1** (4.6 mg, 2.1 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (369 µL, 3.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2a** (40.1 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The NMR yield was determined by using styrene as an internal standard (82%). The residue was purified by column chromatography (SiO₂, CHCl₃/MeOH = 9/1 then 4/1) to afford **4a** (38.5 mg, 207 µmol, 83%) as a colorless powder. **4a** was characterized according to the literature.⁸⁶

Mp 201–203 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.75 (br s, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.30 (d, J = 7.4 Hz, 1H), 7.13 (td, J = 1.4, 7.4 Hz, 1H), 7.09 (td, J = 1.2, 7.4 Hz, 1H), 3.64 (s, 2H), 2.89–2.78 (m, 4H), 2.54 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 136.2, 131.8, 127.3, 121.4, 119.4, 118.1, 110.9, 108.1, 53.1, 52.3, 45.7, 21.6.

3. X-ray crystal structures and conformational analysis

Needle shaped colorless single crystals of **3a** were obtained by vapor diffusion of a THF/hexane solution. The data were collected by a Rigaku Varimax with Saturn diffractometer using multi-layer mirror monochromated Mo-*K* α radiation ($\lambda = 0.71073$ Å) at 200 K. A total of 21034 reflections (2943 independent reflections ($R_{int} = 0.0768$)) were measured. The structure was solved by the direct method (SHELXT) and refined by full-matrix least-squares on F^2 (SHELXL-2018/3). All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: C₁₂H₁₂N₂O; FW = 200.24, crystal size 0.15 mm × 0.04 mm × 0.03 mm, orthorhombic, $P2_12_12_1$, a = 6.0306(3) Å, b = 10.3023(6) Å, c = 16.1959(10) Å, $\alpha = 90^\circ$, $\beta = 90^\circ$, $\gamma = 90^\circ$, V = 1006.24(10) Å³, Z = 4, $D_c = 1.322$ g cm⁻³. The refinement converged to $R_1 = 0.1013$, $wR_2 = 0.1205$ (all data), GOF = 1.023. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 2413450.

Prism shaped colorless single crystals of **4a** were obtained by vapor diffusion of a THF/hexane solution. The data were collected by a Rigaku Varimax with Saturn diffractometer using multi-layer mirror monochromated Mo-*K* α radiation ($\lambda = 0.71073$ Å) at 100 K. A total of 18579 reflections (2840 independent reflections ($R_{int} = 0.1092$)) were measured. The structure was solved by the direct method (SHELXT) and refined by full-matrix least-squares on F^2 (SHELXL-2018/3). All non-hydrogen atoms were refined anisotropically, and all hydrogen atoms were placed using AFIX instructions. The crystal data are as follows: C₁₂H₁₄N₂O; FW = 186.25, crystal size 0.15 mm × 0.04 mm × 0.02 mm, monoclinic, P_{21}/n , a = 12.4491(7) Å, b = 6.2533(2) Å, c = 13.2178(7) Å, $\alpha = 90^\circ$, $\beta = 108.117(6)^\circ$, $\gamma = 90^\circ$, V = 977.97(9) Å³, Z = 4, $D_c = 1.265$ g cm⁻³. The refinement converged to $R_1 = 0.0822$, $wR_2 = 0.1525$ (all data), GOF = 1.023. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre with the deposition number CCDC 2413452.

Fig. S2 ORTEP drawing of X-ray crystal structures of (a) **3a** and (b) **4a**. The thermal ellipsoids are scaled to the 50% probability level.

The geometry of the formamide moiety of the X-ray structure of **3a** was the Z-form. In contrast, ¹H NMR spectum in CDCl₃ at 24 °C revealed that **3a** was present as an equilibrium mixture of the Z-form (80%) and the *E*-form (20%) (Scheme S1). On the basis of the Boltzmann distribution, the *Z/E* ratio corresponds to an energy difference of 0.8 kcal mol⁻¹. DFT calculations at the B3LYP/6-31+G(d,p) level also support the preference of the Z-form; (*Z*)-**3a** was found to be more stable than (*E*)-**3a** by 0.7 kcal mol⁻¹ (Fig. S3a). The geometry of the X-ray structure of **4a**, which includes a tetrahydropyridine ring with a half-chair conformation, adopted a pseudo-equatorial conformation rather than a pseudo-axial conformation. Although the ¹H NMR spectrum of **4a** suggested an averaged structure due to the rapid interconversion between the two conformer was more stable than the pseudo-axial conformer by 2.2 kcal mol⁻¹ (Fig. S3b), indicating that the pseudo-equatorial conformer was dominant even in solution.

Scheme S1 (a) An equilibrium between (*Z*)-3a and (*E*)-3a in CDCl₃ at 24 °C. (b) An equilibrium between the pseudo-equatorial and pseudo-axial conformers of 4a.

Fig. S3 DFT-optimized strucures of (a) 3a and (b) 4a at the B3LYP/6-31+G(d,p) level.

4. Optimization of reaction conditions

CO ₂	+	+ hydrosilane – + (X equiv) –		cat. 1 (0.07 mol%) 55 °C, 18 h no solvent		N H 3a	_N _ H +	N- N- H 4a	
							Yield	$d (\%)^b$	
			En	try	Hydrosilan	e X (equiv)	3 a	4a	
			-	1 ^{<i>c</i>}	PhSiH ₃	8	83	6	_
			2	2	MePhSiH ₂	12	65	16	
			3	3	Me ₂ PhSiH	24	0	0	
			4	1	PMHS	24	0	0	
			5	5	none	_	0	0	

Table S1 Optimization of hydrosilanes^a

^{*a*} Conditions: CO₂ (1 atm, balloon), hydrosilane (8–24 equiv), cat. **1** (3.0 mg, 1.4 μ mol), **2a** (0.25 mmol), AcOH (200 μ L), H₂O (100 μ L). ^{*b*} Determined by ¹H NMR using styrene as an internal standard. PMHS: polymethylhydrosiloxane. ^{*c*} Conditions of entry 4 in Table 1.

CO ₂	+	PhSiH ₃ (8 equiv)	cat. 1 (0.07 mol%) 55 °C, 18 h no solvent		N H 3a	,N	N N H 4a	
						Yield	$l (\%)^b$	
			Entry	A (μL)	B (μL)	3a	4 a	
			1^c	200	100	83	6	_
			2	100	100	67	12	
			3	100	50	75	0	
			4	300	100	72	11	
			5	300	150	74	14	

es ^a
2

^a Conditions: CO₂ (1 atm, balloon), PhSiH₃ (8 equiv), cat. **1** (3.0 mg, 1.4 μmol), **2a** (0.25 mmol).

^b Determined by ¹H NMR using styrene as an internal standard. ^c Conditions of entry 4 in Table 1.

^{*a*} Conditions: CO₂ (1 atm, balloon), PhSiH₃ (8 equiv), cat. **1** (3.0 mg, 1.4 μ mol), **2a** (0.25 mmol), acid (200 μ L), H₂O (100 μ L). ^{*b*} Determined by ¹H NMR using styrene as an internal standard. ^{*c*} Conditions of entry 4 in Table 1.

CO ₂ + PhSiH ₃ (8 equiv)		PhSiH ₃ (8 equiv)	cat. 1 (0.07 mol%) 55 °C, 18 h no solvent	+ N H 4a			
					Yie	$\mathrm{ld}(\%)^b$	-
			Entry	Additive	3 a	4 a	-
			1^c	H ₂ O	83	6	-
			2	MeOH	36	17	
			3	DMSO	27	38	
			4	MeCN	54	17	
			5	benzene	68	7	

Table S4 Optimization of additives^a

^{*a*} Conditions: CO₂ (1 atm, balloon), PhSiH₃ (8 equiv), cat. **1** (3.0 mg, 1.4 μ mol), **2a** (0.25 mmol), AcOH (200 μ L), additive (100 μ L). ^{*b*} Determined by ¹H NMR using styrene as an internal standard. ^{*c*} Conditions of entry 4 in Table 1.

5. Synthesis and characterization of 3b-l, 4b-l, 7, and 8

General procedure for the synthesis of formyltryptolines 3b-k

Catalyst 1 (3.0 mg, 1.4 μ mol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm, ca. 3.7 L) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 μ L, 2.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 μ L), AcOH (200 μ L), and tryptamine **2b**–**k** (250 μ mol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. After the NMR yields were determined using styrene as an internal standard, the main products were purified according to the procedures shown below.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 3/1) to afford **3b** (40.7 mg, 190 µmol, 76%) as a yellow powder.

Mp 158–161 °C; **IR** (KBr) 3202, 2910, 2735, 1655, 1487, 1437, 1393, 1234, 1194, 1171, 1042, 1030, 908, 872, 791, 756, 679, 629 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.28 (s, 0.2H), 8.26–8.18 (m, 1.6H), 8.11 (br s, 0.2H), 7.28 (s, 0.2H), 7.26 (s, 0.8H), 7.22 (d, *J* = 8.2 Hz, 0.8H), 7.21 (d, *J* = 8.1 Hz, 0.2H), 7.04–6.98 (m, 1H), 4.71 (s, 1.6H), 4.56 (s, 0.4H), 3.91 (t, *J* = 5.7 Hz, 0.2H), 3.72 (t, *J* = 5.6 Hz, 0.8H), 2.92–2.78 (m, 2H), 2.48 (s, 0.6H), 2.46 (s, 2.4H); ¹³C **NMR** (101 MHz, CDCl₃) δ 162.2, 161.8, 134.72, 134.66, 129.2, 129.0, 128.9, 128.8, 127.2, 127.1, 123.8, 123.6, 118.1, 117.8, 110.8, 110.7, 108.9, 107.5, 44.3, 43.9, 38.7, 38.6, 25.3, 22.3, 21.6, 20.9; **HR MS** (FAB⁺; NBA) Calcd for C₁₃H₁₄N₂O: 214.1101 [M]⁺. Found: 214.1105.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 3/1) to afford **3c** (44.9 mg, 195 µmol, 78%) as a yellow powder.

Mp 75–78 °C; **IR** (KBr) 3296, 2927, 2883, 1662, 1485, 1436, 1398, 1265, 1215, 1177, 1159, 1130, 1111, 1028, 804, 748 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.40 (br s, 1H), 8.24 (s, 0.2H), 8.23 (s, 0.8H), 7.21 (d, J = 8.7 Hz, 0.8H), 7.20 (d, J = 8.7 Hz, 0.2H), 6.92 (d, J = 2.4 Hz, 0.2H), 6.91 (d, J = 2.4 Hz, 0.8H), 6.85–6.80 (m, 1H), 4.70 (s, 1.6H), 4.51 (s, 0.4H), 3.89 (t, J = 5.8 Hz, 0.4H), 3.85 (s, 3H), 3.71 (t, J = 5.8 Hz, 1.6H), 2.83 (t, J = 5.7 Hz, 1.6H), 2.79 (t, J = 5.8 Hz, 0.4H); ¹³C **NMR** (101 MHz, CDCl₃) δ 162.2, 161.8, 154.3, 154.2, 131.5, 131.4, 129.7, 127.2, 112.1, 111.9, 111.8, 111.7, 109.0, 107.7, 100.42, 100.36, 56.04, 56.00, 44.3, 43.9, 38.8, 38.6, 22.3, 20.9; **HR MS** (ESI⁺) Calcd for C₁₃H₁₄N₂O₂Na: 253.0947 [M + Na]⁺. Found: 253.0947.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 3/1) to afford **3d** (35.6 mg, 128 µmol, 51%) as a pale yellow powder.

Mp 220–223 °C; **IR** (KBr) 3221, 2941, 2864, 1667, 1487, 1437, 1396, 1315, 1236, 1207, 1155, 1043, 997, 974, 907, 873, 810, 750, 658 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.30 (s, 0.8H), 8.25 (s, 0.2H), 8.16 (br s, 0.8H), 7.97 (br s, 0.2H), 7.61 (d, *J* = 1.7 Hz, 0.2H), 7.59 (d, *J* = 1.8 Hz, 0.8H), 7.24–7.28 (m, 1H), 7.21 (d, *J* = 8.6 Hz, 0.8H), 7.20 (d, *J* = 8.6 Hz, 0.2H), 4.75 (s, 1.6H), 4.61 (s, 0.4H), 3.91 (t, *J* = 5.9 Hz, 0.4H), 3.75 (t, *J* = 5.7 Hz, 1.6H), 2.84 (tt, *J* = 1.6, 5.8 Hz, 1.6H), 2.80 (tt, *J* = 1.5, 5.9 Hz, 0.4H); ¹³C **NMR** (151 MHz, CDCl₃) δ 162.1, 161.6, 135.2, 135.1, 130.3, 130.0, 128.9, 128.8, 125.3, 125.1, 121.2, 120.9, 113.4, 113.2, 112.53, 112.45, 109.7, 108.1, 44.1, 43.8, 38.6, 38.5, 22.3, 20.8; **HR MS** (FAB⁺; NBA) Calcd for C₁₂H₁₁⁷⁹BrN₂O: 278.0049 [M]⁺. Found: 278.0048.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 3/1) to afford **3e** (33.2 mg, 155 µmol, 62%) as a colorless oil.

IR (neat) 3302, 3053, 2922, 2857, 1668, 1591, 1443, 1398, 1373, 1328, 1306, 1215, 1163, 1045, 920, 777, 750, 667 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.62 (br s, 0.8H), 8.32 (br s, 0.2H), 8.29 (s, 0.2H), 8.25 (s, 0.8H), 7.34 (d, *J* = 7.1 Hz, 0.2H), 7.33 (d, *J* = 7.6 Hz, 0.8H), 7.06 (t, *J* = 7.4 Hz, 0.2H), 7.05 (t, *J* = 7.5 Hz, 0.8H), 7.02–6.97 (m, 1H), 4.77 (s, 1.6H), 4.58 (s, 0.4H), 3.91 (t, *J* = 5.9 Hz, 0.2H), 3.73 (t, *J* = 5.8 Hz, 0.8H), 2.88 (t, *J* = 5.7 Hz, 0.8H), 2.83 (t, *J* = 5.8 Hz, 0.2H), 2.50 (s, 2.4H), 2.49 (s, 0.6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.8, 136.0, 135.9, 128.6, 128.5, 126.5, 126.4, 122.9, 122.7, 120.5, 120.3, 120.1, 119.9, 116.0, 115.6, 109.7, 108.3, 44.3, 44.0, 38.8, 38.6, 22.4, 21.0, 16.8; HR MS (EI⁺) Calcd for C₁₃H₁₄N₂O: 214.1101 [M]⁺. Found: 214.1108.

The second step was carried out at 110 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 3/1) to afford **3f** (32.3 mg, 151 µmol, 60%) as a yellow oil.

IR (neat) 3051, 2922, 2849, 1668, 1472, 1435, 1398, 1383, 1346, 1306, 1246, 1213, 1186, 1171, 1148, 1047, 991, 831, 743 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.34 (s, 0.2H), 8.27 (s, 0.8H), 7.51–7.48 (m, 0.2H), 7.48 (d, *J* = 7.9 Hz, 0.8H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.25–7.20 (m, 1H), 7.13 (ddd, *J* = 1.0, 7.0, 7.9 Hz, 0.2H), 7.12 (ddd, *J* = 0.9, 7.1, 7.8 Hz, 0.8H), 4.74 (s, 1.6H), 4.58 (s, 0.4H), 3.90 (t, *J* = 5.8 Hz, 0.4H), 3.73 (t, *J* = 5.7 Hz, 1.6H), 3.65 (s, 0.6H), 3.64 (s, 2.4H), 2.89 (t, *J* = 5.7 Hz, 1.6H), 2.85 (t, *J* = 5.8 Hz, 0.4H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.7, 137.26, 137.22, 130.3, 130.1, 126.4, 126.3, 121.8, 121.6, 119.5, 119.4, 118.3, 118.0, 109.0, 108.9, 108.3, 106.9, 44.2, 43.2, 38.5, 38.0, 29.6, 22.3, 20.9; HR MS (EI⁺) Calcd for C₁₃H₁₄N₂O: 214.1101 [M]⁺. Found: 214.1105.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃) to afford **3g** (41.7 mg, 183 μ mol, 73%) as a pale yellow oil.

IR (neat) 3051, 2976, 2930, 2849, 1668, 1456, 1398, 1379, 1348, 1306, 1236, 1211, 1186, 1084, 1049, 1015, 991, 743, 669 cm⁻¹; ¹H NMR (600 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.35 (s, 0.2H), 8.28 (s, 0.8H), 7.51–7.46 (m, 0.2H), 7.48 (d, *J* = 7.9 Hz, 0.8H), 7.32 (d, *J* = 8.2 Hz, 1H), 7.24–7.20 (m, 0.2H), 7.21 (ddd, *J* = 1.1, 7.1, 8.2 Hz, 0.8H), 7.12 (ddd, *J* = 0.9, 7.0, 8.0 Hz, 0.2H), 7.11 (ddd, *J* = 0.9, 7.0, 7.8 Hz, 0.8H), 4.75 (s, 1.6H), 4.61 (s, 0.4H), 4.10 (q, *J* = 7.2 Hz, 1.6H), 4.09 (q, *J* = 7.3 Hz, 0.4H), 3.92 (t, *J* = 5.8 Hz, 0.4H), 3.75 (t, *J* = 5.8 Hz, 1.6H), 2.91 (tt, *J* = 1.6, 5.8 Hz, 1.6H), 2.86 (tt, *J* = 1.6, 5.9 Hz, 0.4H), 1.38 (t, *J* = 7.3 Hz, 2.4H), 1.37 (t, *J* = 7.3 Hz, 0.6H); ¹³C NMR (101 MHz, CDCl₃) δ 162.2, 161.6, 136.1, 129.5, 129.3, 126.7, 126.5, 121.7, 121.5, 119.4, 119.3, 118.4, 118.1, 109.1, 108.3, 107.0, 44.2, 43.1, 38.5, 38.2, 37.9, 22.3, 20.9, 15.6, 15.5; HR MS (FAB⁺; NBA) Calcd for C₁₄H₁₆N₂O: 228.1257 [M]⁺. Found: 228.1262.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 5/1) to afford **3h** (61.3 mg, 211 μ mol, 84%) as a yellow oil.

IR (neat) 3055, 3030, 2924, 2851, 1651, 1494, 1456, 1350, 1306, 1207, 1167, 1148, 991, 831, 804, 743, 702 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.24 (s, 0.8H), 8.21 (s, 0.2H), 7.55 (d, *J* = 7.9 Hz, 0.2H), 7.53 (d, *J* = 7.7 Hz, 0.8H), 7.31–7.22 (m, 4H), 7.22–7.13 (m, 2H), 7.05–6.95 (m, 2H), 5.26 (s, 2H), 4.64 (s, 1.6H), 4.43 (s, 0.4H), 3.90 (t, *J* = 5.8 Hz, 0.4H), 3.72 (t, *J* = 5.7 Hz, 1.6H), 2.95–2.91 (m, 1.6H), 2.91–2.87 (m, 0.4H); ¹³C **NMR** (151 MHz, CDCl₃) δ 162.2, 161.7, 137.18, 137.16, 130.2, 130.1, 129.1, 129.0, 127.8, 127.7, 126.64, 126.55, 126.3, 126.1, 122.2, 122.0, 119.8, 119.7, 118.5, 118.2, 109.5, 109.4, 109.2, 107.8, 46.9, 46.7, 44.2, 43.2, 38.5, 38.0, 22.3, 20.9; **HR MS** (FAB⁺; NBA) Calcd for C₁₉H₁₈N₂O: 290.1414 [M]⁺. Found: 290.1418.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃) and GPC (CHCl₃) to afford **3i** (36.1 mg, 113 μ mol, 45%) as a yellow oil.

IR (neat) 3051, 3003, 2930, 2839, 1668, 1614, 1514, 1456, 1381, 1306, 1246, 1177, 1034, 991, 831, 745 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.23 (s, 0.8H), 8.21 (s, 0.2H), 7.56–7.48 (m, 1H), 7.35 (s, 0.2H), 7.29 (s, 0.8H), 7.23–7.10 (m, 2H), 7.00–6.92 (m, 2H), 6.84–6.78 (m, 2H), 5.19 (s, 2H), 4.64 (s, 1.6H), 4.43 (s, 0.4H), 3.89 (t, *J* = 6.8 Hz, 0.4H), 3.77 (s, 0.6H), 3.76 (s, 2.4H), 3.72 (t, *J* = 5.7 Hz, 1.6H), 2.92 (t, *J* = 4.9 Hz, 1.6H), 2.88 (t, *J* = 5.9 Hz, 0.4H); ¹³C NMR (101 MHz, CDCl₃) δ 162.1, 161.7, 159.2, 159.1, 137.1, 130.2, 130.1, 129.2, 129.1, 127.6, 127.5, 126.6, 126.5, 122.1, 121.9, 119.7, 119.6, 118.5, 118.1, 114.5, 114.4, 109.5, 109.4, 109.1, 107.7, 55.4, 46.4, 44.2, 43.3, 38.5, 38.1, 22.4, 20.9; HR MS (FAB⁺; NBA) Calcd for C₂₀H₂₀N₂O₂: 320.1519 [M]⁺. Found: 320.1525.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃) to afford **3j** (45.8 mg, 141 μ mol, 56%) as a yellow oil.

IR (neat) 3051, 2924, 2851, 1668, 1617, 1493, 1381, 1306, 1244, 1207, 1169, 1094, 1047, 1015, 989, 831, 743 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.25 (s, 0.8H), 8.23 (s, 0.2H), 7.57–7.51 (m, 1H), 7.30–7.13 (m, 5H), 6.95 (d, *J* = 8.4 Hz, 1.6H), 6.94 (d, *J* = 8.4 Hz, 0.4H), 5.21 (s, 2H), 4.63 (s, 1.6H), 4.43 (s, 0.4H), 3.91 (t, *J* = 5.9 Hz, 0.4H), 3.73 (t, *J* = 5.8 Hz, 1.6H), 2.94 (t, *J* = 5.7 Hz, 1.6H), 2.89 (t, *J* = 5.8 Hz, 0.4H); ¹³C **NMR** (101 MHz, CDCl₃) δ 162.1, 161.6, 137.0, 135.7, 133.6, 133.5, 130.0, 129.9, 129.2, 129.1, 127.6, 127.5, 126.7, 126.6, 122.3, 122.1, 119.9, 119.8, 118.6, 118.3, 109.4, 109.3, 109.2, 108.0, 46.2, 44.1, 43.1, 38.4, 37.9, 22.3, 20.9; **HR MS** (EI⁺) Calcd for C₁₉H₁₇ClN₂O: 324.1024 [M]⁺. Found: 324.1028.

The second step was carried out at 130 or 90 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 3/1) to afford (*S*)-**3k** (16.5 mg, 63.9 µmol, 26%, 78% ee at 130 °C and 11.0 mg, 42.6 µmol, 17%, 97% ee at 90 °C) as a colorless powder. The ee values were determined by HPLC analysis (Fig. S4).

(*S*)-**3k** (98% ee): **mp** 164–167 °C; $[\alpha]_D^{23} = +60$ (CHCl₃, *c* 0.16); **IR** (KBr) 3404, 3061, 2953, 2859, 1740, 1676, 1626, 1449, 1429, 1408, 1211, 1175, 1024, 1015, 1007, 988, 949, 806, 746, 733 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃, an equilibrium mixture of two conformers (3:2 (0.6:0.4)) δ 8.39 (s, 0.4H), 8.29 (s, 0.6H), 7.96 (br s, 0.6H), 7.88 (br s, 0.4H), 7.51 (d, *J* = 6.5 Hz, 0.4H), 7.49 (d, *J* = 7.0 Hz, 0.6H), 7.33 (d, *J* = 7.6 Hz, 1H), 7.22–7.10 (m, 2H), 5.71 (dd, *J* = 1.1, 7.0 Hz, 0.4H), 5.21 (dd, *J* = 1.5, 16.9 Hz, 0.6H), 4.92 (dt, *J* = 2.0, 15.5 Hz, 0.4H), 4.74 (dd, *J* = 1.2, 6.4 Hz, 0.6H), 4.65 (dd, *J* = 1.5, 15.5 Hz, 0.4H), 4.47 (d, *J* = 16.7 Hz, 0.6H), 3.67 (s, 1.8H), 3.66 (s, 1.2H), 3.54 (d, *J* = 15.6 Hz, 0.6H), 3.46 (dd, *J* = 16.0 Hz, 0.4H), 3.22–3.06 (m, 1H); ¹³C **NMR** (101 MHz, CDCl₃) δ 171.1, 171.0, 163.1, 162.7, 136.8, 136.7, 128.3, 127.9, 126.9, 126.8, 122.5, 122.3, 120.0, 119.9, 118.4, 118.1, 111.2, 111.1, 107.1, 105.8, 56.2, 52.9, 52.7, 49.6, 41.8, 37.9, 24.3, 23.1; **HR MS** (ESI⁺) Calcd for C₁₄H₁₄N₂O₃Na: 281.0897 [M + Na]⁺. Found: 281.0901.

Fig. S4 HPLC chromatograms of the (a) racemic and (b) optically active (97% ee) samples of **3k**. Conditions: CHIRALPAK IA, CHCl₃/hexane/Et₃N = 60/40/0.5, 0.8 mL/min, UV detection at 280 nm.

Procedure for the synthesis of 31

Catalyst **1** (3.1 mg, 1.4 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 µL, 2.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and 3-benzofuranethylamine **2l** (40.4 mg, 250 µmol) were added, and the reaction mixture was stirred at 130 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The NMR yield was determined by using styrene as an internal standard (13%). The residue was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 5/1) and GPC (CHCl₃) to afford **3l** (6.04 mg, 30.0 µmol, 12%) as a light brown powder.

Mp 84–87 °C; **IR** (KBr) 3046, 2924, 2853, 1674, 1452, 1435, 1368, 1302, 1279, 1179, 1123, 1043, 993, 891, 858, 818, 762, 646 cm⁻¹; ¹**H NMR** (600 MHz, CDCl₃, an equilibrium mixture of two conformers (5:2 (0.7:0.3)) δ 8.31 (s, 0.3H), 8.26 (s, 0.7H), 7.48–7.41 (m, 2H), 7.28–7.21 (m, 2H), 4.72 (s, 1.4H), 4.58 (s, 0.6H), 3.92 (d, J = 5.9 Hz, 0.6H), 3.75 (t, J = 5.7 Hz, 1.4H), 2.83 (t, J = 5.7 Hz, 1.4H), 2.79 (t, J = 5.7 Hz, 0.3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 162.1, 161.9, 155.03, 154.98, 148.3, 147.9, 127.6, 127.5, 124.4, 124.2, 123.1, 122.9, 119.1, 118.8, 112.9, 111.6, 111.5, 111.4, 44.0, 43.6, 38.9, 38.0, 22.0, 20.6; **HR MS** (FAB⁺; NBA) Calcd for C₁₂H₁₁NO₂: 201.0784 [M]⁺. Found: 201.0789.

Procedure for the synthesis of 7

Catalyst **1** (3.1 mg, 1.4 μ mol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 μ L, 2.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 μ L), AcOH (200 μ L), and 3,5-dimethoxybenzeneethanamine (45.4 mg, 250 μ mol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed with brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The NMR yield was determined by using styrene as

an internal standard (21%). The residue was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 5/1) and GPC (CHCl₃) to afford **7** (7.50 mg, 33.9 µmol, 14%) as a colorless powder.

Mp 105–108 °C; **IR** (KBr) 2999, 2959, 2839, 1659, 1495, 1454, 1420, 1373, 1281, 1211, 1196, 1146, 1096, 932, 824 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃, an equilibrium mixture of two conformers (1:1 (0.5:0.5)) δ 8.27 (s, 0.5H), 8.18 (s, 0.5H), 6.33 (d, J = 1.8 Hz, 1H), 6.26 (d, J = 2.3 Hz, 0.5H), 6.24 (d, J = 2.3 Hz, 0.5H), 4.52 (s, 1H), 4.40 (s, 1H), 3.81 (s, 1.5H), 3.80 (s, 1.5H), 3.789 (s, 1.5H), 3.788 (s, 1.5H), 3.76 (t, J = 5.9 Hz, 1H), 3.60 (t, J = 6.0 Hz, 1H), 2.84 (t, J = 5.9 Hz, 1H), 2.81 (t, J = 6.0 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 161.8, 161.5, 159.6, 159.3, 157.4, 156.9, 136.3, 135.3, 113.7, 113.4, 104.5, 104.2, 96.6, 96.5, 55.54, 55.51, 55.45, 55.41, 43.32, 43.27, 38.5, 37.7, 30.3, 28.6; **HR MS** (EI⁺) Calcd for C₁₂H₁₅NO₃: 221.1046 [M]⁺. Found: 221.1051.

General procedure for the synthesis of methyltryptolines 4b-k

Catalyst **1** (4.6 mg, 2.1 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (369 µL, 3.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and tryptamine **2b**–**k** (250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. After the NMR yields were determined using styrene as an internal standard, the main products were purified according to the procedures shown below. **4b**,^{S7} **4c**,^{S8} **4f**,^{S9} **4h**,^{S10} and **4k**^{S11} were characterized according to the literature.

The product was purified by column chromatography (SiO₂, CHCl₃/MeOH = 10/1) and GPC (CHCl₃) to afford **4b** (27.5 mg, 137 µmol, 55%) as a yellow powder.

Mp 203–207 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.76 (br s, 1H), 7.25 (s, 1H), 7.15 (d, *J* = 8.2 Hz, 1H), 6.95 (d, *J* = 7.3 Hz, 1H), 3.58 (s, 2H), 2.81 (s, 4H), 2.50 (s, 3H), 2.44 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 134.5, 131.9, 128.6, 127.5, 122.9, 117.9, 110.6, 107.5, 53.2, 52.4, 45.7, 21.62, 21.57.

The second step was carried out at 130 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/MeOH/Et₃N = 9/1/0.5 and CHCl₃/MeOH = 5/1) to afford **4c** (27.6 mg, 128 μ mol, 51%) as a yellow powder.

Mp 202–205 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (br s, 1H), 7.15 (d, J = 8.7 Hz, 1H), 6.93 (d, J = 2.4 Hz, 1H), 6.78 (dd, J = 2.4, 8.7 Hz, 1H), 3.85 (s, 3H), 3.53 (s, 2H), 2.81 (s, 4H), 2.48 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 154.1, 132.6, 131.3, 127.7, 111.5, 111.1, 107.9, 100.5, 56.1, 53.1, 52.4, 45.7, 21.6; **HR MS** (ESI⁺) Calcd for C₁₃H₁₇N₂O: 217.1335 [M + H]⁺. Found: 217.1332.

The product was purified by column chromatography (SiO₂, CHCl₃/MeOH/Et₃N = 10/1/0.2 and CHCl₃/MeOH = 30/1) to afford **4d** (30.5 mg, 115 µmol, 46%) as a yellow powder.

Mp 241–243 °C; **IR** (KBr) 3130, 3026, 2841, 1446, 1315, 1296, 1246, 1163, 1096, 1043, 997, 970, 907, 854, 783, 633 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (br s, 1H), 7.59 (d, J = 1.7 Hz, 1H), 7.21 (dd, J = 1.9, 8.5 Hz, 1H), 7.14 (d, J = 8.6 Hz, 1H), 3.63 (s, 2H), 2.83–2.78 (m, 4H), 2.53 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 134.9, 133.1, 129.2, 123.3, 120.9, 112.9, 112.2, 108.1, 53.0, 52.4, 45.6, 21.4; **HR MS** (FAB⁺; NBA) Calcd for C₁₂H₁₃⁷⁹BrN₂: 264.0257 [M]⁺. Found: 264.0257.

The product was purified by column chromatography (SiO₂, CHCl₃/MeOH = 10/1) to afford **4e** (29.2 mg, 146 µmol, 58%) as a colorless powder.

Mp 154–156 °C; **IR** (KBr) 3265, 2914, 2853, 2783, 1625, 1447, 1411, 1381, 1334, 1310, 1246, 1167, 1059, 1042, 970, 920, 847, 792, 745 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.62 (br s, 1H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.02 (t, *J* = 7.6 Hz, 1H), 6.95 (d, *J* = 7.3 Hz, 1H), 3.67 (s, 2H), 2.88–2.78 (m, 4H), 2.55 (s, 3H), 2.47 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 135.6, 131.5, 126.9, 122.1, 119.9, 119.6, 115.8, 108.7, 53.1, 52.5, 45.8, 21.6, 16.8; **HR MS** (EI⁺) Calcd for C₁₃H₁₆N₂: 200.1308 [M]⁺. Found: 200.1312.

The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 1/1) to afford **4f** (25.3 mg, 126 µmol, 50%) as a yellow powder.

Mp 95–97 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (d, J = 7.8 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 7.19 (ddd, J = 1.0, 7.1, 8.0 Hz, 1H), 6.78 (ddd, J = 0.9, 7.0, 7.9 Hz, 1H), 3.66 (s, 2H), 3.61 (s, 3H), 2.92–2.85 (m, 2H), 2.84–2.78 (m, 2H), 2.60 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 137.2, 133.5, 126.8, 120.8, 118.9, 118.1, 108.7, 107.0, 53.1, 51.7, 46.1, 29.3, 21.7.

The product was purified by column chromatography (SiO₂, CHCl₃/MeOH = 30/1) to afford **4g** (39.6 mg, 185 µmol, 74%) as a brown oil.

IR (neat) 3051, 2974, 2938, 2841, 2781, 1674, 1456, 1385, 1310, 1285, 1252, 1182, 1134, 1059, 1050, 972, 795, 739 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.8 Hz, 1H), 7.29 (d, *J* = 8.1 Hz, 1H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.08 (t, *J* = 7.3 Hz, 1H), 4.04 (q, *J* = 7.2 Hz, 2H), 3.70 (s, 2H), 2.92–2.80 (m, 4H), 2.59 (s, 3H), 1.33 (t, *J* = 7.2 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 136.1, 131.8, 126.9, 121.0, 118.9, 118.2, 108.9, 106.9, 52.5, 51.1, 45.2, 37.9, 21.1, 15.6; **HR MS** (FAB⁺; NBA) Calcd for C₁₄H₁₈N₂: 214.1465 [M]⁺. Found: 214.1470.

The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 1/1) to afford **4h** (55.4 mg, 200 µmol, 80%) as a yellow oil.

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (dd, J = 2.4, 6.5 Hz, 1H), 7.29–7.19 (m, 4H), 7.15–7.07 (m, 2H), 7.00 (dd, J = 1.3, 8.0 Hz, 2H), 5.22, (s, 2H), 3.56 (s, 2H), 2.90 (t, J = 5.4 Hz, 2H), 2.80 (t, J = 5.7 Hz, 2H), 2.51 (s, 3H); ¹³**C** NMR (101 MHz, CDCl₃) δ 137.8, 136.9, 133.3, 128.8, 127.4, 127.0, 126.1, 121.1, 119.2, 118.1, 109.2, 107.7, 53.0, 51.6, 46.5, 46.0, 21.8.

The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 1/1) to afford **4i** (42.1 mg, 137 µmol, 55%) as a brown oil.

IR (neat) 3049, 2936, 2839, 2781, 1645, 1612, 1514, 1464, 1385, 1323, 1246, 1177, 1034, 970, 824, 741 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.52 (d, *J* = 7.3 Hz, 1H), 7.23 (d, *J* = 8.1 Hz, 1H), 7.15–7.05 (m, 2H), 6.94 (d, *J* = 8.4 Hz, 2H), 6.79 (d, *J* = 8.3 Hz, 2H), 5.16 (s, 2H), 3.76 (s, 3H), 3.56 (s, 2H), 2.90 (t, *J* = 5.4 Hz, 2H), 2.80 (t, *J* = 5.6 Hz, 2H), 2.52 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 158.9, 136.9, 133.3, 129.8, 127.4, 127.1, 121.1, 119.1, 118.1, 114.2, 109.3, 107.7, 55.4, 53.0, 51.7, 46.1, 46.0, 21.8; **HR MS** (FAB⁺; NBA) Calcd for C₂₀H₂₂N₂O: 306.1727 [M]⁺. Found: 306.1732.

The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 1/1) to afford **4j** (69.2 mg, 223 µmol, 89%) as a yellow oil.

IR (neat) 3051, 2939, 2843, 2783, 1616, 1464, 1408, 1385, 1323, 1250, 1179, 1096, 1015, 970, 820, 799, 739 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (dd, J = 2.5, 6.2 Hz, 1H), 7.23 (d, J = 8.3 Hz, 2H), 7.20–7.08 (m, 3H), 6.92 (d, J = 8.4 Hz, 2H), 5.18 (s, 2H), 3.54 (s, 3H), 2.90 (t, J = 5.7 Hz, 2H), 2.81 (t, J = 5.6 Hz, 2H), 2.52 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 136.8, 136.3, 133.2, 133.1, 129.0, 127.5, 127.1, 121.3, 119.4, 118.3, 109.1, 108.1, 52.9, 51.6, 46.0, 45.9, 21.7; **HR MS** (EI⁺) Calcd for C₁₉H₁₉ClN₂: 310.1231 [M]⁺. Found: 310.1235.

The second step was carried out at 80 °C for 3 h or 45 °C under otherwise the same conditions. The product was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 1/1) to afford (*S*)-**4k** (23.2 mg, 95.0 μ mol, 38%, 74% ee at 80 °C and 11.1 mg, 45.4 μ mol, 18%, 98% ee at 45 °C) as a colorless powder. The ee values were determined by HPLC analysis (Fig. S5).

(*S*)-**4k** (98% ee): **mp** 173–176 °C; $[\alpha]_D^{23} = +23$ (CHCl₃, *c* 0.17); ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (br s, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.28 (d, *J* = 7.5 Hz, 1H), 7.14 (td, *J* = 1.4, 7.3 Hz, 1H), 7.10 (td, *J* = 1.2, 7.4 Hz, 1H), 4.10 (d, *J* = 15.2 Hz, 1H), 3.83 (d, *J* = 15.2 Hz, 1H), 3.74 (t, *J* = 5.5 Hz, 1H), 3.72 (s, 3H), 3.21–3.09 (m, 2H), 2.60 (s, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 173.1, 136.3, 131.2, 127.0, 121.5, 119.4, 118.0, 111.0, 105.7, 61.6, 51.8, 49.1, 42.1, 23.9.

Fig. S5 HPLC chromatograms of the (a) racemic and (b) optically active (98% ee) samples of **4k**. Conditions: CHIRALPAK IC, CHCl₃/hexane/Et₃N = 75/25/0.1, 0.5 mL/min, UV detection at 280 nm.

Procedure for the synthesis of 41

$$CO_{2} + PhSiH_{3} (12 \text{ equiv}) \xrightarrow{55 \text{°C}, 18 \text{ h}}_{\text{no solvent}} \xrightarrow{AcOH, H_{2}O}_{120 \text{°C}, 24 \text{ h}, 60\%} \text{Al}$$

Catalyst **1** (4.6 mg, 2.1 μ mol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (369 μ L, 3.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 μ L), AcOH (200 μ L), and 3-benzofuranethylamine **2l** (40.4 mg, 250 μ mol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The NMR yield was determined by using styrene as an internal standard (64%). The residue was purified by column chromatography (SiO₂, CHCl₃/EtOAc = 5/1) to afford **4l** (28.3 mg, 151 μ mol, 60%) as a light brown powder.

Mp 182–186 °C; **IR** (KBr) 3057, 2928, 2766, 1670, 1450, 1377, 1304, 1271, 1234, 1188, 1157, 1092, 1042, 970, 895, 843, 746, 719 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃) δ 7.46–7.40 (m, 2H), 7.26–7.16 (m, 2H), 3.66 (s, 2H), 2.85–2.65 (m, 4H), 2.57 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 154.8, 151.1, 128.1, 123.5, 122.5, 118.7, 111.2, 111.1, 52.4, 52.2, 45.5, 21.0; **HR MS** (FAB⁺; NBA) Calcd for C₁₂H₁₃NO: 187.0992 [M]⁺. Found: 187.0997.

Procedure for the synthesis of 8

Catalyst **1** (4.6 mg, 2.1 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (369 µL, 3.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and 3,5-dimethoxybenzeneethanamine (46.0 mg, 254 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (four times). The organic layer was washed with brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The NMR yield was determined by using styrene as an internal standard (67%). The residue was purified by column chromatography (SiO₂, CHCl₃ and CHCl₃/MeOH = 5/1) to afford **8** (37.1 mg, 179 µmol, 70%) as a yellow oil.

IR (neat) 2997, 2940, 2837, 2779, 1668, 1494, 1427, 1342, 1281, 1211, 1150, 1090, 1042, 964, 934, 820, 779 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 6.27 (d, J = 2.2 Hz, 1H), 6.24 (d, J = 2.3 Hz, 1H), 3.784 (s, 3H), 3.778 (s, 3H), 3.48 (s, 2H), 2.89 (t, J = 5.9 Hz, 1H), 2.67 (t, J = 5.9 Hz, 1H), 2.49 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 156.9, 135.8, 116.2, 104.0, 96.0, 55.4, 55.3, 52.6, 52.5, 46.3, 29.9; HR MS (FAB⁺; NBA) Calcd for C₁₂H₁₇NO₂: 207.1254 [M]⁺. Found: 207.1257.

6. Isotope-labeling and control experiments

Procedures for the control isotope-labeling experiments in Scheme 3

Scheme 3a

Catalyst **1** (3.0 mg, 1.4 µmol) was put in a dry Schlenk flask (30 mL). A ¹³CO₂ balloon (1 atm, 0.3 L) was attached to the flask, and the flask was quickly evacuated and filled with ¹³CO₂. PhSiH₃ (246 µL, 2.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2a** (40.1 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The residue was purified by column chromatography (SiO₂, EtOAc/CHCl₃ = 1/3 then MeOH/ CHCl₃ = 1/10) and GPC (CHCl₃/Et₃N = 19/1) to afford **3a'** (9.1 mg, 45 µmol, 18%) as a coloreless powder and **4a'** (3.3 mg, 18 µmol, 7%) as a coloreless powder.

3a': mp 178–180 °C; IR (KBr) 3271, 2970, 2931, 2876, 1620, 1429, 1394, 1207, 1161, 1045, 988, 813, 745, 682 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.31 (dd, *J* = 2.0, 193.0 Hz, 0.2H), 8.26 (dd, *J* = 4.1, 194.0 Hz, 0.8H), 8.13 (br s, 0.8H), 7.98 (br s, 0.2H), 7.49 (d, *J* = 8.4 Hz, 0.2H), 7.47 (d, *J* = 8.0 Hz, 0.8H), 7.36–7.32 (m, 1H), 7.22–7.08 (m, 2H), 4.80–4.76 (m, 0.2H), 4.75 (d, *J* = 140.7 Hz, 1.6H), 4.45–4.41 (m, 0.2H), 3.96–3.90 (m, 0.4H), 3.78–3.72 (m, 1.6H), 2.89 (t, *J* = 5.4 Hz, 1.6H), 2.85 (*J* = 5.9 Hz, 0.4H); ¹³C NMR (151 MHz, CDCl₃) δ 162.2, 161.7 (d, *J* = 4.7 Hz), 136.4 (d, *J* = 2.9 Hz), 136.3 (d, *J* = 2.7 Hz), 128.8 (d, *J* = 53.3 Hz), 128.7 (d, *J* = 54.4 Hz), 126.9, 126.8, 122.3, 122.1, 119.9, 119.7, 118.3, 118.0, 111.2, 111.1, 109.4, 108.0, 44.3 (d, *J* = 4.2 Hz), 43.9 (d, *J* = 4.9 Hz), 38.7, 22.3, 20.9; HR MS (EI⁺) Calcd for ¹²C₁₂¹³C₂H₁₂N₂O: 202.1011 [M]⁺. Found: 202.1016.

4a': mp 206–209 °C; **IR** (KBr) 3055, 2932, 2841, 2783, 1722, 1624, 1454, 1372, 1247, 1163, 1053, 962, 791, 733 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃) δ 7.77 (br s, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 1H), 7.14 (td, *J* = 1.3, 7.5 Hz, 1H), 7.09 (td, *J* = 1.2, 7.3 Hz, 1H), 3.65 (d, *J* = 134.1 Hz, 2H), 2.90–2.80 (m, 4H), 2.54 (dd, *J* = 5.7, 133.6 Hz, 3H); ¹³C **NMR** (151 MHz, CDCl₃) δ 136.2 (d, *J* = 2.3 Hz), 131.6 (dd, *J* = 1.2, 7.3 Hz, 1H), 7.09 (td, *J* = 1.2, 7.3 Hz), 131.6 (dd, *J* = 1.3, 7.5 Hz), 131.6 (dd, J = 1.3, 7.5 Hz), 131.6 (dd, J = 1.3, 7.5

4.4, 51.9 Hz), 127.3 (d, J = 1.8 Hz), 121.5, 119.4, 118.1, 110.9, 118.1, 53.1, 52.4, 45.7, 21.5 (d, J = 4.1 Hz); **HR MS** (EI⁺) Calcd for ${}^{12}C_{12}{}^{13}C_{2}H_{14}N_{2}$: 188.1219 [M]⁺. Found: 188.1223.

¹³C-labeled **3a'** and **4a'** were confirmed by NMR and MS analyses; for example, in the ¹³C NMR spectra, extremely strong signals were detected at 162.2 and 38.7 ppm (161.7 and 43.9 ppm for the minor conformer) for **3a'** and at 52.4 and 45.7 ppm for **4a'**, and reasonable ¹³C–H coupling constants (J_{CH}) were observed in the ¹H NMR spectra.

Scheme 3b

Catalyst **1** (3.0 mg, 1.4 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiD₃ (253 µL, 2.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2a** (40.1 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The residue was purified by column chromatography (SiO₂, EtOAc/CHCl₃ = 1/3 then MeOH/ CHCl₃ = 1/10) and GPC (CHCl₃) to afford **3a**'' (38.1 mg, 187 µmol, 75%) as a coloreless powder and **4a**'' (9.1 mg, 47.6 µmol, 19%) as a coloreless powder.

3a'': mp 176–178 °C; **IR** (KBr) 3383, 3057, 2931, 2887, 1705, 1653, 1450, 1420, 1252, 1198, 1049, 1013, 968, 893, 854, 756 cm⁻¹; ¹H **NMR** (400 MHz, CDCl₃, an equilibrium mixture of two conformers (4:1 (0.8:0.2)) δ 8.01 (br s, 0.8H), 7.89 (s, br s, 0.2H), 7.50 (d, *J* = 7.8 Hz, 0.2H), 7.48 (d, *J* = 7.8 Hz, 0.8H), 7.34 (d, *J* = 8.0 Hz, 1H), 7.22–7.09 (m, 2H), 3.92 (t, *J* = 5.9 Hz, 0.4H), 3.75 (t, *J* = 5.8 Hz, 1.6H), 2.90 (t, *J*

= 5.8 Hz, 1.6H), 2.85 (t, J = 5.9 Hz, 0.4H); ¹³C NMR (151 MHz, CDCl₃) δ 162.0 (t, J = 30.4 Hz), 161.5 (t, J = 30.8 Hz), 136.43, 136.35, 128.72, 128.69, 126.9, 126.8, 122.2, 122.0, 119.8, 119.7, 118.3, 118.0, 111.2, 111.1, 109.3, 107.9, 44.2, 44.0–42.8 (m), 38.5, 38.1 (quin, J = 21.3 Hz), 22.3, 20.8; **HR MS** (EI⁺) Calcd for C₁₂H₉D₃N₂O: 203.1132 [M]⁺. Found: 203.1137.

4a'': mp 194–197 °C; IR (KBr) 3057, 2922, 2851, 2793, 2176, 2048, 1719, 1622, 1452, 1362, 1298, 1265, 1184, 1155, 1070, 937, 733 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.83 (br s, 1H), 7.48 (d, *J* = 7.6 Hz, 1H), 7.30 (d, *J* = 7.8 Hz, 1H), 7.13 (t, *J* = 7.1 Hz, 1H), 7.09 (t, *J* = 7.3 Hz, 1H), 2.89–2.78 (m, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 136.2, 131.8, 127.3, 121.4, 119.4, 118.1, 110.9, 108.2, 53.0, 51.5 (quin, *J* = 20.0 Hz), 44.8 (septet, *J* = 20.3 Hz), 21.6; HR MS (EI⁺) Calcd for C₁₂H₉D₅N₂: 191.1465 [M]⁺. Found: 191.1470.

D-labeled **3a**" and **4a**" were confirmed by NMR and MS analyses. For the characterization by the ¹H NMR spectra, the signals at 8.3 and 4.7 ppm in the spectrum of **3a**" and the signals at 3.6 and 2.5 ppm in the spectrum of **4a**" were not observed. In addition, the reasonable ¹³C–D couplings (${}^{1}J_{CD} = 20-31$ Hz) were detected in the ¹³C NMR spectra.

 $Zn(OAc)_2 \cdot 2H_2O$ (0 or 1.5 mg (6.8 µmol, 0.35 mol%)) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 µL, 2.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2a** (40.1 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The ¹H NMR spectra were measured, and neither **3a** nor **4a** was detected.

Scheme 3d

	(CH-O)	2a, no catalyst	 3a	1 78%
(1.4 equiv)	$(0.1_{2}0)_{n}$ (1.1 equiv)	AcOH, H ₂ O, N ₂	4 a	ı 7%
、 · · /	· · · /	120 °C, 24 h		

Paraformaldehyde (8.26 mg, 275 μ mol) and **2a** (40.1 mg, 250 μ mol) were put in a dry Schlenk flask (30 mL). Formic acid (13.3 μ L, 350 μ mol), H₂O (100 μ L), and AcOH (200 μ L) were added via syringes, and the reaction mixture was stirred at 120 °C for 24 h under N₂ atmosphere. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The yields of **3a** (78%) and **4a** (7%) were determined by ¹H NMR spectroscopy using styrene as an internal standard.

Scheme 3e

Paraformaldehyde (15.1 mg, 500 μ mol) and **2a** (40.1 mg, 250 μ mol) were put in a dry Schlenk flask (30 mL). Formic acid (22.8 μ L, 600 μ mol), H₂O (100 μ L), and AcOH (200 μ L) were added via syringes, and the reaction mixture was stirred at 120 °C for 24 h under N₂ atmosphere. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed with brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The yields of **3a** (12%) and **4a** (87%) were determined by ¹H NMR spectroscopy using styrene as an internal standard.

Scheme 3f

$$CO_{2} + PhSiH_{3} \xrightarrow{(0.07 \text{ mol}\%)} 55 \text{ °C}, 18 \text{ h} \xrightarrow{AcOH, H_{2}O} 4a 4\%$$
(12 equiv)

Catalyst **1** (4.63 mg, 2.1 μ mol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (396 μ L, 3.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 μ L), AcOH (200 μ L), and **3a** (50.1 mg, 250 μ mol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The yield of **4a** (4%) was determined by ¹H NMR

spectroscopy using styrene as an internal standard after passing through a column (SiO₂, CHCl₃/MeOH = 10/1).

Scheme 3g

Catalyst **1** (1.54 mg, 0.70 μ mol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (123 μ L, 1.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 μ L), AcOH (200 μ L), and **9** (43.1 mg, 250 μ mol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The yields of **3a** (24%) and **4a** (25%) were determined by ¹H NMR spectroscopy using styrene as an internal standard.

Scheme 3h

$$CO_{2} + PhSiH_{3} (8 equiv) \xrightarrow{65 °C, 18 h}{10 consolvent} + \frac{10 consolven}{120 °C, 24 h} \xrightarrow{60 consolven} + \frac{10 consolven}{120 °C, 24 h} \xrightarrow{10 consolven} + \frac{10 consolven}{120 °C} \xrightarrow{10 consolven}$$

Catalyst **1** (3.1 mg, 1.4 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 µL, 2.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **10** (47.1 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The ¹H NMR spectrum was measured, and neither **3a** nor **4a** was detected.

Scheme 3i

$$CO_{2} + PhSiH_{3} (6 equiv) \xrightarrow{\text{cat. 1}} 11 H \xrightarrow{\text{bold}} 3a 0\% \\ 110 H \xrightarrow{\text{cat. 1}} 120 °C, 24 h \xrightarrow{\text{cat. 1}} 3a 71\% \\ 100 H \xrightarrow{\text{cat. 1}} 120 °C, 24 h \xrightarrow{\text{cat. 1}} 3a 71\% \\ 100 H \xrightarrow{\text{cat. 1}} 3a$$

Catalyst **1** (2.35 mg, 1.07 μ mol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (185 μ L, 1.50 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. Then, H₂O (100 μ L), AcOH (200 μ L), and **11** (43.6 mg, 250 μ mol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The yields of **3a** (0%) and **4a** (71%) were determined by ¹H NMR spectroscopy using styrene as an internal standard.

7. CO₂ reduction with PhSiH₃

Procedure for the CO₂ reduction (Fig. S6)

Catalyst **1** (0.07 mol% based on PhSiH₃) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (2.00 or 3.00 mmol) was added via a syringe at 55 °C, and the mixture was stirred for 18 h. After addition of mesitylene (35 μ L, 0.25 mmol) as an internal standard, the proton-coupled ¹³C NMR spectra (151 MHz, benzene-*d*₆) of soluble substances of the mixtures were measured, and silyl formates, bis(silyl)acetals, and methoxysilanes were detected.

Fig. S6 Proton-coupled ¹³C NMR spectra (151 MHz, benzene- d_6) of product mixtures of the reduction of CO₂. *Mesitylene (internal standard).

8. One-pot three-step synthesis

Procedure for the synthesis of tryptoline (9)

Catalyst **1** (3.1 mg, 1.4 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 µL, 2.00 mmol) was added via a syringe, and the mixture was stirred at 55 °C for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2a** (40.2 mg, 251 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, 1 M HCl aq. (5.0 mL) was added, and the mixture was stirred at 100 °C for 24 h. After cooling to rt, the reaction was quenched with 28 wt% NH₃ aq., and the product was extracted with CHCl₃ (four times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The residue was purified by column chromatography (SiO₂, CHCl₃/MeOH/Et₃N = 10/1/1) to afford **9** as a pale yellow powder (31.1 mg, 181 µmol, 72%). **9** was characterized according to the data of an authentic sample.

Mp 204–207 °C; ¹**H NMR** (400 MHz, CDCl₃) δ 7.92 (br s, 1H), 7.49 (d, J = 7.4 Hz, 1H), 7.30 (d, J = 7.5 Hz, 1H), 7.15 (td, J = 1.3, 7.4 Hz, 1H), 7.10 (td, J = 1.2, 7.4 Hz, 1H), 4.02 (t, J = 1.5 Hz, 2H), 3.20 (t, J = 5.7 Hz, 2H), 2.76 (tt, J = 1.6, 5.7 Hz, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 135.7, 133.0, 127.7, 121.6, 119.5, 118.0, 110.8, 108.8, 44.0, 43.4, 22.7.

Procedure for the synthesis of 5a

Catalyst **1** (3.1 mg, 1.4 μ mol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 μ L, 2.00 mmol) was added via a syringe, and the mixture was stirred at 55 °C for 18 h. Then, H₂O (100 μ L), AcOH (200 μ L), and **2a** (40.1 mg, 250 μ mol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, H₂O (1.0 mL), THF (2.0 mL), NBS (53.4 mg, 300 μ mol), and AcOH (1.0 mL) were added, and the mixture was stirred at 30 °C for 1 h. The reaction was quenched with 10 wt% NaOH aq., and the product was extracted with EtOAc (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The residue was purified

by column chromatography (SiO₂, EtOAc/CHCl₃ = 1/1) to afford **5a** as a colorless oil (40.9 mg, 189 µmol, 76%).

IR (neat) 3217, 2953, 2889, 1714, 1651, 1487, 1472, 1387, 1341, 1231, 1188, 1107, 1042, 1018, 754, 673 cm⁻¹; ¹**H NMR** (400 MHz, CDCl₃, an equilibrium mixture of two conformers (3:2 (0.6:0.4)) δ 9.06 (br s, 0.6H), 8.94 (br s, 0.4H), 8.38 (s, 0.4H), 8.31 (s, 0.6H), 7.29–7.22 (m, 1H), 7.17 (d, *J* = 7.1 Hz, 0.4H), 7.10 (d, *J* = 6.3 Hz, 0.6H), 7.08–7.02 (m, 1H), 6.98 (d, *J* = 8.4 Hz, 0.6H), 6.96 (d, *J* = 8.4 Hz, 0.4H), 4.07 (dt, *J* = 7.3, 10.3 Hz, 0.4H), 3.88–3.80 (m 3H), 3.72 (d, *J* = 12.4 Hz, 0.6H), 3.70 (d, *J* = 10.6 Hz, 0.4H), 2.57–2.40 (m, 1H), 2.24–2.12 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 180.6, 179.1, 161.2, 161.1, 140.6, 140.3, 132.1, 131.7, 128.9, 123.25, 123.17, 122.8, 122.7, 110.5, 110.4, 54.6, 52.3, 51.9, 51.6, 45.4, 43.0, 36.0, 35.1; **HR MS** (ESI⁺) Calcd for C₁₂H₁₂N₂ONa: 239.0791 [M + Na]⁺. Found: 239.0791.

Catalyst **1** (4.6 mg, 2.1 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (369 µL, 3.00 mmol) was added via a syringe, and the mixture was stirred at 55 °C for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2a** (40.1 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, H₂O (1.0 mL), THF (2.0 mL), NBS (89.0 mg, 500 µmol), and AcOH (1.0 mL) were added, and the mixture was stirred at 30 °C for 1 h. The reaction was quenched with 10 wt% NaOH aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The residue was purified by column chromatography (SiO₂, EtOAc/hexane/Et₃N = 6/7/1) to afford coerulescine (**6a**) as a yellow oil (39.7 mg, 196 µmol, 78%). **6a** was characterized according to the literature.^{S12}

¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (br s, 1H), 7.37 (d, J = 7.4 Hz, 1H), 7.17 (t, J = 7.6 Hz, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 7.6 Hz, 1H), 3.04–2.97 (m, 1H), 2.86 (AB q, Δν = 6.4 Hz, J = 9.6 Hz, 2H), 2.77 (q, J = 8.1 Hz, 1H), 2.45 (s, 3H), 2.42 (ddd, J = 2.4, 7.9, 12.8 Hz, 1H), 2.09 (dt, J = 7.4, 12.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 183.6, 140.5, 136.2, 127.8, 123.3, 122.8, 109.8, 66.3, 56.8, 53.8, 41.9, 38.0.

Procedure for the synthesis of 5h

Catalyst **1** (3.1 mg, 1.4 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (246 µL, 2.00 mmol) was added via a syringe, and the mixture was stirred at 55 °C for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2h** (62.6 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, H₂O (1.0 mL), THF (2.0 mL), NBS (89.2 mg, 500 µmol), and AcOH (1.0 mL) were added, and the mixture was stirred at 30 °C for 1 h. The reaction was quenched with 10 wt% NaOH aq., and the product was extracted with EtOAc (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The residue was purified by column chromatography (SiO₂, EtOAc/CHCl₃ = 1/3) and GPC (CHCl₃) to afford **5h** as a yellow oil (46.9 mg, 153 µmol, 61%).

IR (neat) 3061, 3030, 3007, 2949, 2878, 1715, 1668, 1489, 1468, 1423, 1379, 1217, 1174, 1107, 1078, 1030, 968, 752, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, an equilibrium mixture of two conformers (6:5 (0.55:0.45)) δ 8.39 (s, 0.45H), 8.31 (s, 0.55H), 7.36–7.16 (m, 6.45H), 7.11 (d, *J* = 6.5 Hz, 0.55H), 7.05 (t, *J* = 7.4 Hz, 0.45H), 7.04 (t, *J* = 7.5 Hz, 0.55H), 6.80 (d, *J* = 7.8 Hz, 0.55H), 6.77 (d, *J* = 7.5 Hz, 0.45H), 4.94 (AB q, $\Delta v = 18.2$ Hz, *J* = 14.0 Hz, 1.1H), 4.92 (AB q, $\Delta v = 19.2$ Hz, *J* = 12.7 Hz, 0.9H), 4.12 (dt, *J* = 7.4, 10.0 Hz, 0.45 H), 3.97–3.83 (m, 2.55H), 3.76 (d, *J* = 12.4 Hz, 0.45H), 3.71 (d, *J* = 10.5 Hz, 0.55H), 2.59 (dt, *J* = 8.9, 12.9 Hz, 0.55 H), 2.47 (ddd, *J* = 5.6, 7.5, 12.9 Hz, 0.45 H), 2.28–2.12 (m, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 178.2, 176.7, 161.0, 160.9, 142.3, 142.0, 135.6, 135.5, 131.8, 131.2, 128.9, 128.8, 128.7, 127.9, 127.8, 127.3, 127.2, 123.3, 123.2, 122.5, 122.4, 109.6, 109.5, 54.7, 51.9, 51.8, 51.4, 45.3, 44.1, 43.9, 42.9, 36.0, 35.3; HR MS (EI⁺) Calcd for C₁₉H₁₈N₂O₂: 306.1363 [M]⁺. Found: 306.1367.

Procedure for the synthesis of 6h

Catalyst **1** (4.6 mg, 2.1 µmol) was put in a dry Schlenk flask (30 mL). A CO₂ balloon (1 atm) was attached to the flask, and the flask was quickly evacuated and filled with CO₂. PhSiH₃ (369 µL, 3.00 mmol) was added via a syringe, and the mixture was stirred at 55 °C for 18 h. Then, H₂O (100 µL), AcOH (200 µL), and **2h** (62.6 mg, 250 µmol) were added, and the reaction mixture was stirred at 120 °C for 24 h. After cooling to rt, H₂O (1.0 mL), THF (2.0 mL), NBS (89.0 mg, 500 µmol), and AcOH (1.0 mL) were added, and the mixture was stirred at 50 °C for 1 h. The reaction was quenched with 10 wt% NaOH aq., and the product was extracted with CHCl₃ (three times). The organic layer was washed successively with water and brine. After dried over Na₂SO₄, the solvent was evaporated to give a residue. The residue was purified by column chromatography (SiO₂, EtOAc/CHCl₃ = 1/1 then CHCl₃/Et₃N = 1/1) to afford **6h** as a colorless oil (37.3 mg, 128 µmol, 51%). **6h** was characterized according to the literature.^{S13}

¹**H** NMR (600 MHz, CDCl₃) δ 7.45 (dd, J = 0.9, 7.4 Hz, 1H), 7.32–7.23 (m, 5H), 7.14 (td, J = 1.0, 7.7 Hz, 1H), 7.03 (td, J = 1.0, 7.6 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 4.91 (s, 2H), 3.13–3.09 (m, 1H), 2.95 (d, J = 9.3 Hz, 1H), 2.89 (d, J = 9.3 Hz, 1H), 2.80 (q, J = 8.1 Hz, 1H). 2.49 (s, 3H), 2.43 (ddd, J = 4.2, 8.0, 12.5 Hz, 1H), 2.15 (dt, J = 7.7, 12.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 180.4, 142.0, 136.0, 135.8, 128.8, 127.7, 127.6, 127.3, 123.2, 123.0, 108.8, 66.5, 56.9, 53.4, 43.9, 42.0, 38.2.

9. DFT calculations

Scheme S2 Reaction pathway for the synthesis of **3a**. ΔG and ΔE values are shown in kcal mol⁻¹.

Fig. S7 Theoretical energy profile (ΔG at 393.15 K) for the formation of **3a**. ΔE values are given in parentheses.

Fig. S8 Optimized transition state, reactant, and product structures in the formation of **3a**. Distances are shown in Å.

P1_TS

Cyclization then methylation

Scheme S3 Reaction pathway (cyclization then methylation) for the synthesis of **4a**. ΔG and ΔE values are shown in kcal mol⁻¹.

Fig. S9 Theoretical energy profile (ΔG at 393.15 K) for the formation of 4a (cyclization then methylation). ΔE values are given in parentheses.

Fig. S10 Optimized transition state, reactant, and product structures in the formation of **4a** (cyclization then methylation). Distances are shown in Å.

Methylation then cyclization

Scheme S4 Reaction pathway (methylation then cyclization) for the synthesis of **4a**. ΔG and ΔE values are shown in kcal mol⁻¹.

Fig. S11 Theoretical energy profile (ΔG at 393.15 K) for the formation of **4a** (methylation then cyclization). ΔE values are given in parentheses.

Fig. S12 Optimized transition state, reactant, and product structures in the formation of **4a** (methylation then cyclization). Distances are shown in Å.

Fig. S12 Continued.

10. ¹H and ¹³C NMR spectra

¹H NMR spectrum of **3a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3a** (101 MHz, CDCl₃)

¹H NMR spectrum of **3a'** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3a'** (151 MHz, CDCl₃)

¹H NMR spectrum of **3a''** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3a''** (151 MHz, CDCl₃)

 1 H NMR spectrum of **3b** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3b** (101 MHz, CDCl₃)

¹H NMR spectrum of **3c** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3c** (101 MHz, CDCl₃)

 1 H NMR spectrum of **3d** (600 MHz, CDCl₃)

¹H NMR spectrum of **3e** (400 MHz, CDCl₃)

 1 H NMR spectrum of **3f** (600 MHz, CDCl₃)

¹³C NMR spectrum of **3f** (101 MHz, CDCl₃)

 1 H NMR spectrum of **3g** (600 MHz, CDCl₃)

¹³C NMR spectrum of **3g** (101 MHz, CDCl₃)

¹H NMR spectrum of **3h** (600 MHz, CDCl₃)

¹H NMR spectrum of **3i** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3i** (101 MHz, CDCl₃)

 1 H NMR spectrum of **3j** (400 MHz, CDCl₃)

¹³C NMR spectrum of **3j** (101 MHz, CDCl₃)

¹H NMR spectrum of (S)-**3k** (400 MHz, CDCl₃)

¹³C NMR spectrum of (S)-**3k** (101 MHz, CDCl₃)

¹H NMR spectrum of **3l** (600 MHz, CDCl₃)

¹³C NMR spectrum of **3l** (151 MHz, CDCl₃)

¹H NMR spectrum of **4a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4a** (101 MHz, CDCl₃)

 ^1H NMR spectrum of 4a' (400 MHz, CDCl_3)

¹³C NMR spectrum of **4a'** (151 MHz, CDCl₃)

¹H NMR spectrum of **4a''** (400 MHz, CDCl₃)

 CD_3

D

4a''

¹³C NMR spectrum of **4a''** (151 MHz, CDCl₃)

 1 H NMR spectrum of **4b** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4b** (101 MHz, CDCl₃)

 1 H NMR spectrum of **4c** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4c** (101 MHz, CDCl₃)

 1 H NMR spectrum of **4d** (400 MHz, CDCl₃)

¹³C NMR spectrum of 4d (151 MHz, CDCl₃)

¹H NMR spectrum of **4e** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4e** (101 MHz, CDCl₃)

¹H NMR spectrum of **4f** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4f** (101 MHz, CDCl₃)

¹H NMR spectrum of **4g** (400 MHz, CDCl₃)

¹³C NMR spectrum of 4g (101 MHz, CDCl₃)

¹H NMR spectrum of **4h** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4h** (101 MHz, CDCl₃)

 1 H NMR spectrum of **4i** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4i** (101 MHz, CDCl₃)

¹H NMR spectrum of **4j** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4j** (101 MHz, CDCl₃)

¹H NMR spectrum of (*S*)-**4k** (400 MHz, CDCl₃)

¹³C NMR spectrum of (S)-4k (101 MHz, CDCl₃)

¹H NMR spectrum of **4l** (400 MHz, CDCl₃)

¹³C NMR spectrum of **4l** (101 MHz, CDCl₃)

¹H NMR spectrum of **5a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **5a** (101 MHz, CDCl₃)

¹H NMR spectrum of **5h** (400 MHz, CDCl₃)

¹H NMR spectrum of **6a** (400 MHz, CDCl₃)

¹³C NMR spectrum of **6a** (101 MHz, CDCl₃)

¹H NMR spectrum of **6h** (600 MHz, CDCl₃)

¹³C NMR spectrum of **6h** (101 MHz, CDCl₃)

¹H NMR spectrum of 7 (400 MHz, CDCl₃)

¹³C NMR spectrum of 7 (101 MHz, CDCl₃)

¹H NMR spectrum of **8** (400 MHz, CDCl₃)

¹³C NMR spectrum of 8 (101 MHz, CDCl₃)

¹H NMR spectrum of **9** (400 MHz, CDCl₃)

¹³C NMR spectrum of **9** (101 MHz, CDCl₃)

11. Coordinates of optimized structures

С	3.281913	-2.030317	0.344252
С	4.384955	-1.303839	-0.160187
С	4.279620	0.052474	-0.458988
С	3.039436	0.668375	-0.243264
С	1.911737	-0.043418	0.260368
С	2.051516	-1.414395	0.555906
N	2.645004	1.975626	-0.436545
С	1.320320	2.110127	-0.072440
С	0.823429	0.901200	0.360658
С	-0.580231	0.626259	0.824050
С	-1.417921	-0.082805	-0.252799
Ν	-2.807346	-0.366320	0.207647
Н	3.399808	-3.086446	0.569168
Η	5.332126	-1.812006	-0.316093
Η	5.126908	0.612595	-0.843635
Η	1.213660	-1.986216	0.945604
Н	3.231764	2.723154	-0.775731
Η	0.827049	3.069600	-0.145806
Η	-0.562273	0.005199	1.729334
Η	-1.068320	1.569292	1.094582
Η	-1.496180	0.536121	-1.149318
Η	-0.969440	-1.038821	-0.534162
Η	-2.801889	-0.891339	1.085369
Η	-3.336707	0.499823	0.392045
С	-3.739845	-1.200036	-0.817657
0	-4.979189	-1.254187	-0.357736
Η	-3.581848	-0.632101	-1.755760
Η	-3.201246	-2.162647	-0.886656
0	-5.272500	1.251833	0.241578
Η	-5.750528	1.381310	1.070682
Η	-5.342559	0.264417	0.012530

Coordinates of **R** (0 imaginary frequencies, –688.81980 hartree)

Coordinates of I1_TS (1 imaginary frequency, -688.81439 hartree)

C = 5.277597 = -2.020105 = 0.520707	С	3.277397	-2.026163	0.320707
-------------------------------------	---	----------	-----------	----------

С	4.369987	-1.279406	-0.176834
С	4.245488	0.078065	-0.462595
С	2.996848	0.674357	-0.240806
С	1.879485	-0.058071	0.256044
С	2.038479	-1.429736	0.538331
Ν	2.584089	1.977832	-0.421003
С	1.257980	2.090415	-0.054955
С	0.778328	0.870271	0.366099
С	-0.620655	0.570847	0.828228
С	-1.454096	-0.120157	-0.262332
Ν	-2.838363	-0.416107	0.211762
Η	3.410280	-3.082598	0.535574
Η	5.324215	-1.772618	-0.337611
Η	5.084670	0.653695	-0.842007
Η	1.208824	-2.016945	0.922668
Η	3.160539	2.736824	-0.752376
Η	0.751453	3.043653	-0.118591
Η	-0.591572	-0.070967	1.718622
Η	-1.118330	1.501541	1.122324
Η	-1.546698	0.522552	-1.140550
Η	-0.996769	-1.063491	-0.571745
Η	-2.812365	-0.951892	1.082862
Η	-3.412974	0.464572	0.406768
С	-3.739052	-1.171333	-0.788686
0	-5.035823	-1.085989	-0.363088
Η	-3.544064	-0.674155	-1.751470
Η	-3.376180	-2.203926	-0.830677
0	-4.896825	1.245448	0.247767
Η	-5.320959	1.491903	1.080053
Н	-5.160098	0.019560	-0.075786

Coordinates of I1 (0 imaginary frequencies, -688.83481 hartree)

С	3.272333	-2.008223	0.395557
С	4.371982	-1.264564	-0.091309
С	4.244101	0.084423	-0.414304
С	2.985271	0.675636	-0.240524
С	1.860421	-0.053858	0.244739

С	2.023354	-1.416765	0.564820
Ν	2.566756	1.970062	-0.463652
С	1.228671	2.078277	-0.134056
С	0.746880	0.865092	0.303843
С	-0.659746	0.562072	0.739948
С	-1.480665	-0.176827	-0.330476
Ν	-2.837820	-0.474257	0.161562
Η	3.407697	-3.058023	0.639834
Η	5.334177	-1.753282	-0.214411
Η	5.088800	0.657391	-0.785591
Η	1.187173	-2.000858	0.939685
Η	3.145153	2.725832	-0.798618
Η	0.716806	3.025679	-0.233639
Η	-0.639939	-0.048627	1.653399
Η	-1.176839	1.493419	0.997076
Η	-1.575595	0.457094	-1.219297
Η	-0.951876	-1.092098	-0.639136
Η	-2.772752	-1.040604	1.007682
Η	-3.939730	0.966074	0.485009
С	-3.668574	-1.191998	-0.812010
0	-5.005714	-1.288874	-0.354005
Η	-3.607800	-0.643532	-1.761671
Η	-3.331841	-2.223191	-0.980585
0	-4.771848	1.507814	0.417554
Η	-4.997888	1.775474	1.318187
Н	-5.311784	-0.382503	-0.159059

Coordinates of I2_TS (1 imaginary frequency, -688.79103 hartree)

С	3.035433	-2.107534	-0.159664
С	4.227179	-1.351634	-0.074566
С	4.196825	0.040081	-0.027558
С	2.941387	0.661669	-0.065015
С	1.725816	-0.078428	-0.146540
С	1.790463	-1.485531	-0.195630
Ν	2.605307	1.999051	-0.042757
С	1.232431	2.124635	-0.109605
С	0.645461	0.880458	-0.173717

С	-0.827090	0.589917	-0.240455
С	-1.391906	0.145253	1.125749
Ν	-2.838265	-0.093090	1.062665
С	-3.410062	-1.243603	1.071563
0	-4.239458	-1.153520	-1.326683
Η	3.095700	-3.191432	-0.197584
Η	5.183869	-1.865135	-0.047240
Η	5.111673	0.622215	0.034462
Η	0.883840	-2.080684	-0.263913
Η	3.256759	2.768454	-0.000847
Η	0.771596	3.102849	-0.111905
Η	-1.365681	1.483799	-0.572741
Η	-1.030993	-0.197980	-0.974880
Η	-0.911575	-0.771351	1.475287
Η	-1.225008	0.926734	1.872119
Η	-3.466111	0.690382	0.777152
Η	-2.820259	-2.144088	1.211831
Η	-4.486226	-1.297467	1.027127
Η	-5.019189	-1.681259	-1.548145
0	-4.658248	1.131245	-0.501866
Н	-4.576402	0.119006	-0.927513
Н	-5.585253	1.300718	-0.291535

Coordinates of **I2** (0 imaginary frequencies, -688.83116 hartree)

С	3.538616	1.672227	0.781347
С	4.575280	0.769779	0.449544
С	4.294043	-0.519349	0.002869
С	2.945999	-0.887031	-0.107028
С	1.882987	0.006177	0.217298
С	2.200998	1.302876	0.668790
Ν	2.372671	-2.075968	-0.505326
С	0.997082	-1.962151	-0.439082
С	0.644396	-0.704461	-0.003395
С	-0.751215	-0.179414	0.185602
С	-1.212545	0.734346	-0.969974
Ν	-2.590205	1.176944	-0.756756
С	-2.827573	2.422291	-0.654227

0	-5.967731	-0.867082	1.782414
Н	3.793639	2.669353	1.128847
Н	5.609735	1.086601	0.546085
Н	5.089940	-1.214261	-0.249090
Н	1.414774	2.006963	0.927606
Н	2.872897	-2.906425	-0.784754
Н	0.366579	-2.799024	-0.706633
Н	-1.453691	-1.015713	0.271232
Н	-0.818401	0.387144	1.123261
Н	-0.530915	1.589754	-1.080309
Н	-1.191629	0.160811	-1.903804
Н	-3.919294	-0.012895	-0.699070
Н	-2.043623	3.185424	-0.726654
Н	-3.850327	2.760568	-0.489283
Н	-5.844030	-1.774844	2.087495
0	-4.653827	-0.686791	-0.646791
Η	-5.499022	-0.811910	0.918398
Н	-5.229834	-0.519144	-1.404207

Coordinates of I2' (0 imaginary frequencies, -765.037770 hartree)

Ν	0.646265	-0.292345	0.489855
Ν	-2.332433	2.857778	-0.735387
С	-0.211243	-1.311375	0.132138
С	0.070190	-2.593000	-0.364109
С	-1.007418	-3.431217	-0.639426
С	-2.339569	-3.008714	-0.423618
С	-2.618675	-1.736938	0.069299
С	-1.548428	-0.864447	0.353116
С	-1.455614	0.481694	0.865061
С	-2.581418	1.391269	1.236937
С	-3.288971	2.031532	0.003719
С	-1.443105	2.387014	-1.534770
С	-0.098560	0.774107	0.916963
Η	1.693675	-0.313717	0.434827
Η	-2.274466	3.841786	-0.477614
Н	1.092976	-2.919563	-0.526635
Н	-0.821488	-4.429559	-1.025050

-3.155788	-3.690121	-0.645908
-3.647820	-1.429307	0.235141
-2.233789	2.192453	1.896674
-3.365897	0.850316	1.778121
-3.663588	1.259724	-0.670160
-4.114471	2.672560	0.312988
-0.686643	3.049840	-1.939433
-1.487921	1.345912	-1.831433
0.386210	1.678718	1.260265
5.630692	0.201926	-0.000604
4.121204	0.470990	-0.031048
3.376548	-0.465092	0.419252
3.710713	1.568470	-0.495078
5.868258	-0.622765	-0.682445
5.938323	-0.111580	1.002425
6.203007	1.083207	-0.298383
	-3.155788 -3.647820 -2.233789 -3.365897 -3.663588 -4.114471 -0.686643 -1.487921 0.386210 5.630692 4.121204 3.376548 3.710713 5.868258 5.938323 6.203007	-3.155788-3.690121-3.647820-1.429307-2.2337892.192453-3.3658970.850316-3.6635881.259724-4.1144712.672560-0.6866433.049840-1.4879211.3459120.3862101.6787185.6306920.2019264.1212040.4709903.376548-0.4650923.7107131.5684705.868258-0.6227655.938323-0.1115806.2030071.083207

Coordinates of I3_TS (1 imaginary frequency, -765.033511 hartree)

Ν	0.363740	-0.580035	0.625861
N	-0.405053	2.988358	-0.696653
С	-0.737099	-1.286115	0.236095
С	-0.842023	-2.622964	-0.199151
С	-2.102364	-3.088512	-0.537925
С	-3.255448	-2.259549	-0.463809
С	-3.160292	-0.944147	-0.046196
С	-1.888937	-0.436498	0.316216
С	-1.435995	0.832002	0.774592
С	-2.162891	2.122688	0.813388
С	-1.837815	2.943621	-0.502853
С	0.253860	1.825519	-0.841055
С	-0.020138	0.724959	0.890458
Н	1.377447	-0.881525	0.581929
Н	0.086821	3.732469	-0.213095
Н	0.032556	-3.262414	-0.259492
Н	-2.216006	-4.116790	-0.868615
Н	-4.220995	-2.672138	-0.739194
Н	-4.043616	-0.315086	0.012300

Η	-1.862760	2.730592	1.671366
Η	-3.245628	1.978282	0.856437
Η	-2.303005	2.444837	-1.356917
Η	-2.231616	3.957219	-0.424136
Η	1.340265	1.833671	-0.784552
Η	-0.195136	1.088925	-1.501556
Η	0.630771	1.351156	1.486749
С	5.179345	-0.679935	-0.235484
С	3.711732	-0.318040	0.010088
0	2.974134	-1.248324	0.487328
0	3.314774	0.842962	-0.279716
Η	5.243157	-1.358687	-1.094214
Η	5.592702	-1.210729	0.627602
Η	5.781362	0.206676	-0.446143

Coordinates of I3 (0 imaginary frequencies, -765.041017 hartree)

Ν	0.354759	-0.481107	0.240343
Ν	-0.345324	3.140913	-0.570651
С	-0.729224	-1.239878	0.076093
С	-0.815827	-2.622101	-0.249108
С	-2.072965	-3.165477	-0.366829
С	-3.274418	-2.397613	-0.183008
С	-3.218746	-1.064488	0.127655
С	-1.934335	-0.451366	0.270960
С	-1.530109	0.839176	0.570520
С	-2.286524	2.103947	0.670833
С	-1.789556	3.051825	-0.493007
С	0.331749	1.879113	-0.696497
С	-0.046999	0.876940	0.504810
Η	1.378011	-0.798283	0.175270
Η	0.043524	3.713892	0.172666
Η	0.079115	-3.216759	-0.393845
Η	-2.170301	-4.219744	-0.608788
Η	-4.232228	-2.894939	-0.293036
Η	-4.122556	-0.481646	0.272061
Η	-2.073969	2.608258	1.620227
Н	-3.366090	1.949958	0.594164

Η	-2.173597	2.662400	-1.441873
Η	-2.209238	4.048162	-0.338693
Η	1.415250	2.002947	-0.677788
Η	0.037658	1.385193	-1.627815
Η	0.440641	1.270426	1.402063
С	5.199782	-0.803111	-0.083668
С	3.742295	-0.370183	0.088769
0	2.870593	-1.310756	0.065844
0	3.475116	0.849955	0.236923
Η	5.325991	-1.297647	-1.053110
Η	5.465471	-1.534248	0.687331
Н	5.879875	0.049096	-0.023949

Coordinates of I3' (0 imaginary frequencies, -765.067232 hartree)

Ν	-0.153408	-0.075248	0.168027
Ν	1.440222	3.320433	-0.270623
С	0.572849	-1.248892	0.098851
С	0.144863	-2.581895	0.134927
С	1.116937	-3.578722	0.043236
С	2.486341	-3.254805	-0.081503
С	2.910306	-1.927186	-0.118149
С	1.952780	-0.898333	-0.028973
С	2.015275	0.540095	-0.029465
С	3.182747	1.482964	-0.121443
С	2.733395	2.900560	0.299204
С	0.327935	2.442790	0.134275
С	0.720640	0.992928	0.083821
Н	-1.164808	-0.009599	0.250789
Н	1.510698	3.308619	-1.286650
Н	-0.907726	-2.832712	0.231946
Н	0.814537	-4.621826	0.069258
Н	3.218013	-4.055169	-0.149580
Н	3.966868	-1.690657	-0.214347
Н	3.586063	1.510789	-1.145208
Н	4.010058	1.157060	0.523375
Н	2.636289	2.942290	1.391632
Н	3.488707	3.638991	0.011603

Η	-0.529755	2.645835	-0.517304
Η	0.017097	2.716397	1.153444
Η	-3.362460	0.078043	-1.729234
С	-5.549592	0.130030	0.624517
С	-4.194245	0.102734	-0.020087
0	-3.127969	0.088835	0.577398
0	-4.265246	0.095090	-1.365076
Η	-6.095247	1.020518	0.298479
Η	-5.444934	0.133889	1.708435
Н	-6.126759	-0.743764	0.307688

Coordinates of I4 TS (1 imaginary frequency, -954.788823 hartree)

С	5.263552	-0.160915	0.520060
С	5.346366	-0.634154	-0.811391
С	4.199299	-0.965666	-1.533325
С	2.962507	-0.811418	-0.886668
С	2.859869	-0.322597	0.444889
С	4.034683	-0.006721	1.151500
Ν	1.682777	-1.069100	-1.342837
С	0.777785	-0.747845	-0.354587
С	1.448754	-0.283614	0.767524
С	-0.711732	-0.885116	-0.442962
Ν	-1.286967	-0.080965	0.645698
С	-0.732858	-0.479596	1.955501
С	0.738692	-0.039840	2.079890
Н	6.178839	0.076433	1.054735
Н	6.318817	-0.745263	-1.276861
Н	4.259924	-1.332971	-2.551427
Н	3.985048	0.358952	2.176338
Н	1.439171	-1.346043	-2.280364
Η	-1.087921	-0.515506	-1.403626
Η	-0.991612	-1.952738	-0.373189
Η	-2.308355	-0.189642	0.641547
Η	-1.335196	-0.013847	2.740027
Η	-0.792815	-1.572310	2.095050
Н	0.804873	1.015634	2.383459
Н	1.224957	-0.607596	2.877864

С	-0.576049	2.653243	-0.009244
0	-1.289081	3.556977	-0.568763
0	0.435648	2.177590	-0.609055
Η	-0.873020	2.349613	0.986038
Η	-0.992310	3.768786	-1.476059
Η	0.825113	1.354096	-0.150660
С	-6.511128	-1.364094	0.060430
С	-5.203150	-0.645042	-0.324921
0	-5.033130	-0.332772	-1.543861
0	-4.400142	-0.382424	0.623125
Н	-6.295867	-2.192996	0.795403
Н	-7.040858	-1.780006	-0.837998
Н	-7.175356	-0.618852	0.567951

Coordinates of I4 (0 imaginary frequencies, -954.845368 hartree)

С	5.102964	-0.497576	0.902864
С	5.286740	-0.932766	-0.428455
С	4.214971	-1.010539	-1.317720
С	2.950991	-0.641610	-0.842729
С	2.741472	-0.197419	0.497644
С	3.843080	-0.130321	1.371835
Ν	1.726489	-0.617289	-1.484413
С	0.763728	-0.170690	-0.596506
С	1.335377	0.088928	0.625620
С	-0.696332	-0.046118	-0.918430
Ν	-1.418944	0.716262	0.133276
С	-0.974928	0.356380	1.505392
С	0.525194	0.575086	1.791738
Η	5.959600	-0.449568	1.569194
Η	6.280259	-1.212746	-0.766606
Η	4.356361	-1.346125	-2.341113
Η	3.713776	0.203039	2.398041
Η	1.565703	-0.867393	-2.449030
Η	-0.865645	0.444837	-1.880705
Η	-1.162021	-1.038256	-0.981217
Η	-3.042592	0.126285	0.095310
Η	-1.590909	0.918531	2.213390

Η	-1.215676	-0.704571	1.630772
Η	0.724195	1.634687	1.993744
Η	0.781174	0.026826	2.707383
С	-1.538291	2.149629	-0.094557
0	-2.239058	2.297893	-1.309490
0	-0.337258	2.897856	-0.118838
Η	-2.098836	2.570734	0.746321
Η	-2.277902	3.244036	-1.512175
Η	0.252654	2.545170	-0.803784
С	-5.599860	-1.917432	0.157880
С	-4.158411	-1.478553	0.097154
0	-3.206307	-2.248297	0.022787
0	-4.021487	-0.151334	0.131543
Η	-6.063115	-1.544290	1.076424
Η	-5.663734	-3.004784	0.127580
Н	-6.153408	-1.490151	-0.683949

Coordinates of P1_TS (1 imaginary frequency, -802.15138 hartree)

-4.485795	0.848127	0.835136
-4.768237	-0.532875	0.741992
-3.800167	-1.441529	0.315496
-2.538221	-0.934611	-0.015881
-2.229738	0.455801	0.071339
-3.228244	1.348821	0.504469
-1.402809	-1.585517	-0.463003
-0.400388	-0.653548	-0.652671
-0.859146	0.604100	-0.346383
0.975548	-0.993490	-1.139539
1.821370	0.207079	-1.047178
1.199030	1.496264	-1.395569
0.008728	1.822070	-0.478277
3.023265	0.167677	-0.485451
3.632651	-1.001154	-0.396413
2.890867	0.513918	1.563214
-5.263663	1.528031	1.170759
-5.757611	-0.894611	1.006590
-4.017993	-2.503110	0.242486
	-4.485795 -4.768237 -3.800167 -2.538221 -2.229738 -3.228244 -1.402809 -0.400388 -0.859146 0.975548 1.821370 1.199030 0.008728 3.023265 3.632651 2.890867 -5.263663 -5.757611 -4.017993	-4.485795 0.848127 -4.768237 -0.532875 -3.800167 -1.441529 -2.538221 -0.934611 -2.229738 0.455801 -3.228244 1.348821 -1.402809 -1.585517 -0.400388 -0.653548 -0.859146 0.604100 0.975548 -0.993490 1.821370 0.207079 1.199030 1.496264 0.008728 1.822070 3.023265 0.167677 3.632651 -1.001154 2.890867 0.513918 -5.263663 1.528031 -5.757611 -0.894611 -4.017993 -2.503110

Η	-3.022370	2.413058	0.580485
Н	-1.316199	-2.581227	-0.604423
Н	1.432468	-1.784037	-0.540698
Н	0.954260	-1.341894	-2.181910
Н	1.966633	2.270548	-1.343794
Н	0.859666	1.427290	-2.435163
Н	0.373019	2.160288	0.500750
Н	-0.545399	2.660803	-0.916200
Н	3.614336	1.074933	-0.538038
Н	2.795900	1.467295	1.701682
0	5.115211	-0.572596	1.650137
Н	4.392916	-0.922767	0.274438
Н	4.242033	0.006469	1.789159
Н	5.872437	0.025813	1.601670

Coordinates of P1 (0 imaginary frequencies, -802.20718 hartree)

С	4.872326	1.119893	-0.795492
С	5.181205	-0.243634	-0.998572
С	4.239611	-1.242480	-0.752546
С	2.977281	-0.843997	-0.298034
С	2.641927	0.527114	-0.087128
С	3.614198	1.512599	-0.343427
Ν	1.863873	-1.598830	0.022319
С	0.849695	-0.750055	0.422032
С	1.278556	0.554347	0.377372
С	-0.511054	-1.211673	0.844118
Ν	-1.375126	-0.034244	0.999164
С	-0.781619	1.165007	1.612293
С	0.389647	1.699562	0.771935
С	-2.657543	-0.071836	0.611327
0	-3.220261	-1.062246	0.107962
0	-6.752830	1.356233	-1.740987
Н	5.629975	1.871922	-0.996586
Η	6.169990	-0.520246	-1.352654
Η	4.477383	-2.290737	-0.908949
Η	3.387790	2.564571	-0.191758
Н	1.799815	-2.604354	-0.038610

Η	-0.969376	-1.869720	0.101443
Η	-0.469830	-1.766139	1.793262
Η	-1.567273	1.915347	1.722709
Η	-0.429098	0.894841	2.614975
Η	0.002768	2.226220	-0.111244
Η	0.935727	2.441546	1.366538
Η	-3.197864	0.870771	0.777651
Η	-7.393468	1.776822	-1.153443
0	-5.860056	-0.992166	-0.563503
Η	-4.901136	-1.013910	-0.321277
Η	-6.457006	0.541207	-1.276238
Η	-6.339833	-1.310270	0.212751

Coordinates of I5 TS (1 imaginary frequency, -726.917214 hartree)

С	-4.285632	0.844556	0.368132
С	-4.533889	-0.541115	0.247002
С	-3.500531	-1.441697	-0.006416
С	-2.207037	-0.921879	-0.134891
С	-1.933064	0.473076	-0.017650
С	-2.997493	1.358282	0.238429
Ν	-1.007217	-1.563997	-0.379923
С	0.000575	-0.620916	-0.422671
С	-0.515359	0.634281	-0.212218
С	1.438076	-0.942132	-0.673077
Ν	2.281033	0.237752	-0.285876
С	1.724098	1.539066	-0.794256
С	0.351565	1.859406	-0.188590
Η	-5.115115	1.517445	0.565535
Η	-5.548972	-0.912567	0.352902
Η	-3.691754	-2.506567	-0.100118
Η	-2.818151	2.425695	0.332783
Η	-0.888003	-2.559144	-0.500542
Η	1.790666	-1.793594	-0.084841
Η	1.633773	-1.159608	-1.728994
Η	2.459218	2.313229	-0.566606
Η	1.653309	1.441021	-1.880602

Η	0.463665	2.246886	0.832792
Η	-0.088959	2.673636	-0.775344
Η	3.256598	0.077329	-0.694198
С	2.619131	0.243141	1.232657
0	3.507319	-0.761172	1.492244
Η	3.017930	1.254534	1.404726
Η	1.676587	0.119353	1.776046
0	4.854038	-0.357099	-0.465624
Η	5.141182	-1.142369	-0.949720
Н	4.287813	-0.669824	0.645103

Coordinates of **I5** (0 imaginary frequencies, -726.937622 hartree)

С	-4.311709	0.877365	0.297468
С	-4.573250	-0.504359	0.163566
С	-3.542097	-1.415826	-0.063943
С	-2.239399	-0.911926	-0.153938
С	-1.950800	0.480145	-0.021438
С	-3.013156	1.375461	0.207266
Ν	-1.040083	-1.565306	-0.369504
С	-0.015988	-0.635350	-0.375333
С	-0.525695	0.625197	-0.173443
С	1.435336	-0.951749	-0.593639
Ν	2.289112	0.186963	-0.185523
С	1.755685	1.477836	-0.679907
С	0.357150	1.839943	-0.132169
Η	-5.138260	1.559989	0.473690
Н	-5.595275	-0.864506	0.238547
Н	-3.743369	-2.478196	-0.167691
Н	-2.824333	2.440579	0.311605
Н	-0.928549	-2.561604	-0.486718
Н	1.748581	-1.834517	-0.027528
Н	1.629118	-1.169119	-1.652783
Н	2.480191	2.260507	-0.435030
Н	1.710039	1.402768	-1.772059
Н	0.437805	2.233096	0.891528
Н	-0.056943	2.656216	-0.737699
Н	4.012692	-0.041119	-0.816708

С	2.574159	0.194202	1.257071
0	3.464365	-0.851149	1.610235
Η	3.000293	1.176739	1.495471
Η	1.677653	0.036584	1.870184
0	4.996582	-0.177632	-0.776607
Η	5.200456	-0.881640	-1.406623
Н	4.257712	-0.762757	1.048627

Coordinates of I6 TS (1 imaginary frequency, -840.265507 hartree)

С	-4.441105	-0.111801	0.983153
С	-4.452044	-1.312685	0.239369
С	-3.358021	-1.691176	-0.538227
С	-2.248969	-0.837477	-0.553924
С	-2.214312	0.379088	0.190896
С	-3.334559	0.734840	0.965906
N	-1.043497	-0.950376	-1.222812
С	-0.259734	0.145146	-0.917611
С	-0.933531	0.986745	-0.065234
С	1.113948	0.382172	-1.469131
N	1.736152	1.490164	-0.722697
С	0.867186	2.651043	-0.455827
С	-0.338453	2.275887	0.425905
С	2.915195	1.332914	-0.125261
0	2.852604	0.547078	1.532674
Н	-5.310874	0.152829	1.577687
Н	-5.328444	-1.953384	0.272514
Н	-3.366845	-2.613744	-1.111207
Н	-3.337338	1.655754	1.542654
Н	-0.770976	-1.722043	-1.813850
Н	1.753519	-0.500092	-1.374191
Н	1.068225	0.651977	-2.533953
Н	1.473309	3.432554	0.006243
Н	0.513398	3.021851	-1.424267
Н	-0.027892	2.198788	1.477592
Н	-1.067752	3.093839	0.382583
Н	3.390680	2.236196	0.237636
Н	3.555371	0.550692	-0.517662

Η	2.063024	0.849814	2.006996
С	3.287273	-2.443415	0.379659
0	3.613304	-1.862961	-0.670764
0	2.877593	-1.890650	1.468041
Η	3.337005	-3.548529	0.425525
Η	2.841771	-0.580438	1.466612

Coordinates of I6 (0 imaginary frequencies, -840.272449 hartree)

С	-4.552237	-0.254128	1.047151
С	-4.527168	-1.473144	0.333364
С	-3.430332	-1.831098	-0.448835
С	-2.354223	-0.937256	-0.499785
С	-2.357050	0.298041	0.212888
С	-3.479243	0.632292	0.994557
N	-1.153269	-1.024273	-1.180981
С	-0.412573	0.109025	-0.916969
С	-1.104108	0.946603	-0.076759
С	0.946334	0.369457	-1.487993
Ν	1.531775	1.524475	-0.760831
С	0.621814	2.674733	-0.528184
С	-0.545337	2.262036	0.382520
С	2.741032	1.486841	-0.327178
0	2.996765	0.522480	2.024313
Н	-5.423931	-0.007385	1.646299
Н	-5.378475	-2.144738	0.394474
Н	-3.411313	-2.767848	-0.997752
Н	-3.509105	1.566702	1.548037
Н	-0.863884	-1.794479	-1.765946
Н	1.629675	-0.476772	-1.373007
Н	0.899194	0.637314	-2.551240
Н	1.209801	3.485920	-0.099064
Н	0.252218	2.983567	-1.510165
Н	-0.200795	2.211159	1.423527
Н	-1.298901	3.056420	0.338817
Н	3.145921	2.355376	0.176519
Н	3.343297	0.599568	-0.523324
Н	2.142579	0.436660	2.467793

С	3.943570	-2.188803	0.108634
0	3.743165	-1.415673	-0.863822
0	3.799170	-1.929702	1.341967
Н	4.286396	-3.220646	-0.129344
Н	3.272112	-0.406661	1.766928

Coordinates of **P2_TS** (1 imaginary frequency, -763.804523 hartree)

1 071001	1 57 1056	0.014(01
-1.3/1331	-1.574956	0.214631
-2.594265	-0.952318	0.041794
-3.881093	-1.496333	-0.043387
-4.943826	-0.611352	-0.220212
-4.729673	0.782149	-0.310563
-3.447339	1.319742	-0.224795
-2.354025	0.451126	-0.045414
-0.931190	0.637336	0.080972
-0.088882	1.879441	0.052840
1.370872	1.496911	-0.238581
1.073816	-0.912089	0.408577
-0.383002	-0.611423	0.240019
2.895887	0.403557	1.337816
1.793170	0.359619	0.603794
-1.227899	-2.569310	0.311921
-4.045718	-2.567538	0.025832
-5.954972	-1.001658	-0.289841
-5.580950	1.442478	-0.448918
-3.294564	2.393189	-0.294967
-0.146250	2.425055	1.004134
-0.423065	2.571602	-0.728664
1.481585	1.197184	-1.286646
2.049089	2.329105	-0.045624
1.255966	-1.546148	1.281587
1.486916	-1.426321	-0.470735
3.305781	1.382348	1.569096
3.053951	-0.391977	2.060752
4.781330	-0.362249	-0.450494
4.086169	-0.501520	-1.457862
5.963735	-0.483586	-0.128680
	-1.371331 -2.594265 -3.881093 -4.943826 -4.729673 -3.447339 -2.354025 -0.931190 -0.088882 1.370872 1.073816 -0.383002 2.895887 1.793170 -1.227899 -4.045718 -5.954972 -5.580950 -3.294564 -0.146250 -0.423065 1.481585 2.049089 1.255966 1.485916 3.305781 3.053951 4.781330 4.086169 5.963735	-1.371331 -1.574956 -2.594265 -0.952318 -3.881093 -1.496333 -4.943826 -0.611352 -4.729673 0.782149 -3.447339 1.319742 -2.354025 0.451126 -0.931190 0.637336 -0.088882 1.879441 1.370872 1.496911 1.073816 -0.912089 -0.383002 -0.611423 2.895887 0.403557 1.793170 0.359619 -1.227899 -2.569310 -4.045718 -2.567538 -5.954972 -1.001658 -5.580950 1.442478 -3.294564 2.393189 -0.146250 2.425055 -0.423065 2.571602 1.481585 1.197184 2.049089 2.329105 1.255966 -1.546148 1.486916 -1.426321 3.305781 1.382348 3.053951 -0.391977 4.781330 -0.362249 4.086169 -0.501520 5.963735 -0.483586

Н	4.076355	0.003209	0.503982
**	1.0100000	0.0002000	0.000/01

N	1.812023	-1.610085	-0.160291
С	2.959573	-0.918564	0.182061
С	4.229058	-1.389587	0.535934
С	5.209609	-0.443228	0.835039
С	4.930360	0.940403	0.782299
С	3.665022	1.405853	0.428179
С	2.653799	0.475549	0.120606
С	1.271447	0.579882	-0.270067
С	0.380474	1.766028	-0.498821
С	-1.086245	1.304921	-0.529719
С	-0.592104	-1.061978	-0.823437
С	0.805800	-0.700915	-0.432762
С	-2.674261	-0.163502	-1.632631
N	-1.262993	0.119780	-1.384415
Н	1.727214	-2.614394	-0.212633
Н	4.443940	-2.453732	0.576515
Н	6.204952	-0.777468	1.113404
Н	5.716723	1.650788	1.021689
Н	3.462715	2.473010	0.390645
Н	0.628986	2.267025	-1.445318
Н	0.502993	2.516399	0.292624
Н	-1.430194	1.096744	0.502999
Н	-1.720093	2.103400	-0.927197
Н	-0.598076	-1.860009	-1.576406
Н	-1.140389	-1.453811	0.059108
Н	-3.142603	0.694470	-2.123610
Н	-2.765615	-1.030255	-2.295024
С	-6.500288	-0.116754	1.088965
0	-6.009954	0.012879	2.142361
0	-6.991470	-0.246297	0.035949
Н	-3.235837	-0.381353	-0.704210

Coordinates of I2" (0 imaginary frequencies, -725.701988 hartree)

2.000,000 2.000,000,000	С	-2.357658	2.355417	0.780836
-------------------------	---	-----------	----------	----------

С	-3.729771	2.111375	0.543298
С	-4.163920	0.907450	-0.006086
С	-3.189896	-0.052467	-0.311671
С	-1.801737	0.168500	-0.077441
С	-1.393675	1.398446	0.476512
Ν	-3.316802	-1.311006	-0.862483
С	-2.068472	-1.883621	-0.984786
С	-1.104658	-1.017941	-0.516757
С	0.374688	-1.272367	-0.460214
С	0.814542	-1.702858	0.955701
Ν	2.271342	-1.924994	1.019603
С	3.113741	-1.229450	1.687077
Η	-2.053703	3.306994	1.207323
Η	-4.458545	2.877330	0.791830
Η	-5.217291	0.719797	-0.192322
Η	-0.342712	1.602855	0.662270
Η	-4.182312	-1.743144	-1.149621
Η	-1.958579	-2.873749	-1.405191
Η	0.646106	-2.055944	-1.175405
Η	0.930545	-0.370713	-0.740973
Η	0.566743	-0.947805	1.702627
Η	0.340318	-2.647203	1.234191
Η	4.165399	-1.490113	1.651929
Η	2.763727	-0.409098	2.305306
С	4.491360	1.181053	-0.571959
0	5.202608	2.175699	-0.274980
0	4.243622	0.691929	-1.704516
Н	4.007683	0.656351	0.299888
Η	2.633733	-2.695786	0.457227

Coordinates of I7_TS (1 imaginary frequency, -725.698874 hartree)

С	-2.291632	2.357696	0.552857	
С	-3.663967	2.032497	0.453456	
С	-4.077813	0.753723	0.087901	
С	-3.083153	-0.197945	-0.175314	
С	-1.693508	0.104662	-0.078240	
С	-1.307221	1.408723	0.291314	

Ν	-3.187746	-1.518422	-0.559289
С	-1.922613	-2.050759	-0.708945
С	-0.970407	-1.097279	-0.424950
С	0.520715	-1.280969	-0.454876
С	1.108706	-1.487222	0.958101
Ν	2.567162	-1.633616	0.939444
С	3.424979	-0.730991	1.377786
Η	-2.004067	3.365730	0.837654
Η	-4.409265	2.793962	0.664206
Η	-5.131865	0.503947	0.008495
Η	-0.256501	1.674548	0.369578
Η	-4.049148	-2.017218	-0.724444
Η	-1.795235	-3.079811	-1.015753
Η	0.773177	-2.151011	-1.071538
Η	1.009762	-0.414058	-0.913162
Η	0.872093	-0.642599	1.608990
Η	0.688182	-2.391234	1.409138
Η	4.470041	-1.017453	1.438251
Η	3.057861	0.030598	2.059812
С	3.948270	1.095848	-0.627318
0	4.615976	2.070993	-0.267910
0	3.447108	0.687198	-1.678941
Η	3.721627	0.330111	0.293744
Н	2.938617	-2.434685	0.438120

Coordinates of I7 (0 imaginary frequencies, -725.744776 hartree)

С	-1.670741	-2.153378	-1.408501	
С	-3.019419	-2.347473	-1.030508	
С	-3.654963	-1.473404	-0.151456	
С	-2.908940	-0.394423	0.342621	
С	-1.548770	-0.175319	-0.026142	
С	-0.934206	-1.079327	-0.915935	
Ν	-3.260949	0.610569	1.217477	
С	-2.174288	1.444831	1.411910	
С	-1.098707	1.008153	0.671065	
С	0.256102	1.653325	0.580264	
С	0.437865	2.505506	-0.702446	

Ν	1.736486	3.165162	-0.867203
С	2.872584	2.262147	-1.071743
Η	-1.205292	-2.855099	-2.094855
Η	-3.569703	-3.193714	-1.431691
Η	-4.690212	-1.623120	0.141319
Η	0.101246	-0.942086	-1.215684
Η	-4.160227	0.715573	1.662688
Η	-2.251715	2.294028	2.077087
Η	0.412892	2.301571	1.451885
Η	1.033846	0.880826	0.619195
Η	0.269471	1.877262	-1.586120
Η	-0.337432	3.281216	-0.713749
Η	3.780936	2.854531	-1.216850
Η	2.705836	1.675635	-1.982074
С	4.284580	-2.113910	0.724818
0	4.817947	-2.299944	-0.298913
0	3.752158	-1.930134	1.749406
Н	3.056627	1.557793	-0.245068
Н	1.917547	3.765715	-0.065629

Coordinates of I8_TS (1 imaginary frequency, -728.122795 hartree)

С	3.494005	-2.004003	0.078165
С	4.577075	-1.196950	-0.339767
С	4.436693	0.181387	-0.482281
С	3.181807	0.737131	-0.198727
С	2.074160	-0.055745	0.221289
С	2.249160	-1.447555	0.358597
N	2.753661	2.047232	-0.242452
С	1.426977	2.105776	0.135125
С	0.962727	0.843212	0.428944
С	-0.430298	0.479251	0.864963
С	-1.252968	-0.096829	-0.299873
N	-2.679648	-0.380999	0.059097
Н	3.639027	-3.075589	0.180859
Н	5.536441	-1.659750	-0.552121
Н	5.268767	0.802906	-0.799882
Н	1.426823	-2.080996	0.680130

Η	3.320056	2.843168	-0.495161
Η	0.909919	3.054769	0.171755
Н	-0.378532	-0.245570	1.684579
Н	-0.937901	1.369100	1.254297
Н	-1.275738	0.624071	-1.120297
Н	-0.814069	-1.026574	-0.674213
Н	-3.174477	0.513133	0.370179
С	-3.532906	-0.752423	-1.184933
0	-4.856897	-0.576522	-0.894402
Н	-3.156570	-0.086487	-1.975288
Н	-3.293018	-1.792702	-1.433802
0	-4.525356	1.526094	0.250970
Н	-5.023670	1.646560	1.069809
Н	-4.8899999	0.439272	-0.381074
С	-2.844056	-1.401420	1.133326
Н	-2.289826	-2.301740	0.860833
Η	-2.475271	-1.007529	2.079531
Н	-3.906283	-1.627244	1.221849

Coordinates of I8 (0 imaginary frequencies, -728.141628 hartree)

С	-3.488607	-1.987175	-0.214362
С	-4.576473	-1.194917	0.219586
С	-4.429997	0.172724	0.439648
С	-3.164693	0.733016	0.216926
С	-2.051373	-0.045310	-0.216593
С	-2.233191	-1.426242	-0.432656
N	-2.728894	2.034889	0.340635
С	-1.390881	2.100750	-0.001053
С	-0.926582	0.852101	-0.349040
С	0.474843	0.498307	-0.766345
С	1.284899	-0.144821	0.376032
N	2.683986	-0.438398	0.006913
Н	-3.638296	-3.050554	-0.378324
Н	-5.544078	-1.660557	0.383102
Н	-5.265452	0.782865	0.770567
Н	-1.406157	-2.047590	-0.765454
Н	-3.296283	2.821302	0.619092

Η	-0.867029	3.046472	0.025320
Η	0.435567	-0.180903	-1.625751
Н	0.999637	1.400787	-1.100023
Η	1.304075	0.554704	1.218096
Н	0.775133	-1.059357	0.724542
Н	3.607234	1.054268	-0.592322
С	3.498353	-0.715292	1.201327
0	4.884012	-0.675517	0.911510
Η	3.232951	0.030339	1.960597
Η	3.305131	-1.719984	1.606257
0	4.332658	1.734689	-0.613591
Н	4.633774	1.783245	-1.530657
Н	5.072613	0.196381	0.515036
С	2.794002	-1.535010	-0.969116
Η	2.302920	-2.452934	-0.605220
Н	2.338458	-1.246850	-1.918254
Н	3.849007	-1.749225	-1.148923

Coordinates of **I9_TS** (1 imaginary frequency, -841.469690 hartree)

С	4.507365	1.748644	-0.685254
С	5.563447	0.825405	-0.507968
С	5.310325	-0.513818	-0.220540
С	3.970633	-0.910762	-0.111186
С	2.888684	0.001809	-0.281908
С	3.178158	1.349744	-0.574785
Ν	3.423108	-2.148445	0.152528
С	2.045547	-2.046385	0.150905
С	1.665905	-0.748563	-0.109753
С	0.259400	-0.222612	-0.179838
С	-0.141320	0.529379	1.108968
Ν	-1.500072	1.095141	1.075230
С	-2.523049	0.436723	1.598864
0	-3.236399	-0.793796	0.380770
С	-1.729593	2.244775	0.194455
Η	4.740468	2.785334	-0.910866
Η	6.590792	1.165972	-0.599155
Η	6.121086	-1.224130	-0.087229

Η	2.377209	2.070651	-0.714876
Н	3.941052	-3.000315	0.308000
Η	1.432920	-2.918950	0.331708
Н	0.157635	0.450087	-1.039861
Н	-0.441400	-1.048379	-0.338160
Н	-0.085330	-0.149900	1.963414
Н	0.552478	1.355208	1.295168
Н	-2.293986	-0.292809	2.366306
Н	-3.455749	0.978715	1.696617
Н	-3.070622	-1.694361	0.698865
Н	-0.940681	2.983079	0.356351
Н	-1.727165	1.946726	-0.858697
Н	-2.694144	2.696210	0.430886
0	-5.626774	-0.440714	0.119564
С	-6.051578	-0.382926	-1.096727
0	-7.225336	-0.193716	-1.447493
Н	-4.347548	-0.654174	0.250269
Η	-5.273739	-0.518518	-1.877170

Coordinates of **I9** (0 imaginary frequencies, -841.474312 hartree)

С	4.743397	1.557315	-0.837529
С	5.741678	0.591747	-0.573163
С	5.408216	-0.698805	-0.169274
С	4.046996	-1.002478	-0.032508
С	3.022631	-0.045399	-0.289292
С	3.392428	1.251197	-0.699609
Ν	3.425727	-2.177423	0.336586
С	2.058406	-1.995541	0.318477
С	1.758487	-0.705000	-0.058082
С	0.385140	-0.107868	-0.183214
С	0.019829	0.723255	1.065269
Ν	-1.335310	1.322247	0.972214
С	-2.334510	0.814246	1.600413
0	-3.404387	-0.872957	0.131956
С	-1.495454	2.476991	0.070629
Н	5.038840	2.553634	-1.153601
Н	6.787625	0.860451	-0.688954

Η	6.173938	-1.442705	0.030563
Η	2.637071	2.003648	-0.909353
Н	3.892063	-3.041829	0.567981
Η	1.394245	-2.810130	0.572632
Η	0.334767	0.524132	-1.076689
Н	-0.360604	-0.899544	-0.305233
Η	0.038335	0.093494	1.955589
Η	0.722525	1.547098	1.209978
Η	-2.177114	-0.016953	2.274794
Η	-3.309810	1.275728	1.527737
Η	-3.257436	-1.777633	0.438870
Η	-0.784879	3.251169	0.365381
Η	-1.289853	2.166320	-0.955066
Η	-2.513199	2.856484	0.141278
0	-5.996514	-0.442508	0.133767
С	-6.642767	-0.553966	-0.957395
0	-7.866632	-0.358213	-1.135260
Н	-4.404132	-0.741607	0.116288
Н	-6.041904	-0.860262	-1.845820

Coordinates of **I9'** (0 imaginary frequencies, -765.028481 hartree)

Ν	1.338520	-0.019525	-0.233319
Ν	-2.893553	-1.485549	0.678498
С	0.981995	1.295732	-0.023454
С	1.742826	2.370122	0.460800
С	1.118063	3.610644	0.563872
С	-0.235129	3.783479	0.191491
С	-0.989772	2.716708	-0.289162
С	-0.385589	1.448069	-0.401735
С	-0.837857	0.153384	-0.852026
С	-2.201818	-0.210799	-1.346561
С	-3.259720	-0.370704	-0.217805
С	-2.036832	-1.312594	1.619826
С	0.250693	-0.695473	-0.721653
Η	2.276249	-0.438756	-0.053614
Н	2.783056	2.238875	0.743525
Н	1.681138	4.462104	0.935254

Η	-0.689823	4.765859	0.281879
Н	-2.027244	2.867187	-0.576110
Н	-2.165697	-1.133006	-1.935301
Н	-2.599311	0.566987	-2.008844
Н	-3.325007	0.537342	0.382405
Н	-4.242509	-0.590822	-0.635504
Н	-1.704293	-2.159939	2.208966
Н	-1.676249	-0.314770	1.838269
Η	0.325712	-1.746076	-0.969562
С	4.174545	-2.224951	0.064470
0	3.875631	-1.011680	0.290690
0	3.428796	-3.127721	-0.388049
С	-3.437044	-2.814310	0.346748
Η	-2.995301	-3.564812	0.999189
Η	-4.520135	-2.786930	0.479256
Η	-3.204392	-3.038928	-0.695775
Н	5.227453	-2.509432	0.299731

Coordinates of I10_TS (1 imaginary frequency, -765.019470 hartree)

Ν	0.097741	1.117523	0.553717
N	-1.759108	-2.029865	-0.674313
С	1.397838	0.905899	0.208438
С	2.378816	1.826257	-0.216647
С	3.637411	1.328573	-0.509119
С	3.944884	-0.056852	-0.400604
С	2.988262	-0.967486	0.006544
С	1.690672	-0.493990	0.324758
С	0.499541	-1.131224	0.759062
С	0.170673	-2.573025	0.795584
С	-0.648361	-2.946113	-0.513317
С	-1.421253	-0.730708	-0.843255
С	-0.501033	-0.111407	0.818309
Η	-0.444230	2.015735	0.492631
Η	2.153706	2.884023	-0.304225
Η	4.416114	2.013992	-0.830613
Η	4.947674	-0.395071	-0.641863
Η	3.226697	-2.023398	0.091570

Η	-0.443650	-2.828675	1.664165
Н	1.067133	-3.197571	0.815422
Н	0.017717	-2.866218	-1.375846
Н	-1.016678	-3.970187	-0.442543
Н	-2.220459	0.008093	-0.838955
Н	-0.600851	-0.537026	-1.529634
Н	-1.382006	-0.123982	1.449711
С	-2.586400	3.170969	-0.081567
0	-1.417483	3.385411	0.370370
0	-3.095135	2.065072	-0.389444
С	-3.012107	-2.370129	0.007783
Н	-3.763361	-1.613345	-0.218509
Н	-3.363570	-3.339149	-0.351759
Н	-2.876328	-2.426561	1.095653
Н	-3.221060	4.077285	-0.214258

Coordinates of I10 (0 imaginary frequencies, -765.024442 hartree)

Ν	-0.066197	1.034846	-0.295998
N	1.911008	-2.039670	0.643518
С	-1.379737	0.856530	-0.118511
С	-2.384538	1.816472	0.174893
С	-3.674691	1.358322	0.315006
С	-4.025029	-0.027472	0.183919
С	-3.071398	-0.972898	-0.095256
С	-1.717648	-0.546955	-0.258780
С	-0.536957	-1.224220	-0.534868
С	-0.217980	-2.663029	-0.563797
С	0.789160	-2.954035	0.630233
С	1.513656	-0.667818	0.745073
С	0.566704	-0.238114	-0.504475
Н	0.462155	1.952814	-0.250785
Н	-2.137759	2.867034	0.279769
Н	-4.465351	2.070001	0.533628
Н	-5.063131	-0.317160	0.307718
Н	-3.332093	-2.020985	-0.200665
Н	0.288271	-2.933992	-1.497282
Н	-1.105530	-3.291468	-0.457833

Η	0.236277	-2.859289	1.570084
Η	1.147473	-3.981827	0.543089
Η	2.368376	0.010517	0.736906
Η	0.922037	-0.505860	1.650537
Η	1.211155	-0.231888	-1.389379
С	2.514627	3.291238	0.012974
0	1.258227	3.383568	-0.173000
0	3.195147	2.241607	0.092225
С	2.972157	-2.324361	-0.323423
Н	3.813107	-1.650565	-0.144222
Η	3.317455	-3.352118	-0.187909
Н	2.654348	-2.206313	-1.372647
Η	3.052581	4.261504	0.114619

Coordinates of P3 TS (1 imaginary frequency, -765.008688 hartree)

Ν	0.745810	-0.037623	-1.645034	
С	1.876043	-0.112382	-0.908742	
С	3.225393	0.036593	-1.302388	
С	4.188650	-0.127829	-0.326494	
С	3.862410	-0.422885	1.032804	
С	2.551752	-0.548639	1.433790	
С	1.525923	-0.383909	0.461732	
С	0.127279	-0.434397	0.521690	
С	-0.814135	-0.766633	1.622703	
С	-1.971931	-1.624069	1.067571	
С	-1.623328	-0.911718	-1.234538	
С	-0.398770	-0.103378	-0.779821	
Н	0.710606	0.294785	-2.599512	
Н	3.489926	0.258218	-2.330853	
Н	5.235419	-0.031607	-0.599148	
Н	4.666682	-0.541982	1.751193	
Н	2.298896	-0.763929	2.466954	
Н	-1.220096	0.177653	2.013364	
Н	-0.307825	-1.284981	2.441872	
Н	-1.603005	-2.644202	0.846799	
Н	-2.748864	-1.717063	1.831446	
Н	-2.116447	-0.414922	-2.075565	

Η	-1.286624	-1.907672	-1.580218
Η	-0.803744	1.056806	-0.663263
С	-1.557790	3.062880	0.261637
0	-1.529358	2.616902	1.422907
0	-1.285828	2.437999	-0.826679
Η	-1.848040	4.124545	0.106028
С	-3.793941	-1.690222	-0.532460
Η	-4.513955	-1.679934	0.290627
Η	-4.238866	-1.168181	-1.384738
Η	-3.616805	-2.741633	-0.824925
Ν	-2.568824	-1.004603	-0.121366

Coordinates of P3 (0 imaginary frequencies, -765.046152 hartree)

0.574985	-1.392234	-1.297066
1.730921	-0.994846	-0.647773
3.071200	-1.114889	-1.033162
4.039213	-0.621987	-0.158876
3.680316	-0.022166	1.068660
2.344678	0.101808	1.445472
1.344322	-0.385000	0.582937
-0.097810	-0.429721	0.633460
-1.075757	-0.029667	1.703247
-2.433056	-0.700267	1.430404
-1.940727	-1.352859	-0.862051
-0.516067	-1.046426	-0.524892
0.534644	-1.818499	-2.211368
3.347396	-1.577662	-1.976174
5.088633	-0.702404	-0.426996
4.460817	0.348840	1.726763
2.079736	0.567516	2.390703
-1.199744	1.060940	1.738870
-0.716615	-0.336164	2.693644
-2.387034	-1.766309	1.728226
-3.210218	-0.227297	2.037881
-2.164892	-1.097350	-1.905046
-2.121170	-2.442672	-0.754132
-0.344910	1.390276	-0.767806
	0.574985 1.730921 3.071200 4.039213 3.680316 2.344678 1.344322 -0.097810 -1.075757 -2.433056 -1.940727 -0.516067 0.534644 3.347396 5.088633 4.460817 2.079736 -1.199744 -0.716615 -2.387034 -3.210218 -2.164892 -2.121170 -0.344910	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-0.406153	3.305573	-0.835135
0	-0.510756	3.484293	0.361890
0	-0.315302	2.115533	-1.434548
Η	-0.373568	4.112367	-1.578537
С	-4.219422	-0.948369	-0.197823
Η	-4.869927	-0.306567	0.403100
Η	-4.480281	-0.811132	-1.251957
Η	-4.424657	-2.001404	0.072274
Ν	-2.823515	-0.573220	0.016354

12. References

- S1 A. Kumar, A. K. Pandiakumar and A. G. Samuelson, *Tetrahedron*, 2014, 70, 3185.
- S2 A. V. Lygin and A. de Meijere, *Eur. J. Org. Chem.*, 2009, 5138.
- S3 D. Liu, Z. Hu, Y. Zhang, M. Gong, Z. Fu and W. Huang, *Chem. Eur. J.*, 2019, 25, 11223.
- S4 C. Liu, Z. Sun, F. Xie, G. Liang, L. Yang, Y. Li, M. Cheng, B. Lin and Y. Liu, *Chem. Commun.*, 2019, 55, 14418.
- S5 J. Quan, H. Yang, F. Qin, Y. He, J. Liu, Y. Zhao, C. Ma and M. Cheng, *Eur. J. Med. Chem.*, 2023, 253, 115318.
- S6 H. Dong, R. T. Latka and T. G. Driver, Org. Lett., 2011, 13, 2726.
- S7 A. L. Pumphrey, H. Dong and T. G. Driver, *Angew. Chem., Int. Ed.*, 2012, **51**, 5920.
- S8 J. D. White, Y. Li and D. C. Ihle, J. Org. Chem., 2010, 75, 3569.
- S9 K. Okada, K. Ojima, H. Ueda and H. Tokuyama, J. Am. Chem. Soc., 2023, 145, 16337.
- S10 A. A. El-Gendy and J. Lehmann, Arch. Pharm., 1987, 320, 698.
- S11 L. Chen, J. Xie, H. Song, Y. Liu, Y. Gu, L. Wang and Q. J. Wang, Agric. Food Chem., 2016, 64, 6508.
- S12 M. J. Kornet and A. P. Thio, J. Med. Chem. 1976, 19, 892.
- S13 D. E. Lizos and J. A. Murphy, Org. Biol. Chem. 2003, 1, 117.