Supporting Information

Activating dynamic Zn-ZnO interface with controllable oxygen vacancy in CO₂ electroreduction for boosting CO production

Xueqi Liu,^{a,#} Jingmin Ge,^{a,#} Shiying Li,^b Huanhuan Yang,^{a,*} Huiwen Tian,^a Hongpo Liu,^a Yaxi Li,^a Xiaoli Zheng,^a Yapeng Tian,^a Xinwei Cui,^a and Qun Xu,^{a,*}

^a Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450002, China

^b School of Mechanics and Safety Engineering, School of Materials Science and Engineering,

Zhengzhou University, Zhengzhou 450001, China

^c State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China

[#] These authors contributed equally.

* Corresponding authors: <u>yanghh@zzu.edu.cn</u> (H. Yang); <u>qunxu@zzu.edu.cn</u> (Q. Xu)

Keywords: Oxygen vacancies Zn-ZnO interface Electrochemical CO₂ reduction Carbon monoxide Dynamic evolution

Figure S1. FE_{CO} and the current density of ZnO-650 at -1.3 V (*vs.* RHE) in CO₂-saturated 0.1 M KHCO₃ at the initial 100 min.

Figure S2. XRD pattern of the Zn₅(OH)₆(CO₃)₂ precursor.

Figure S3. SEM images of (a) ZnO-200; (b) Zn@ZnO-200; (c) ZnO-350; (d) Zn@ZnO-350; (e) ZnO-500; (f) Zn@ZnO-500; (g) ZnO-650; (h) Zn@ZnO-650; (i) ZnO-800 and (j) Zn@ZnO-800.

Figure S4. (a) (HR)TEM images of Zn@ZnO-650 taken after pre-treatment for 40 min at different regions; and (b) (HR) TEM images of Zn@ZnO-650 taken after pre-treatment for 10 min at different regions.

Figure S5. Enlarged XRD patterns at 2θ ranging from 35.5° to 44.0° of Zn@ZnO-650 with different pre-treatment time for 10, 20, 40 min.

Figure S6. In situ EPR spectra of OH[←] were recorded in a CO₂-saturated 0.1 M KHCO₃ solution containing 100 mM DMPO for: (a) Zn@ZnO-650 with different pre-treatment time; and (b) comparison between Zn@ZnO-650 and Zn@ZnO-200.

It has been demonstrated that the oxide-derived metallic species during CO_2RR could be spontaneously re-oxidized due to the oxygen sources of inevitable dissolved oxygen or the formed oxidizing species like OH⁺⁻radicals in electrolyte¹. Herein, 40 min of electrochemical pre-treatment of ZnO-650 and ZnO-200 at -1.3 V vs. RHE was performed in CO₂-saturated 0.1 M KHCO₃ solution containing 100 mM DMPO as spin trapping agent (5,5-Dimethyl-1-pyrroline N-oxide). As shown in Figure S6a, the signals of DMPO-OH gradually increased with the pre-treatment time till 40 min, suggesting a continuous production of OH⁺⁻. Taking ZnO-200 as a comparative sample (Figure S6b), the intensity of DMPO-OH signals at pre-treatment for 20 and 40 min were weakened, manifesting that less OH⁺⁻ formation in ZnO-200 system. More OH⁺⁻ generated in the pre-treatment process of ZnO-650 correspond to more abundant Zn-ZnO interface observed in TEM images, proving that OH⁺⁻ is the most likely oxidizing species that leads to the re-oxidation of Zn and the formation of the Zn–ZnO interface.

The reaction system and conditions of CO_2RR , including reactor, CO_2 flow rate, KHCO₃ electrolyte, applied potential and pre-treatment time, are same for all ZnO-*T* samples in this work. Thus, the effect of trace amount of oxygen in electrolyte on the re-oxidation of different ZnO-*T* derived Zn might be ignored. The difference of Zn-ZnO interface and oxygen vacancies in Zn@ZnO-*T* is most likely due to the re-oxidation of Zn by oxidizing OH⁻⁻ forming in electrolyte.

Figure S7. The relative concentrations of oxygen vacancies in Zn@ZnO-650 take after pretreatment for different time at -1.3 V (*vs.* RHE) in CO₂-saturated 0.1 M KHCO₃. The data for 960 min calculated based on the O 1s XPS spectrum of Zn@ZnO-650 reaction at -1.2 V (*vs.* RHE) in CO₂-saturated 0.1 M KHCO₃ for 960 min.

Figure S8. Experimental (points) and fitting (lines) Fourier transform Zn K-edge EXAFS spectra for (a) ZnO-650(0min), (b) Zn@ZnO-650(10min), (c) Zn@ZnO-650(20min) and (d) Zn@ZnO-650(40min), shown in k³-weighted k-space; (e)ZnO-650(0min), (f) Zn@ZnO-650(10min), (g) Zn@ZnO-650(20min) and (h) Zn@ZnO-650(40min), shown in k³-weighted R-space. All of the Fourier transform EXAFS data for the k³-weighted are plotted without phase correction.

Figure S9. XRD patterns of (a) $Zn_5(OH)_6(CO_3)_2$, ZnO-*T* and (b) Zn@ZnO-*T*; Roman spectra of (c) $Zn_5(OH)_6(CO_3)_2$, ZnO-*T* and (d) Zn@ZnO-*T*.

Figure S10. O 1s XPS spectra of (a) $Zn_5(OH)_6(CO_3)_2$, ZnO-*T* and (b) Zn@ZnO-*T*; (c) Relative concentrations of oxygen vacancies for different samples.

Figure S11. (a) (HR)TEM images of Zn@ZnO-200 at the regions for Zn-ZnO interface; (b) (HR)TEM images of Zn@ZnO-200 at the regions for undecomposed $Zn_5(OH)_6(CO_3)_2$; (c) (HR)TEM images of Zn@ZnO-800 with obvious Zn-ZnO interfacial structure.

Figure S12. EPR results for Zn@ZnO-650 and Zn@ZnO-800.

Figure S13. Cyclic voltammograms curves were performed at various scan rates (20, 40, 60, 80, and 100 mV·s⁻¹) on (a) Zn@ZnO-200; (b) Zn@ZnO-350; (c) Zn@ZnO-500; (d) Zn@ZnO-650 and (e) Zn@ZnO-800 in a non-Faraday region of 0.17–0.27 V (*vs.* RHE) in CO₂-saturated 0.1 M KHCO₃.

Figure S14. LSV curves of Zn@ZnO-T in CO₂- and Ar-saturated 0.1 M KHCO₃.

Figure S15. FEs for different products and current density at different potentials for (a) Zn@ZnO-200; (b) Zn@ZnO-350; (c) Zn@ZnO-500; (d) Zn@ZnO-800.

Figure S16. XPS spectra of Zn@ZnO-650 after long-term test for 16 h: (a) Zn 2p; (b) O 1s.

Figure S17. Long-term test of carbon paper electrode without Zn@ZnO-650 catalyst at -1.2 V (*vs.* RHE).

Figure S18. The in situ ATR-SEIRAS testing device.

Figure S19. Signal of hydrogen in gas chromatography.

We calculated the hourly hydrogen mass production of Zn@ZnO-650 and Zn@ZnO-200 based on the experimental data from gas chromatography using the following formula:

$$m = C_i \cdot v \cdot \mathbf{M} \cdot V_{\mathbf{m}}^{-1} \cdot \mathbf{t}^{-1}$$

where *m* represents the mass production of the target gas, with the unit of $g \cdot h^{-1}$; C_i is the volume concentration of the target gas calculated from the peak area obtained by the gas chromatograph, with the unit of ppm; *v* refers to the gas flow rate, usually in the unit of $m^3 \cdot h^{-1}$; M is the molar mass of the target gas, with the unit of $g \cdot mol^{-1}$; Vm is the molar volume of the gas, which is taken as $0.0224 \text{ m}^3 \cdot mol^{-1}$ at standard temperature and pressure; t is the reaction time, with the unit of h. The calculation results show that at -1.2 V vs. RHE, the mass production of H₂ on Zn@ZnO-200 is $5.78 \times 10^{-5} \text{ g} \cdot h^{-1}$, and that on Zn@ZnO-650 is $3.76 \times 10^{-5} \text{ g} \cdot h^{-1}$. Thus, the abundant Zn-ZnO interface with oxygen vacancies in Zn@ZnO-650 can effectively inhibit the occurrence of HER.

Figure S20. Models of (a) Zn@ZnO with Zn-ZnO interface and (b) $Zn@ZnO-O_v$ with abundant oxygen vacancies in ZnO layer. Electron density of (c) Zn@ZnO with Zn-ZnO interface and (d) Zn@ZnO-Ov with abundant oxygen vacancies in ZnO layer. The dashed area indicates the oxygen vacancies. (e) Models of different species (*CO₂, *CO, *COOH and *H) adsorbed on $Zn@ZnO-O_v$ surface.

Figure S21. Differential electron densities of Zn and ZnO layers.

Sample ^a	Path	N^b	<i>R^c</i> /Å	$\sigma^2/{\rm \AA}^2$ d
ZnO-650 (0min)	Zn-O	3.33	1.96	0.003
Zn@ZnO-650 (10min)	Zn-O	2.40	1.97	0.005
	Zn–Zn	0.80	2.66	0.004
	Zn-O-Zn	10.7	3.24	0.014
Zn@ZnO-650 (20min)	Zn-O	1.97	1.96	0.007
	Zn–Zn	2.12	2.66	0.010
	Zn-O-Zn	4.45	3.21	0.012
Zn@ZnO-650 (40min)	Zn-O	1.10	1.96	0.006
	Zn–Zn	5.50	2.67	0.009

 Table S1. Fitted EXAFS results for ZnO-650 and Zn@ZnO-650 with different pre-treatment time

 with Zn and ZnO as reference standards.

^a S_o^2 was fixed as 0.95. ΔE_0 was refined as a global fit parameter, all within ± 10 eV. Data ranges: $3.0 \le k \le 11.0$ Å⁻¹, $1.0 \le R \le 3.0$ Å. The numbers of variable parameters are 7, 10, 10 and 7, out of a total of 11.1, 9.8, 9.8 and 9.8 independent data points. R factor are 1.6%, 1.7%, 0.2% and 3.5% respectively. ^b CN is the coordination number. ^c *R* is the distance between absorbent and backscatter atoms. ^d σ^2 is the Debye-Waller factor.

Catalysts	Potential (V vs. RHE)	Electrolyte	Products (Major)	FE (%)	Current density (mA cm ⁻²)	Stability (h)	Cell type	References
nanoscale Zn	-1.1	0.5 M NaHCO ₃	CO	57	-	-	H-cell	2
RE-Zn-CO ₂	-0.95	0.5 M KHCO_3	CO	78.5	-6.5	20	H-cell	3
hexagonal Zn	-1.1	0.5 M KHCO ₃	CO	83.6	-24.4	-	H-cell	4
Zn nanosheets	-1	0.1 M KHCO ₃	CO	90	-9	9	H-cell	5
Zn dendrite	-1.1	0.5 M NaHCO ₃	CO	79	-17	3	H-cell	6
OD-Zn _{2.5}	-0.95	0.1 M KHCO ₃	CO	86	-200	6	H-cell	7
HP-Zn	-1.1	0.1 M KHCO ₃	CO	91.3	-10	8	H-cell	8
H-Zn-NPs	-0.96	0.1 M KHCO ₃	CO	94.2	-5.3	12	H-cell	9
Zn/ZnO	-2	0.1 M KHCO ₃	CO	85	-11.5	5	H-cell	10
V ₀ -rich ZnO	-1.1	0.1 M KHCO ₃	CO	93	-16.1	8	H-cell	11
Ni-doped ZnO	-1.2	0.1 M KHCO ₃	$\rm CO/H_2$	65	10	-	H-cell	12
ZnO/ZnAl ₂ O ₄	-1.05	0.5 M KHCO ₃	CO	93	-5.5	8	H-cell	13
Zn(101) polished Cu foam	-0.9	0.1 M KHCO ₃	$\rm CO/H_2$	85	-15	9	H-cell	14
Zn ₂ Al ₁ LDH	-1.4	0.1 M KHCO ₃	СО	77	-15	-	H-cell	15
F-ZL-LDH F-ZC-LDH	-1.3	0.1 M KHCO ₃	СО	89.29 89.87	-4.5 -6.5	3.5	H-cell	16
Ag-NDs/Zn-NLs	-1	0.1 M KHCO ₃	СО	85.2	-10	2	H-cell	17

 Table S2. Performances of Zn-based catalysts in CO₂RR.

Function interface	Transferred electrons
Zn→ZnO	+0.83e-
$Zn \rightarrow ZnO-O_v$	+0.93e-
$Zn@ZnO \rightarrow CO_2$	+0.84e-
$Zn@ZnO-O_v \rightarrow CO_2$	+1.29e-

Table S3. Electron transfer based on analysis of Bader charge calculations.

References

- 1 S. Mu, H. Lu, Q. Wu, L. Li, R. Zhao, C. Long and C. Cui, Nat. Commun. 2022, 13, 3694.
- 2 F. J. Quan, D. Zhong, H. C. Song, F. L. Jia and L. Z. Zhang, *J. Mater. Chem. A* **2015**, 3, 16409-16413.
- 3 D. L. T. Nguyen, M. S. Jee, D. H. Won, H. Jung, H. S. Oh, B. K. Min and Y. J. Hwang, *ACS Sustain. Chem. Eng.* **2017**, *5*, 11377-11386.
- 4 D. H. Won, H. Shin, J. Koh, J. Chung, H. S. Lee, H. Kim and S. I. Woo, *Angew. Chem. Int. Ed.* **2016**, 55, 9297-9300.
- 5 K. H. Liu, J. Z. Wang, M. M. Shi, J. M. Yan and Q. Jiang, *Adv. Energy Mater.* 2019, 9, 1900276.
- 6 J. Rosen, G. S. Hutchings, Q. Lu, R. V. Forest, A. Moore and F. Jiao, ACS Catal. 2015, 5, 4586-4591.
- 7 M. P. L. Kang, M. J. Kolb, F. Calle-Vallejo and B. S. Yeo, *Adv. Funct. Mater.* 2022, 32, 2111597.
- 8 W. Y. Wang, X. H. He, K. Zhang and Y. G. Yao, Chem. Commun. 2022, 58, 5096-5099.
- 9 J. Xiao, M. R. Gao, S. B. Liu and J. L. Luo, ACS Appl. Mater. Interfaces 2020, 12, 31431-31438.
- 10 Q. Xiang, F. Li, J. L. Wang, W. L. Chen, Q. S. Miao, Q. F. Zhang, P. Tao, C. Y. Song, W. Shang, H. Zhu, T. Deng and J. B. Wu, *ACS Appl. Mater. Interfaces* **2021**, 13, 10837-10844.
- 11 Z. G. Geng, X. D. Kong, W. W. Chen, H. Y. Su, Y. Liu, F. Cai, G. X. Wang and J. Zeng, *Angew. Chem. Int. Ed.* **2018**, 57, 6054-6059.
- 12 J. L. Wang, Q. Xiang, W. C. Zhang, F. L. Shi, F. Li, P. Tao, C. Y. Song, W. Shang, T. Deng and J. B. Wu, *ACS Appl. Energ. Mater.* **2022**, *5*, 5531-5539.
- 13 L. Wang, Y. Gao, S. X. Yu, Y. Sun, Z. Yuan, Y. F. Liang and L. Li, *Catal. Lett.* **2024**, 154, 4032-4043.
- 14 B. H. Qin, Y. H. Li, H. Q. Fu, H. J. Wang, S. Z. Chen, Z. L. Liu and F. Peng, ACS Appl. Mater. Interfaces 2018, 10, 20530-20539.
- 15 N. Yamaguchi, R. Nakazato, K. Matsumoto, M. Kakesu, N. C. Rosero-Navarro and A. Miura, K. Tadanaga, *J. Asian Ceram. Soc.* **2023**, 11,406-411.
- 16 J. Y. Wang, T. X. Liu, R. S. Xu and Y. P. Zhang, Catal. Lett. 2024, 154, 2687-2700.
- 17 S. Y. Yang, M. H. Jiang, M. Wang, L. Wang, X. M. Song, Y. D. Wang, Z. X. Tie and Z. Jin, *Nano Res.* **2023**, 16, 8910-8918.