Supplementary information

Multifunctional thermoregulating and water repellent cellulosic textile

Zahra Madani¹, Hossein Baniasadi², Pedro E. S. Silva¹, Maija Vaara¹, Marike Langhans¹, Inge Schlapp-Hackl³, Lars Evenäs^{4,5,6}, Michael Hummel³, Jaana Vapaavuori^{1*}

¹Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, Finland

²Department of Chemical and Metallurgical Engineering, Polymer Synthesis Technology, School of Chemical Engineering, Aalto University, Kemistintie 1, Espoo, Finland

³Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland

⁴Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden

⁵Wallenberg Wood Science Centre, Chalmers University of Technology, Gothenburg, Sweden

⁶FibRe – Centre for Lignocellulose-based Thermoplastics, Chalmers University of Technology, Gothenburg, Sweden

Corresponding author: jaana.vapaavuori@aalto.fi

Figure S1. Preparation of swatch from developed fibers.

Figure S2. Thermal camera setup for thermal measurement.

re S3. Cellulose elemental calibration curve.

Figure S4. The leak test (a) before putting it in the oven, and (b) after putting it in the oven at 80°C for 4h.

igure S5. DSC analysis of the sample (50% MA) before and after the leak test.

Figure S7. Water contact angle measurement of plain cellulose as soon as exposing to the water droplet.

Figure S8. Water contact angle measurement of OSA-g-textile after washing test after 60 seconds.

Figure S9. DSC analysis of OSA-g-textile including 50% MA after washing.