Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2025

Supporting Information

One-pot Oximation-Beckmann Rearrangement under Mild, Aqueous Micellar Conditions

Maryam Nabi,^a Kirti Sharma,^a Raj S. Wandre^a and Amol B. Gade*^{a,b}

^aNatural Products and Medicinal Chemistry Division CSIR – Indian Institute of Integrative Medicine Canal Road, Jammu – 180 001, India. E-mail: <u>amol.gade@iiim.res.in</u>.

^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad- 201002, India.

Table of Contents

1.	Ge	eneral Information			
-	l.1.	Practical Considerations			
-	L.2.	Materials			
-	L.3.	Instrumentation			
2.	0	ptimization StudiesS4			
2	2.1.	Optimization for the Beckmann RearrangementS4			
2	2.2.	Real-Time pH Monitoring of ReactionS			
2	2.3.	Optimization for One-pot Oximation-Beckmann Rearrangement			
3.	G	eneral Procedure for One-pot Oximation-Beckmann Rearrangement			
	3.1.	General Procedure for Oximation-Beckmann Rearrangement of Ketones			
	3.2.	General Procedure for Oximation-Beckmann Rearrangement of Aldehydes			
4.	Pr	rocedure for Gram Scale Synthesis of ε-Caprolactam (2x)St			
5.	Pr	ocedure for Gram Scale Synthesis of Paracetamol (20)			
6.	5. Calculation of the Green Chemistry Metrics for the gram scale synthesis of Paracetamol				
7.	Recycling of the Reaction Medium				
8.	Cł	naracterization Data			
9.	Re	eferences			
10.	N	MR Spectra			

1. General Information

1.1. Practical Considerations

Unless otherwise stated, all reactions were performed in oven-dried 5 mL glass V-vials or reaction flask equipped with a PTFE-coated magnetic stir bar. All experiments were monitored by analytical pre-coated silica gel plates thin layer chromatography (TLC). After elution, plate was visualized under UV illumination at 254 nm for UV active materials, followed by staining with alkaline potassium permanganate or using cerium ammonium molybdate solution with subsequent charring on a hot plate for enhanced visualization. Solvents were removed under reduced pressure and gently heated in a water bath at 40 °C. Column chromatography was conducted using 100–200 mesh silica gel, with columns packed as slurry in hexanes and equilibrated with the appropriate solvent mixture before use.

1.2. Materials

Materials obtained from commercial suppliers were used without further purification. All surfactant solutions were prepared in the Type I water from Milli-Q system (Direct-Q \mathbb{R} 3) was used for reactions and extractions while all other solvents for chromatography were of LR grade. Analytical thin-layer chromatography (TLC) was executed on Silica gel 60 F₂₅₄ pre-coated plates. NMR solvents such as chloroform-d (CDCl₃), and dimethyl sulfoxide-d₆ (DMSO-d₆) were obtained from Sigma-Aldrich. Acetophenone oxime (**1a**) for initial optimization was prepared according to the literature known procedure.¹

1.3. Instrumentation

For routine analysis, liquid chromatography-mass spectrometry (LC-MS) was performed using LC-Q-ToF Waters Synapt. High-resolution mass spectrometry (HRMS) was recorded using Agilent UHD 6540 LC-Q-TOF mass spectrometer with electrospray ionization (ESI). Routine NMR spectra (¹H NMR, ¹³C NMR and DEPT) were recorded on Bruker 400 MHz spectrometer. Spectral data include chemical shifts (multiplicity, coupling constants in Hz, integration). Chemical shifts are in ppm (δ), and ¹H resonances are referenced to residual solvent peaks for CDCl₃ (7.26 ppm) or DMSO-d₆ (2.50 ppm). ¹³C NMR spectra were recorded with proton decoupling and resonances reported in ppm relative to solvent peaks for CDCl₃ (77.06 ppm) or DMSO-d₆ (39.52 ppm). Melting points are uncorrected and recorded using digital melting point apparatus.

2. Optimization Studies

2.1. Optimization for the Beckmann Rearrangement

entry ^a	solvent	activating agent	% yield ^b
1	2 wt % TPGS-750-M	CF ₃ COOH	trace ^c
2	2 wt % TPGS-750-M	Pivaloyl chloride	trace ^c
3	2 wt % TPGS-750-M	CH ₃ COOH	0
4	2 wt % TPGS-750-M	PhCOOH	0
5	2 wt % TPGS-750-M	<i>p</i> -TsCl	69
6	2 wt % TPGS-750-M	MsCl	47
7	2 wt % TPGS-750-M	PTSA	0
8	2 wt % TPGS-750-M	$ZnCl_2$	trace ^{c,d}
9	2 wt % TPGS-750-M	FeCl ₃ •6H ₂ O	trace ^{c,d}
10	2 wt % Tween-20	<i>p</i> -TsCl	42
11	2 wt % Saponin	<i>p</i> -TsCl	39
12	2 wt % PS-750-M	<i>p</i> -TsCl	70
13	2 wt % Brij® 35	<i>p</i> -TsCl	83
14	2 wt % SDS	<i>p</i> -TsCl	56
15	2 wt % CTAB	<i>p</i> -TsCl	68
16	water	<i>p</i> -TsCl	34
17	2 wt % Brij® 35	PTSA	0
18	2 wt % Brij® 35	aq. 2M HCl	0
19	2 wt % Brij® 35	<i>p</i> -TsCl	91 ^e
20	2 wt % Brij® 35	2-MCBA	0^d

^{*a*}Reaction conditions: 2.0 mmol **1a**, 2.0 mmol activating agent, solvent (3 mL), 45 °C, 2 to 5 hours. ^{*b*}Isolated yields. ^{*c*}Did not observe the significant product formation by TLC hence not isolated. ^{*d*}The reaction was performed using 5.0 mol% of activating agent. ^{*e*}The phosphate buffer powder (50 mg) was used as an additive. 2-MCBA = 2-methoxycarbonylphenyl boronic acid.

Fig S1: Structures of the surfactants.

2.2. Real-Time pH Monitoring of Reaction

Fig S2: Real-time Monitoring of pH.

2.3. Optimization for One-pot Oximation-Beckmann Rearrangement

	o Ja	NH ₂ OH•HCl (1.0 equiv) base (3.0 equiv) 2 wt % Brij [®] 35 in H ₂ O 45 ℃ Step 1	1a not isolated	$\begin{array}{c} \xrightarrow{p\text{-TsCl}(1.0 \text{ equiv})} \\ \hline 45^{\circ}\text{C}, 2\text{ h} \\ \text{Step 2} \\ 2\text{a} \end{array}$
	entry ^a		base	% yield ^b
			NaOAc	89
	2		KOAc	83
	3		NaOH	36
	4		NEt ₃	0
	5	с	NaOAc	31
	6	d	NaOAc	65
	7'	e	NaOAc	76

^{*a*}Reaction conditions: Step-1: 2.0 mmol acetophenone, 2.0 mmol hydroxylamine hydrochloride, 6.0 mmol base, 2 wt % Brij® 35 (3 mL), 45 °C, 2 to 5 hours. Step-2: 2.0 mmol *p*-TsCl, 45 °C, 2 to 4 hours. ^{*b*}Isolated yields. ^{*c*}Step-2 was performed using 0.2 equiv. of *p*-TsCl for 4 h. ^{*d*}The reaction was performed using 2.0 equiv. of NaOAc. ^{*e*}The reactions were performed at 25 °C.

3. General Procedure for One-pot Oximation-Beckmann Rearrangement

3.1. General Procedure for Oximation-Beckmann Rearrangement of Ketones

To a 5 mL screw top V-vial equipped with a PTFE-coated magnetic stir bar, ketone (2.0 mmol), hydroxylamine hydrochloride (2.0 mmol, 1 equiv.), sodium acetate (6.0 mmol, 3 equiv.) and 2 wt % Brij® 35 (3 mL) were added. The reaction vial was fitted with a cap and set to stir for 2-4 h in an aluminum heating block preheated to 45 °C. After complete consumption of the starting material, as monitored by TLC, reaction mixture was cooled to ambient temperature. Subsequently, *p*-TsCl (2.0 mmol, 1 equiv.) was added to the reaction mixture. The vial was capped and set to stir in an aluminum heating block preheated to 45 °C. Upon completion of the reaction (determined by TLC), the mixture was cooled to room temperature, followed by the addition of 2 mL of EtOAc. The mixture was briefly stirred before allowing phase separation. The organic layer was carefully extracted using a pipette, and the extraction was repeated twice for improved recovery. The combined organic layers were dried over anhydrous sodium sulfate, and volatiles were removed under reduced pressure. The resulting crude product was further purified by silica gel column chromatography using EtOAc/hexanes as the eluent.

3.2. General Procedure for Oximation-Beckmann Rearrangement of Aldehydes

To a 5 mL screw top V-vial equipped with a PTFE-coated magnetic stir bar, aldehyde (2.0 mmol), hydroxylamine hydrochloride (2.0 mmol, 1 equiv.), sodium acetate (6.0 mmol, 3 equiv.) and 2 wt % Brij® 35 (3 mL) were added. The reaction vial was fitted with a cap and set to stir for 2-4 h in an aluminum heating block preheated to 45 °C. After

complete consumption of the starting material, as monitored by TLC, reaction mixture was cooled to ambient temperature. Subsequently, *p*-TsCl (2.0 mmol, 1 equiv.) was added to the reaction mixture. The vial was capped and set to stir in an aluminum heating block preheated to 45 °C. Upon completion of the reaction (determined by TLC), the mixture was cooled to room temperature, followed by the addition of 2 mL of EtOAc. The mixture was briefly stirred before allowing phase separation. The organic layer was carefully extracted using a pipette, and the extraction was repeated twice for improved recovery. The combined organic layers were dried over anhydrous sodium sulfate, and volatiles were removed under reduced pressure. The resulting crude product was further purified by silica gel column chromatography using EtOAc/hexanes as the eluent.

The reaction for isatin was performed using the same procedure as described above.

4. Procedure for Gram Scale Synthesis of ε-Caprolactam (2x)

To a 50 mL round-bottom flask equipped with a PTFE-coated magnetic stir bar, cyclohexanone (20.0 mmol, 1.96 g), hydroxylamine hydrochloride (20.0 mmol, 1.39 g), sodium acetate (60.0 mmol, 4.92 g), and 2 wt % Brij® 35 (20 mL) were added. The reaction mass was stirred for 4 hours in an aluminum heating block preheated to 45 °C. After complete consumption of cyclohexanone, as monitored by TLC, the reaction mixture was cooled to ambient temperature. Subsequently, *p*-TsCl (20.0 mmol, 3.80 g) was added to the reaction mixture, and stirring was continued at 45 °C for 2 hours. Upon completion of the reaction (determined by TLC), the mixture was cooled to room temperature, followed by the addition of 20 mL of EtOAc. The mixture was briefly stirred before allowing phase separation. The organic layer was carefully extracted, and the extraction was repeated twice with the same volume of EtOAc. The combined organic layers were dried over anhydrous sodium sulfate, and volatiles were removed under

reduced pressure. The resulting crude product was further purified by silica gel column chromatography using EtOAc/hexanes as the eluent, affording ε -caprolactam (1.95 g, 86%) as a white solid.

5. Procedure for Gram Scale Synthesis of Paracetamol (20)

To a 250 mL round-bottom flask equipped with a PTFE-coated magnetic stir bar, 4-Hydroxyphenylethanone (50.0 mmol, 6.81 g), hydroxylamine hydrochloride (50.0 mmol, 3.47 g), sodium acetate (150.0 mmol, 12.30 g), and 2 wt % Brij® 35 (68 mL) were added. The reaction mass was stirred for 3 hours in an aluminum heating block preheated to 45 °C. After complete consumption of 4-Hydroxyphenylethanone, as monitored by TLC, the reaction mixture was cooled to ambient temperature. Subsequently, *p*-TsCl (50.0 mmol, 9.53 g) was added to the reaction mixture, and stirring was continued at 45 °C for 2 hours. Upon completion of the reaction (determined by TLC), the mixture was cooled to room temperature, followed by the addition of 20 mL of EtOAc. The mixture was briefly stirred before allowing phase separation. The organic layer was carefully extracted, and the extraction was repeated twice with the same volume of EtOAc. The combined organic layers were evaporated under reduced pressure. The resulting crude product was further purified by crystallization in ethanol (6.6 g, 87%) as a white solid.

6. Calculation of the Green Chemistry Metrics for the gram scale synthesis of Paracetamol

Sr. No	Reagents	Mol. Formula	Mol. Wt.	Equiv.	mmol	Quantity in g	
1	4'-Hydroxy acetophenone	$C_8H_8O_2$	136.15	1.0	50	6.81	
2	Hydroxylamine hydrochloride	$NH_2OH \cdot HCl$	69.49	1.0	50	3.47	
3	Sodium acetate	CH ₃ COONa	82.0343	3.0	150	12.30	
4	p-Toluenesulfonyl chloride	CH ₃ C ₆ H ₄ SO ₂ Cl	190.65	1.0	50	9.53	
5	Brij® 35	2 wt % in water (68 mL)				1.36	
6	Ethyl acetate	Recyclable, hence considering 10% lost as waste				5.41	
7	Ethanol	Recyclable, hence considering 10% lost as waste				0.79	
Product							
Sr. No	Product	Mol. Formula	Mol. Wt.	Quanti g	ty in	% Yield	
1	Paracetamol	$C_8H_9NO_2$	151.16	6.60)	87.3	

Amount of reagents = (6.81+3.47+12.30+9.53+1.36) g = 33.47 g

> Amount of final product = 6.6 g

Amount of waste* = (Amount of reagents - Amount of final product) + Solvent loss = (33.47 - 6.60) g + 5.41 g + 0.79 g = 33.07 g

E-factor =
$$\frac{\text{Amount of waste}}{\text{Amount of product}} = \frac{33.07 \text{ g}}{6.60 \text{ g}} = 5.0$$

$$PMI = \frac{\sum Mass (reactants + reagents + surfactant + water + solvents)}{Mass of Product}$$
$$= \frac{(6.81 + 3.47 + 12.30 + 9.53 + 68 + 54.12 + 7.9) g}{6.60 g} = 24.56$$
$$WWI = \frac{\sum Mass (process water)}{Amount of product} = \frac{66.64 g}{6.6 g} = 10.1$$

* For E-factor calculation, the loss of recyclable solvents (EtOAc, ethanol) was considered to be 10%²

7. Recycling of the Reaction Medium

Initial run: To a 5 mL screw top V-vial equipped with a PTFE-coated magnetic stir bar, 4-Hydroxy-3-methylacetophenone (2.0 mmol, 300 mg), hydroxylamine hydrochloride (1 equiv.), sodium acetate (3 equiv.) and 2 wt % Brij® 35 (3 mL) were added. The reaction vial was fitted with a cap and set to stir for 2 h in an aluminum heating block preheated to 45 °C. After complete consumption of the starting material, as monitored by TLC, reaction mixture was cooled to ambient temperature. Subsequently, p-TsCl (1 equiv.) was added to the reaction mixture. The vial was capped and set to stir in an aluminum heating block preheated to 45 °C. Upon completion of the reaction (determined by TLC), the mixture was cooled to room temperature, followed by the addition of 2 mL of EtOAc. The mixture was briefly stirred before allowing phase separation. The organic layer was carefully extracted using a pipette, and the extraction was repeated twice for improved recovery. The aqueous solution was retained for recycle. The combined organic layers were dried over anhydrous sodium sulfate, and volatiles were removed under reduced pressure. The resulting crude product was further purified by silica gel column chromatography using EtOAc/hexanes as the eluent, affording 2p as off white solid; $R_f =$ 0.29 (2:3; EtOAc:Hexanes); yield 91% (300 mg). Solvents used in silica gel chromatography was recovered and reused.

1st recycle: 4-Hydroxy-3-methylacetophenone (2.0 mmol, 300 mg), hydroxylamine hydrochloride (1 equiv.) and sodium acetate (3 equiv.) were added to the recovered aqueous layer. The reaction vial was fitted with a cap and set to stir for 2 h in an aluminum heating block preheated to 45 °C. After complete consumption of the starting material, as monitored by TLC, reaction mixture was cooled to ambient temperature. Subsequently, p-TsCl (1 equiv.) was added to the reaction mixture. The vial was capped and set to stir in an aluminum heating block preheated to 45 °C. Upon completion of the reaction (determined by TLC), the mixture was cooled to room temperature, followed by the addition of 2 mL of EtOAc. The mixture was briefly stirred before allowing phase separation. The organic layer was carefully extracted using a pipette, and the extraction was repeated twice for improved recovery. The aqueous solution was retained for further recycle. The combined organic layers were dried over anhydrous sodium sulfate, and volatiles were removed under reduced pressure. The resulting crude product was further purified by silica gel column chromatography using EtOAc/hexanes as the eluent, affording **2p** as off white solid; $R_f = 0.25$ (2:3; EtOAc:Hexanes); yield 89% (294 mg). Solvents used in silica gel chromatography was recovered and reused.

The remaining recycles were performed by employing a procedure as described above. Yield of **2p** after each recycle are: 2^{nd} recycle 90% (298 mg), 3^{rd} recycle 88% (277 mg), 4^{th} recycle 54% (178 mg).

8. Characterization Data

N-phenylacetamide $(2a)^3$

Compound **2a** was synthesized according to the general procedure 3.1 using acetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_f = 0.43$; 30% EtOAc/hexanes); yield: 89%, 241 mg; white solid; m.p. 114-116 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 9.92 (s, 1H), 7.58 (dd, J = 8.6, 1.0 Hz, 2H), 7.37 – 7.23 (m, 2H), 7.06 – 6.99 (m, 1H), 2.04 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ 168.26, 139.34, 128.66, 122.96, 118.96, 24.01.

*N-(*4-Isobutylphenyl)acetamide (2b)⁴

Compound **2b** was synthesized according to the general procedure 3.1 using 4'isobutylacetophenone, on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.54; 50% EtOAc/hexanes); yield: 88%, 337 mg; light yellow solid; m.p. 125-127 °C.

¹H NMR (400 MHz, DMSO-d₆): δ 9.84 (s, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.04 (d, J = 8.4 Hz, 2H), 2.36 (d, J = 7.2 Hz, 2H), 2.01 (s, 3H), 1.82 – 1.72(m, 1H), 0.83 (d, J = 6.4 Hz, 6H).
¹³C NMR (101 MHz, DMSO-d₆): δ 168.05, 137.10, 135.70, 129.04, 118.89, 44.06, 29.70, 23.95, 22.13.

N-(4-tert-Butylphenyl)acetamide (2c)⁵

Compound **2c** was synthesized according to the general procedure 3.1 using 4-tbutylacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.37; 50% EtOAc/hexanes); yield: 94%, 360.0 mg; white solid; m.p. 167-169 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 9.84 (s, 1H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 2.01 (s, 3H), 1.24 (s, 9H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.02, 145.23, 136.75, 125.22, 118.79, 33.96, 31.21, 23.90.

N-p-tolylacetamide (2d)⁵

Compound **2d** was synthesized according to the general procedure 3.1 using 4'methylacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_f = 0.30; 50\%$ EtOAc/hexanes); yield: 86%, 257 mg; white solid; m.p. 149-151 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 9.83 (s, 1H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.08 (d, *J* = 8.4 Hz, 2H), 2.24 (s, 3H), 2.01 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.03, 136.86, 131.82, 129.05, 118.99, 23.96, 20.44.

N-(2,5-dimethylphenyl)acetamide (2e)⁶

Compound **2e** was synthesized according to the general procedure 3.1 using 2,5dimethylacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.39; 20% EtOAc/hexanes); yield: 91%, 297 mg; off white solid; m.p. 140-142 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 9.21 (s, 1H), 7.20 (s, 1H), 7.06 (d, J = 7.6 Hz, 1H), 6.87 (d, J = 7.2 Hz, 1H), 2.23 (s, 3H), 2.13 (s, 3H), 2.03 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.13, 136.31, 134.84, 130.05, 128.39, 125.66, 125.51, 23.30, 20.62, 17.46.

N-(4-fluorophenyl)acetamide (2f)³

Compound **2f** was synthesized according to the general procedure 3.1 using 4-fluoroacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.26; 50% EtOAc/hexanes); yield: 81%, 248.0 mg; off white solid; m.p. 152-154 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 9.98 (s, 1H), 7.60 – 7.56 (m, 2H), 7.14 – 7.10 (m, 2H), 2.02 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.14, 159.01, 156.60, 135.75, 135.73, 120.71, 120.64, 115.31, 115.09, 23.87.

N-(4-chlorophenyl)acetamide (2g)⁵

Compound 2g was synthesized according to the general procedure 3.1 using 4-chloro acetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.32; 50% EtOAc/hexanes); yield: 83%, 282 mg; white solid; m.p. 178-180 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 10.07 (s, 1H), 7.60 (d, *J* = 9.2 Hz, 2H), 7.34 (d, J = 9.2 Hz, 2H), 2.04 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.44, 138.26, 128.56, 126.48, 120.47, 23.97. HRMS (ESI) m/z: calcd for C₈H₇ONCl [M+H]⁺ 168.0216, found 168.0214.

N-(2-chlorophenyl)acetamide (2h)⁷

Compound **2h** was synthesized according to the general procedure 3.1 using 2-chloro acetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.4; 50% EtOAc/hexanes); yield: 79%, 268 mg; white solid; m.p. 87-89 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 9.53 (s, 1H), 7.69 (d, *J* = 7.6 Hz, 1H), 7.47 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.31 (td, *J* = 8.0, 1.6 Hz, 1H), 7.17 (td, *J* = 7.6, 1.6 Hz, 1H), 2.09 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 169.69, 135.10, 129.47, 127.38, 126.49, 126.36, 126.22, 23.37.

N-(3-bromophenyl)acetamide (2i)⁸

Compound **2i** was synthesized according to the general procedure 3.1 using 3bromoacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.57; 50\%$ EtOAc/hexanes); yield: 85%, 364 mg; light yellow solid; m.p. 85-87 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 10.10 (s, 1H), 7.94 (t, J = 1.8 Hz, 1H), 7.46 – 7.44 (m, 1H), 7.25 (t, J = 8.0 Hz, 1H), 7.21 – 7.19 (m, 1H), 2.04 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.69, 140.19, 130.71, 125.59, 121.53, 121.24, 117.67, 24.05.

N-(4-methoxyphenyl)acetamide (2j)³

Compound **2j** was synthesized according to the general procedure 3.1 using 4methoxyacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.49; 70% EtOAc/hexanes); yield: 95%, 314.0 mg; off white solid; m.p. 130-132 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 9.77 (s, 1H), 7.48 (d, *J* = 9.1 Hz, 2H), 6.85 (d, *J* = 9.1 Hz, 2H), 3.70 (s, 3H), 1.99 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 167.71, 155.01, 132.53, 120.53, 113.77, 55.12, 23.78. HRMS (ESI) m/z: calcd for C₉H₁₂O₂N [M+H]⁺ 166.0868, found 166.0863.

N-(4-(methylthio)phenyl)acetamide (2k)

Compound 2k was synthesized according to the general procedure 3.1 using 4-(methylthio)acetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.37; 50\% \text{ EtOAc/hexanes}); \text{ yield: } 93\%, 338 \text{ mg}; \text{ off white solid; m.p. } 127-129 ^{\circ}\text{C}.$

¹**H NMR (400 MHz, DMSO-d**₆): δ 9.94 (s, 1H), 7.53 (d, *J* = 8.8 Hz, 2H), 7.20 (d, *J* = 8.8 Hz, 2H), 2.43 (s, 3H), 2.02 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.22, 136.91, 131.41, 127.18, 119.68, 23.99 15.61. HRMS (ESI) m/z: calcd for C₉H₁₀ONS [M-H]⁻ 180.0483, found 180.0486.

N-(2,4,6-trimethoxyphenyl)acetamide (2l)

Compound **21** was synthesized according to the general procedure 3.1 using 2-4-6trimethoxyacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.28; 80\% \text{ EtOAc/hexanes});$ yield: 82%, 369 mg; off white solid; m.p. 138-140 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 8.62 (s, 1H), 6.23 (s, 2H), 3.77(s, 3H), 3.70 (s, 6H), 1.91 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.25, 159.19, 156.60, 107.94, 90.93, 55.64, 55.36, 22.68. HRMS (ESI) m/z: calcd for C₁₁H₁₅O₄NNa [M+Na]⁺ 248.0899, found 248.0890.

N-(5-ethoxy-2-hydroxyphenyl)acetamide (2m)

Compound **2m** was synthesized according to the general procedure 3.1 using 5-ethoxy-2-hydroxyacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.40; 50% EtOAc/hexanes); yield: 84%, 328 mg; brown solid; m.p. 154-156 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 9.25 (d, J = 4.4 Hz, 2H), 7.40 (d, J = 2.8 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 6.50 (dd, J = 8.4, 2.8 Hz, 1H), 3.88 (q, J = 6.8 Hz, 2H), 2.08 (s, 3H), 1.27 (t, J = 6.8 Hz, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 169.02, 151.15, 141.26, 127.01, 115.94, 109.88, 108.54, 63.29, 23.78, 14.82.

HRMS (ESI) m/z: calcd for $C_{10}H_{12}O_3N$ [M-H]⁻ 194.0817, found 194.0818.

N-(5-bromo-2-hydroxyphenyl)acetamide (2n)⁹

Compound 2n was synthesized according to the general procedure 3.1 using 5-bromo-2-hydroxyacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.43; 50% EtOAc/hexanes); yield: 83%, 382 mg; light yellow solid; m.p. 175-177 °C.

¹H NMR (400 MHz, DMSO-d₆): δ 10.15 (s, 1H), 9.26 (s, 1H), 8.06 (d, J = 2.4 Hz, 1H), 7.06 (dd, J = 8.6, 2.4 Hz, 1H), 6.80 (d, J = 8.6 Hz, 1H), 2.09 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 169.07, 146.73, 128.20, 126.40, 123.83, 116.93, 109.64, 23.78.

Paracetamol (20)³

HO

Compound **20** was synthesized according to the general procedure 3.1 using 4-hydroxyacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.17; 40% EtOAc/hexanes); yield: 86%, 260 mg; off white solid; m.p. 168-170 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 9.64 (s, 1H), 9.13 (s, 1H), 7.33 (d, J = 8.8 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 1.97 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 167.57, 153.14, 131.06, 120.84, 115.02, 23.77. HRMS (ESI) m/z: calcd for C₈H₁₀O₂N [M+H]⁺ 152.0712, found 152.0716.

N-(4-hydroxy-3-methylphenyl)acetamide (2p)

Compound **2p** was synthesized according to the general procedure 3.1 using 4-hydroxy-3-methyl acetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.29; 40\% \text{ EtOAc/hexanes});$ yield: 91%, 301 mg; light brown solid; m.p. 179-181 °C.

¹H NMR (400 MHz, DMSO-d₆): δ 9.57 (s, 1H), 9.02 (s, 1H), 7.23 (d, J = 2.3 Hz, 1H), 7.15 (dd, J = 8.8, 2.5 Hz, 1H), 6.66 (d, J = 8.2 Hz, 1H), 2.07 (s, 3H), 1.96 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 167.50, 151.23, 130.88, 123.63, 122.14, 118.08, 114.35, 23.78, 16.20.

HRMS (ESI) m/z: calcd for $C_9H_{12}O_2N[M+H]^+$ 166.0868, found 166.0866.

N-(naphthalen-1-yl)acetamide (2q)¹⁰

Compound **2q** was synthesized according to the general procedure 3.1 using 1-acetylnaphthalene on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_f = 0.27$; 50% EtOAc/hexanes); yield: 89%, 330 mg; off white solid; m.p. 160-162 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 9.91 (s, 1H), 8.09 – 8.07 (m, 1H), 7.93 (dd, J = 6.8, 4.0 Hz, 1H), 7.72 (dd, J = 22.8, 8.4 Hz, 3H), 7.55- 7.46 (m, 4H), 2.19 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ 168.91, 133.69, 128.09, 127.65, 125.95, 125.72, 125.54, 125.02, 122.72, 121.50, 23.47.

N-(4-((4-methylphenyl)sulfonamido)phenyl)acetamide (2r)

TsHN N O

Compound **2r** was synthesized according to the general procedure 3.1 using N-(4-acetylphenyl)p-toluenesulfonamide on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_f = 0.25; 60\% \text{ EtOAc/hexanes}); \text{ yield: } 92\%, 560 \text{ mg}; \text{ white solid; m.p. 183-185 °C.}$

¹H NMR (400 MHz, DMSO-d₆): δ 9.99 (s, 1H), 9.85 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 8.8 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 6.98 (d, J = 9.2 Hz, 2H), 2.32 (s, 3H), 1.98 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ 168.06, 143.10, 136.60, 135.96, 132.55, 129.61, 126.73, 121.42, 119.69, 23.86, 20.96.

HRMS (ESI) m/z: calcd for $C_{15}H_{16}O_3N_2SNa [M+Na]^+ 327.0779$, found 327.0769.

N-(4-morpholinophenyl)acetamide (2s)¹¹

Compound **2s** was synthesized according to the general procedure 3.1 using 4marpholinoacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.38; 50\% \text{ EtOAc/hexanes});$ yield: 93%, 409 mg; light yellow solid; m.p. 209-211 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 9.71 (s, 1H), 7.42 (d, J = 8.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.71(t, J = 6.0 Hz, 4H), 3.01 (t, J = 6.0 Hz, 4H), 1.99 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 167.67, 147.05, 131.77, 120.14, 115.49, 66.16, 49.03, 23.84.

N-(4'-bromo-[1,1'-biphenyl]-4-yl)acetamide (2t)

Compound **2t** was synthesized according to the general procedure 3.1 using 4-(bromophenyl)acetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.25; 50\% \text{ EtOAc/hexanes});$ yield: 78%, 453 mg; off white solid; m.p. 238-240 °C.

¹H NMR (400 MHz, DMSO-d₆): δ 10.06 (s, 1H), 7.68 – 7.65 (m, 2H), 7.62 – 7.60 (m, 2H), 2.06 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.45, 139.20, 138.94, 133.27, 131.77, 128.31, 126.88, 120.34, 119.35, 24.09.

HRMS (ESI) m/z: calcd for C₁₄H₁₁ONBr [M-H]⁻ 288.0024, found 288.0023.

N-(9H-fluoren-2-yl)acetamide (2u)¹²

Compound **2u** was synthesized according to the general procedure 3.1 using 2-acetylfluorene on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.57; 50% EtOAc/hexanes); yield: 75%, 335 mg; off white solid; m.p. 192-193 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 10.02 (s, 1H), 7.92 (d, *J* = 1.0 Hz, 1H), 7.82 – 7.77 (m, 2H), 7.52 (dd, *J* = 13.4, 5.0 Hz, 2H), 7.34 (t, *J* = 7.0 Hz, 1H), 7.25 (td, J = 7.4, 1.1 Hz, 1H), 3.89 (s, 2H), 2.07 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.22, 143.72, 142.76, 141.05, 138.45, 136.11, 126.72, 126.03, 125.01, 120.09, 119.39, 117.75, 115.78, 36.51, 24.10.

N-(3-cyanophenyl)acetamide (2v)¹³

Compound 2v was synthesized according to the general procedure 3.1 using 3cyanoacetophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_f = 0.29; 50\%$ EtOAc/hexanes); yield: 62%, 199 mg; white solid; m.p. 129-131 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 10.28 (s, 1H), 8.07 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.53 – 7.47 (m, 2H), 2.07 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.97, 140.06, 130.21, 126.54, 123.47, 121.54, 118.76, 111.51, 24.01.

N-phenylbenzamide (2w)³

Compound 2w was synthesized according to the general procedure 3.1 using benzophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.40; 20\% \text{ EtOAc/hexanes}); \text{ yield: 96\%, 379 mg; off white solid; m.p. 162-164 °C.}$

¹H NMR (400 MHz, DMSO-d₆): δ 10.25 (s, 1H),7.97–7.95 (m, 2H), 7.80 – 7.79 (m, 2H), 7.60 – 7.52 (m, 3H), 7.36 (t, J = 7.6 Hz, 2H), 7.11 (t, J = 7.6 Hz, 1H).

¹³C NMR (101 MHz, DMSO-d₆): δ 165.60, 139.21, 135.00, 131.59, 128.64, 128.42, 127.69, 123.69, 120.40.

HRMS (ESI) m/z: calcd for $C_{13}H_{12}ON [M+H]^+$ 198.0919, found 198.0922.

ϵ -Caprolactam $(2x)^3$

Compound **2x** was synthesized according to the general procedure 3.1 using cyclohexanone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_f = 0.46$; 30% EtOAc/hexanes); yield: 84%, 190 mg; white solid; m.p. 68-70 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.39 (s, 1H), 3.04 (dd, J = 10.0, 5.9 Hz, 2H), 2.07 (t, J = 4.0 Hz, 2H), 1.68 – 1.62 (m, 2H), 1.57 – 1.41 (m, 4H). ¹³C NMR (101 MHz, DMSO-d₆): δ 176.93, 41.43, 38.89, 36.41, 29.99, 29.81, 22.97.

N-phenethylacetamide (2y)¹⁴

Compound 2y was synthesized according to the general procedure 3.1 using 4-phenyl-2butanone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.57; 80% EtOAc/hexanes); yield: 79%, 258 mg; white solid; m.p. 50-51 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 7.94 (s, 1H), 7.30 – 7.27 (m, 2H), 7.21 – 7.17 (m, 3H), 3.24 (q, J = 8 Hz, 2H), 2.69 (t, J = 8 Hz, 2H), 1.78 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 169.14, 139.56, 128.64, 128.35, 126.10, 40.25, 35.24, 22.64.

N-methylhexanamide (2z₁) and N-pentylacetamide (2z₂)^{15,16}

Compound $2z_1$ and $2z_2$ was obtained as a mixture (1:1). Synthesis was achieved according to the general procedure 3.1 using 2-heptanone on a 2.0 mmol scale.

 $(R_f = 0.27; 50\%$ EtOAc/hexanes); yield: 68% (for mixture), 176 mg; light yellow liquid.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 7.78 (s, 1H), δ 7.68 (s, 1H), 2.99 (q, *J* = 7.6 Hz,2H), 2.54 (d, *J* = 4.8 Hz, 3H), 2.02 (t, *J* = 7.6 Hz, 2H), 1.77 (s, 3H), 1.51 – 1.43 (m, 2H), 1.40 – 1.33 (m, 2H), 1.29 – 1.19 (m, 8H), 0.87 – 0.82 (m, 6H).

¹³C NMR (101 MHz, DMSO-d₆): δ 172.53, 168.91, 38.48, 35.33, 30.98, 28.86, 28.68, 25.41, 24.99, 22.63, 21.92, 21.89, 13.94, 13.89.

N-phenylpropionamide (2aa)⁷

Compound **2aa** was synthesized according to the general procedure 3.1 using propiophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_f = 0.55$; 50% EtOAc/hexanes); yield: 87%, 261 mg; white solid; m.p. 104-106 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 9.84 (s, 1H), 7.58 (dd, J = 8.4, 0.8 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.02 – 6.98 (m, 1H), 2.30 (q, J = 7.6 Hz, 2H), 1.08 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ 171.96, 139.39, 128.63, 122.87, 118.99, 29.51, 9.67.

N-phenyloctanamide(2ab)

Compound **2ab** was synthesized according to the general procedure 3.1 using octanophenone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.50; 50\% \text{ EtOAc/hexanes});$ yield: 89%, 390 mg; off white solid; m.p. 82-84 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 9.84 (s, 1H), 7.59 – 7.56 (m, 2H), 7.29 – 7.25 (m, 2H), 7.02 – 6.98 (m, 1H), 2.28 (t, *J* = 7.2 Hz, 2H), 1.59 – 1.55 (m, 2H), 1.27 – 1.23 (m, 9H), 0.85 (t, *J* = 6.4 Hz, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 171.26, 139.38, 128.63, 122.89, 119.00, 36.43, 31.20, 28.66, 28.50, 25.15, 22.09, 13.95.

HRMS (ESI) m/z: calcd for $C_{14}H_{20}ON [M-H]^{-}218.1545$, found 218.1549.

8-methoxy-1,3,4,5-tetrahydro-2H-benzo[b]azepin-2-one (ac)¹⁷

Compound **2ac** was synthesized according to the general procedure 3.1 using 7-methoxy-1tetralone on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_f = 0.47; 40\% \text{ EtOAc/hexanes}); \text{ yield: } 67\%, 256 \text{ mg}; \text{ white solid; m.p. } 132-134 ^{\circ}\text{C}.$

¹**H NMR (400 MHz, DMSO-d₆)**: δ 9.45 (s, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.67 – 6.52 (m, 2H), 3.71 (s, 3H), 2.60 (t, J = 7.2 Hz, 2H), 2.15 – 2.02 (m, 4H).

¹³C NMR (101 MHz, DMSO-d₆): δ 173.43, 158.36, 139.78, 130.33, 125.62, 109.84, 107.42, 55.14, 33.00, 29.05, 28.13.

4-methyl-*N*-(2-oxo-2,3,4,5-tetrahydro-1H-benzo[b]azepin-7-yl)benzenesulfonamide (2ad)

Compound **2ad** was synthesized according to the general procedure 3.1 using 4-methyl-*N*-(5,6,7,8-tetrahydro-5-oxo-2-naphthalenyl)benzenesulfonamide on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_{f} = 0.40; 50\% \text{ EtOAc/hexanes});$ yield: 77%, 509 mg; light brown solid; m.p. 265-267 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 10.07 (s, 1H), 9.34 (s, 1H), 7.58 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 6.90 – 6.87 (m, 2H), 6.76 (d, J = 8.0 Hz, 1H), 2.51 – 2.46 (m, 2H), 2.28 (s, 3H), 2.01 - 1.96 (m, 4H).

¹³C NMR (101 MHz, DMSO-d₆): δ 173.04, 143.21, 136.64, 135.20, 134.54, 134.22, 129.65, 126.75, 122.32, 121.68, 119.11, 32.68, 29.95, 27.70, 20.97.

HRMS (ESI) m/z: calcd for $C_{19}H_{19}O_3N_2S[M+H]^+ 331.1116$, found 331.1106.

N-(2-oxo-2H-chromen-3-yl)acetamide (2ae)

Compound **2ae** was synthesized according to the general procedure 3.1 using 3-acetylcoumarin on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_f = 0.48$; 50% EtOAc/hexanes); yield: 72%, 293 mg; off white solid; m.p. 200-202 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 9.76 (s, 1H), 8.60 (s, 1H), 7.69 (dd, J = 8.0, 1.6 Hz, 1H), 7.51-7.49 (m, 1H), 7.47 (d, J = 8.4 Hz, 1H), 7.39-7.30 (m, 1H), 2.17 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ 170.26, 157.50, 149.63, 129.54, 127.84, 124.95, 124.59, 123.50, 119.60, 115.81, 23.96. HRMS (ESI) m/z: calcd for C₁₁H₈O₃N [M-H]⁻ 202.0504, found 202.0502.

N-(thiophen-2-yl)acetamide (2af)³

S O N

Compound **2af** was synthesized according to the general procedure 3.1 using 2-acetylthiophene on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_f = 0.54$; 50% EtOAc/hexanes); yield: 88%, 249.0 mg; brown solid; m.p. 159-161 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 11.11 (s, 1H), 6.90 – 6.89 (m, 1H), 6.82 (dd, J = 5.6, 3.6 Hz, 1H), 6.61 (dd, J = 4.0, 1.6 Hz, 1H), 2.05 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ 166.21, 139.91, 123.87, 116.59, 110.24, 22.53. HRMS (ESI) m/z: calcd for C₆H₆ONS [M-H]⁻ 140.0170, found 140.0166.

N-(5-bromothiophen-2-yl)acetamide (2ag)¹⁸

S O N

Compound **2ag** was synthesized according to the general procedure 3.1 using 2-acetyl 5-bromo thiophene on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.30; 50% EtOAc/hexanes); yield: 89%, 392 mg; off brown solid; m.p. 135-137 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 11.39 (s, 1H), 6.94 (d, *J* = 4.0 Hz, 1H), 6.41 (d, *J* = 4.0 Hz, 1H), 2.05 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 166.66, 140.36, 126.63, 109.79, 102.40, 22.16.

N-(1H-pyrrol-2-yl)acetamide (2ah)¹⁹

Compound **2ah** was synthesized according to the general procedure 3.1 using 2-acetylpyrrole on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_{f} = 0.40$; 50% EtOAc/hexanes); yield: 91%, 226 mg; brown solid; m.p. 156-158 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 11.40 (s, 1H), 7.92 (d, J = 4.0 Hz, 1H), 6.82 – 6.80 (m, 1H), 6.70 – 6.69 (m, 1H), 6.06 – 6.04 (m, 1H), 2.72 (d, J = 4.4 Hz, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ 161.20, 126.42, 121.02, 109.44, 108.47, 25.48. HRMS (ESI) m/z: calcd for C₆H₇ON₂ [M-H]⁻ 123.0558, found 123.0562.

N-methyl-1H-indole-3-carboxamide (2ai)

Compound **2ai** was synthesized according to the general procedure 3.1 using 3-acetylindole on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.32; 25% EtOAc/hexanes); yield: 74%, 256 mg; off white solid; m.p. 195-197 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 11.50 (s, 1H), 8.13 (d, *J* = 7.6 Hz, 1H), 7.94 (d, *J* = 2.2 Hz, 1H), 7.83 (d, *J* = 4.4 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.14 – 7.06 (m, 2H), 2.76 (d, *J* = 4.4 Hz, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 165.13, 136.09, 127.41, 121.79, 120.97, 120.25, 111.77, 110.80, 25.56.

HRMS (ESI) m/z: calcd for $C_{10}H_{11}ON_2 [M+H]^+ 175.0871$, found 175.0865.

17β-Hydroxy-3-aza-A-homoandrost-4α-en-4-one (2aj)²⁰

Compound **2aj** was synthesized according to the general procedure 3.1 using testosterone on a 1.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.17; 10% methanol/DCM); yield: 77%, 234 mg; white solid; m.p. 289-291 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 7.71 (s, 1H), 5.48 (s, 1H), 4.46 (d, J = 4.7 Hz, 1H), 3.45 – 3.39 (m, 1H), 3.06 – 2.93 (m, 2H), 2.48 – 2.35 (m, 1H), 2.03 (d, J = 12.4 Hz 1H), 1.89 – 1.76 (m, 3H), 1.71 (d, J = 12.4 Hz 1H), 1.64 – 1.57 (m, 1H), 1.54 – 1.42 (m, 3H), 1.34 – 1.29 (m, 2H), 1.23 – 1.16 (m, 1H), 1.07 (s, 3H), 0.99 – 0.84 (m, 4H), 0.65 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.14, 159.03, 119.56, 79.85, 69.80, 53.06, 50.08, 43.92, 42.52, 42.04, 36.43, 35.52, 35.44, 35.10, 33.22, 29.89, 23.04, 20.96, 11.29.
HRMS (ESI) m/z: calcd for C₁₉H₃₀O₂N [M+H]⁺ 304.2277, found 304.2289.

17β-acetamido-3-aza-A-homoandrost-4α-en-4-one (2ak)²¹

Compound **2ak** was synthesized according to the modified general procedure 3.1 using progesterone on a 1.0 mmol scale with 2.0 equiv. of hydroxylamine hydrochloride. The crude product was purified by silica gel column chromatography.

(R_f = 0.16; 10% methanol/DCM); yield: 75%, 258 mg; white solid; m.p. 276-278 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 7.78 (s, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 5.50 (s, 1H), 3.66 (q, *J* = 9.1 Hz, 1H), 2.99 (s, 2H), 2.43 (td, *J* = 13.3, 4.1 Hz, 1H), 2.04 (d, *J* = 12.7 Hz, 1H), 1.89 – 1.76 (m, 6H), 1.69 – 1.26 (m, 7H), 1.24 – 1.15 (m, 2H), 1.07 (s, 3H), 1.04 – 0.90 (m, 3H), 0.64 (s, 3H).

¹³C NMR (101 MHz, DMSO-d₆): δ 168.95, 168.18, 159.33, 119.41, 58.18, 52.93, 51.71, 43.93, 42.83, 42.01, 36.87, 35.54, 35.47, 35.17, 33.24, 27.18, 23.15, 22.74, 20.96, 12.12.
HRMS (ESI) m/z: calcd for C₂₁H₃₃O₂N₂ [M+H]⁺ 345.2542, found 345.2547.

17β-Acetoxy-3-aza-A-homoandrostan-4-one (2al₁) and 17β-Acetoxy-4-aza-A-homoandrostan-3-one(2al₂)²²

Compound $2al_1$ and $2al_2$ were obtained as a mixture (1:1). Synthesis was achieved according to the general procedure 3.1 using stanolone acetate on a 1.0 mmol scale. The crude product was purified by silica gel column chromatography.

($R_f = 0.43$; 5% methanol/DCM); Non-separable regioisomers; yield: 64%, 223 mg; white solid; m.p. 309-311 °C.

¹**H NMR (400 MHz, CDCl₃)**: δ 6.33 (s, 1H), 6.18 (s, 1H), 4.59 – 4.54 (m, 2H), 3.41 – 3.31 (m, 2H), 3.04 – 2.93 (m, 1H), 2.74 (d, *J* = 11.1 Hz, 1H), 2.61 – 2.49 (m, 2H), 2.37 – 2.05 (m, 4H), 2.02 (s, 6H), 1.91 – 1.78 (m, 4H), 1.76 – 1.56 (m, 9H), 1.53 – 1.43 (m, 4H), 1.38 – 1.28 (m, 8H), 1.26 – 1.22 (m, 4H), 1.19 – 1.10 (m, 3H), 1.02 (s, 2H), 0.91 (s, 6H), 0.77 (s, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 178.80, 178.64, 171.30, 82.81, 54.11, 53.83, 50.81, 49.67, 44.57, 43.34, 42.47, 42.10, 39.70, 39.00, 38.83, 37.96, 37.02, 36.96, 35.36, 34.95, 34.59, 31.63, 31.46, 31.33, 30.95, 27.65, 23.56, 21.30, 20.88, 20.62, 12.20, 12.17, 12.08.

HRMS (ESI) m/z: calcd for $C_{21}H_{34}O_3N [M+H]^+ 348.2539$, found 348.2542.

2-(3-(phenylcarbamoyl)phenyl)propanoic acid (2am₁) and 2-(3-benzamidophenyl)propanoic acid (2am₂)

Compound $2am_1$ and $2am_2$ were obtained as a mixture (1:1). Synthesis was achieved according to the general procedure 3.1 using ketoprofen on a 1.0 mmol scale. The crude product was purified by silica gel column chromatography.

($R_f = 0.32$; 5% methanol/DCM); Non-separable regioisomers; yield: 73%, 197 mg; light yellow thick liquid.

¹**H NMR (400 MHz, CDCl₃)**: δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.83 (d, *J* = 7.2 Hz, 2H), 7.79 (s, 1H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.64 – 7.53 (m, 4H), 7.53 – 7.27 (m, 8H), 7.16 – 7.05 (m, 2H), 3.83 – 3.66 (m, 2H), 1.52 – 1.48 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 179.74, 179.31, 166.29, 166.19, 140.90, 140.70, 138.27, 137.93, 135.43, 134.77, 132.01, 131.19, 129.46, 129.13, 128.83, 127.24, 126.75, 126.17, 124.80, 123.99, 120.66, 119.79, 119.70, 45.34, 45.30, 18.19.

HRMS (ESI) m/z: calcd for $C_{16}H_{15}O_3NK [M+K]^+ 308.0689$, found 308.0691.

isopropyl 2-(4-(4-chlorobenzamido)phenoxy)-2-methylpropanoate (2an₁) and isopropyl 2-(4-((4-chlorophenyl)carbamoyl)phenoxy)-2-methylpropanoate (2an₂)

Compound $2an_1$ and $2an_2$ were obtained as a mixture (~10:1). Synthesis was achieved according to the general procedure 3.1 using fenofibrate on a 1.0 mmol scale. The crude product was purified by silica gel column chromatography.

($R_f = 0.40$; 20% EtOAc/hexanes); Non-separable regioisomers; Major isomer (**2an**₁); yield: 69%, 259 mg; white solid; m.p. 109-111 °C.

¹**H** NMR (400 MHz, DMSO-d₆): δ 10.23 (s, 1H), 7.96 (d, J = 8.5 Hz, 2H), 7.61 (dd, J = 16.7, 8.7 Hz, 4H), 6.81 (d, J = 9.0 Hz, 2H), 4.97 (hep, J = 6.2 Hz, 1H), 1.50 (s, 6H), 1.18 (d, J = 6.2 Hz, 6H).

¹³C NMR (101 MHz, DMSO-d₆): δ 172.70, 164.10, 151.21, 136.29, 133.67, 133.38, 129.54, 128.45, 121.54, 119.16, 78.88, 68.52, 25.01, 21.31.

HRMS (ESI) m/z: calcd for $C_{20}H_{22}O_4NCINa [M+Na]^+ 398.1135$, found 398.1133.

4-methoxybenzonitrile (4a)⁷

Compound **4a** was synthesized according to the general procedure 3.2 using 4methoxybenzaldehyde on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_f = 0.50; 10\% \text{ EtOAc/hexanes});$ yield: 92%, 245 mg; light yellow solid; m.p. 60-62 °C. ¹H NMR (400 MHz, DMSO-d₆): δ 7.79 – 7.76 (m, 2H), 7.13 – 7.09 (m, 2H), 3.85 (s, 3H). ¹³C NMR (101 MHz, DMSO-d₆): δ 162.72, 134.20, 119.18, 115.14, 102.81, 55.70.

4-nitrobenzonitrile (4b)²³

 O_2N CN

Compound **4b** was synthesized according to the general procedure 3.2 using 4-nitrobenzaldehyde on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_f = 0.40$; 10% EtOAc/hexanes); yield: 67%, 199 mg; white solid; m.p. 146-148 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.37 (d, J = 8.8 Hz, 2H), 7.90 (d, J = 8.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 150.17, 133.61, 124.43, 118.47, 116.92.

2-naphthonitrile (4c)²⁴

Compound 4c was synthesized according to the general procedure 3.2 using 2-naphthaldehyde on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography. ($R_f = 0.45$; 05% EtOAc/hexanes); yield: 73%, 224 mg; off white solid; m.p. 65-67 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.23 (s, 1H), 7.91 (t, J = 8.8 Hz, 3H), 7.65 – 7.58 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 134.78, 134.29, 132.39, 129.33, 129.17, 128.54, 128.18, 127.79, 126.48, 119.38, 109.52.

2-hydroxybenzonitrile (4d)²⁵

Compound **4d** was synthesized according to the general procedure 3.2 using 2-hydroxybenzaldehyde on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

(R_f = 0.42; 10% EtOAc/hexanes); yield: 75%, 178 mg; white solid; m.p. 96-98 °C.

¹**H NMR (400 MHz, DMSO-d**₆): δ 11.06 (s, 1H), 7.59 (dd, J = 8.0, 1.6 Hz, 1H), 7.50 –7.46 (m, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.94 – 6.90 (m, 1H).

¹³C NMR (101 MHz, DMSO-d₆): 160.15, 134.75, 133.27, 119.59, 117.05, 116.17, 98.85.

3-bromo-4-methoxybenzonitrile (4e)²⁶

Compound **4e** was synthesized according to the general procedure 3.2 using 3-bromo 4methoxybenzaldehyde on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_f = 0.37; 10\% \text{ EtOAc/hexanes});$ yield: 87%, 369 mg; white solid; m.p. 120-122 °C.

¹**H NMR (400 MHz, CDCl₃)**: δ 7.83 (d, J = 2.0 Hz, 1H), 7.60 (dd, J = 8.6, 2.0 Hz, 1H), 6.94 (d, J = 8.8 Hz, 1H), 3.96 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 159.57, 136.83, 133.31, 117.90, 112.47, 112.03, 105.38, 56.71.

2-aminobenzonitrile (6a)²⁷

Compound **6a** was synthesized according to the general procedure 3.2 using isatin on a 2.0 mmol scale. The crude product was purified by silica gel column chromatography.

 $(R_f = 0.65; 10\% \text{ EtOAc/hexanes});$ yield: 73%, 323 mg; off white solid; m.p. 48-50 °C.

¹**H NMR (400 MHz, DMSO-d₆)**: δ 7.36 (dd, J = 7.6, 1.2 Hz, 1H), 7.31 – 7.26 (m, 1H), 6.77 (dd, J = 8.4, 0.4 Hz, 1H), 6.59 – 6.55 (m, 1H), 6.02 (s, 2H).

¹³C NMR (101 MHz, DMSO-d₆): δ 151.62, 133.97, 132.45, 118.16, 115.90, 115.19, 93.41.

9. References

- 1. C. M. Vanosa and T. H. Lambert, *Chem. Sci.*, 2010, 1, 705.
- 2. R. A. Sheldon, Green Chem., 2023, 25, 1704.
- 3. X. Mo, T. D. R. Morgan, H. T. Ang and D. G. Hall, J. Am. Chem. Soc., 2018, 140, 5264
- 4. P. S. Mahajan, V. T. Humne, S. D. Tanpure and S. B. Mhaske, Org. Lett., 2016, 18, 3450
- 5. D. Liu, Y. Fan, M. Liu, Q. Ge, R. Gao and H. Cong, Org. Lett., 2024, 26, 18, 3896.
- 6. X. Sun, M. Wang, P. Li, X. Zhang, and L. Wang, *Green Chem.*, 2013, 15, 3289.
- 7. R. Mocci, E. Colacino, L. De Luca, C. Fattuoni, A. Porcheddu and F. Delogu, ACS Sustainable Chem. Eng., 2021, 9, 2100.
- H. J. Kiely-Collins, I. Sechi, P. E. Brennan and M. G. McLaughlin, *Chem. Commun.*, 2018, 54, 654.
- M. Armitage, G. Bret, B. M. Choudary, M. Kingswood, M. Loft, S. Moore, S. Smith and W. J. Urquhart, *Org. Process Res. Dev.*, 2012, 16, 1626.
- 10. D. R. Stuart, M. Bertrand-Laperle, K. M. N.Burgess and K. Fagnou, J. Am. Chem. Soc., 2008, **130**, 16474.
- X. Peng, Y. liu, Q. Shen, D. Chen, X. Chen, Y. Fu, J. Wang, X. Zhang, H. Jiang and J. Li, J. Org. Chem., 2022, 87, 11958.
- 12. M. Novak and K. S. Rangappa, J. Org. Chem., 1992, 57, 1285.
- 13. S. M. Mali, R. D. Bhaisare and H. N. Gopi, J. Org. Chem., 2013, 78, 5550.
- 14. J. Kweon, M. Lee, D. Kim and S. Chang, Org. Process Res. Dev., 2024, 28, 3691.
- 15. M. Milan, G. Carboni, M. Salamone, M. Costas and M. Bietti, ACS Catal., 2017, 7, 5903.
- 16. P. V. Ramachandran, H. J. Hamann and S. Choudhary Org. Lett., 2020, 22, 8593.
- 17. Y. Lu, A. Kasahara, T. Hyodo, K. Ohara, K. Yamaguchi, Y. Otani and T. Ohwada, Org. Lett., 2023, 25, 3482.
- J. K. Augustine, R. Kumar, A. Bombrun and A. B. Mandal, *Tetrahedron Letters*, 2011, 52, 1074.

- 19. S. Gao, T. K. Bethel, T. Kakeshpour, G. E. Hubbell, J. E. Jackson, and J. J. Tepe, *J. Org. Chem.*, 2018, **83**, 9250.
- 20. K. Oka and S. Hara, J. Org. Chem., 1978, 43, 19, 3790.
- 21. C. Athanasiou and P. Catsoulacos, J. Heterocycl. Chem., 1984, 21, 3, 927.
- 22. M. El-Far, G. A. Elmegeed, E. F. Eskander, H. M. Rady and M. A. Tantawy, *Eur. J. Med. Chem.*, 2009, **44**, 3936.
- 23. R. Li, J. Shi, X. Zhou, Z. Li, Y. Zhao, Z. Liu and J. Wang, ACS Sustainable Chem. Eng., 2024, 12, 11338.
- 24. K. Hyodo, S. Kitagawa, M. Yamazaki and K. Uchida, Chem. Asian J., 2016, 11, 1348.
- 25. P. Nimnual, J. Tummatorn, C. Thongsornkleeb and S. Ruchirawat, J. Org. Chem., 2015, **80**, 17, 8657.
- 26. J. K. Augustine, R. N. Atta, B. K. Ramappa and C. Boodappa, Synlett, 2009, 20, 3378.
- 27. W. Wang, L. Ma, X. Jiang, H. Wang, Z.-H. He, K. Wang, Y. Yang and Z.-T. Liu. ACS Sustainable Chem. Eng., 2022, 10, 14636.

