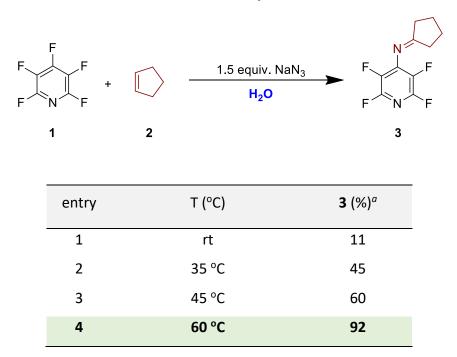
# "On Water" Metal-Free Direct C-H Amination and Imination of Olefins via Tandem SNAr, Click Chemistry, and Molecular Nitrogen Release

Sudripet Sharma,<sup>a</sup> Seyedesahar Miraghaee,<sup>a</sup> and Sachin Handa<sup>a,b</sup>

<sup>a</sup>Department of Chemistry, 2320 S. Brook Street, University of Louisville, Louisville, Kentucky 40292, United States <sup>b</sup>Department of Chemistry, 601 S College Ave, University of Missouri, Columbia, MO 65211, United States

\*sachin.handa@missouri.edu

## **Supplementary Material**


| Contents                                             | Page     |
|------------------------------------------------------|----------|
| 1. General experimental details                      | S1       |
| 2. Optimization studies                              | S2-S4    |
| 3. General experimental procedure                    | S5       |
| 4. Substrate scope using internal cycloalkenes       | S6       |
| 5. Substrate scope using alkenes                     | S7       |
| 6. Gram-scale reaction for the synthesis of <b>3</b> | S9       |
| 7. Gram-scale reaction for the synthesis of <b>9</b> | S9       |
| 8. Mechanistic Studies                               | S10, S11 |
| 9. Control NMR studies                               | S12, S13 |
| 10. Unsuccessful reaction                            | S14      |
| 11. Analytical data                                  | S15-S26  |
| 12. NMR data                                         | S27-S65  |
| 13. HRMS data                                        | S66-S89  |

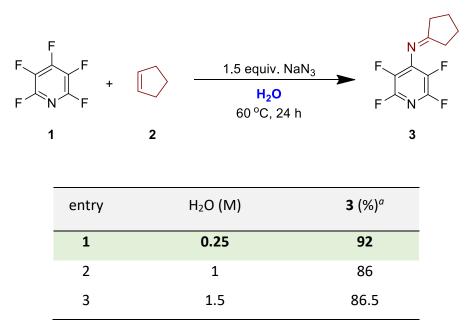
#### **1. GENERAL EXPERIMENTAL DETAILS**

All manipulations were carried out under argon atmosphere unless otherwise noted. TLC plates (UV 254 indicator, glass backed, thickness 200 mm) and silica gel (standard grade, 230 – 400 mesh) were purchased from Merck. NaN<sub>3</sub> was purchased from Sigma Aldrich and was used as such without further purification. Polyfluoroarenes and (hetero)aryl alkenes were purchased from Sigma-Aldrich, Combi-Block, Alfa Aesar, and Ambeed chemicals. Pure NMR solvents were purchased from Cambridge Isotopes Laboratories or Sigma-Aldrich. All the catalytic reactions were performed in 4 mL close-cap microwave vials under argon atmosphere. Reaction vials were also recycled and reused. Melting points were determined using a MEL-TEMP II melting point apparatus with samples in Kimble Kimex 51 capillaries (1.5-1.8 x 90 mm). Unless otherwise mentioned, all NMR spectra were recorded at 25 °C on Varian Unity INOVA (400, 500 and 700) spectrometers. Reported chemical shifts are referenced to residual solvent peaks. HRMS spectra were obtained on a Thermo Electron MAT 95XP mass spectrometer using either electron ionization (EI) or chemical ionization (CI).

## 2. REACTION OPTIMIZATION

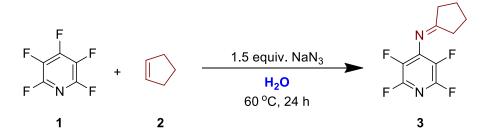
## 2.1. Effect of temperature




Conditions. **1** (0.25 mmol), **2** (0.50 mmol), NaN<sub>3</sub> (0.375 mmol, 1.5 equiv.), 1 mL H<sub>2</sub>O, 24 h. <sup>*a*</sup>All yields are based on GCMS conversion using (0.25 mmol) mesitylene as internal standard.

## 2.2. Effect of solvent

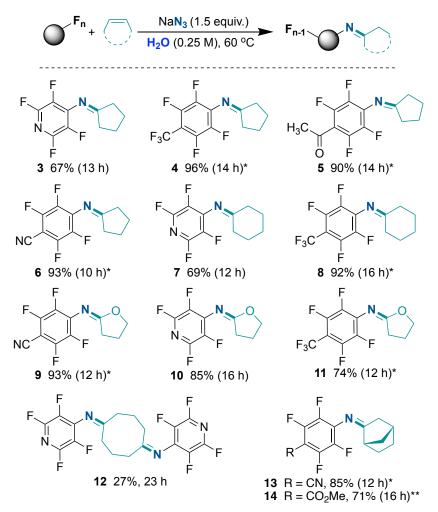
| F<br>F<br>N | F +   | 1.5 equiv. Nal<br>H <sub>2</sub> O<br>60 °C, 24 h |                           | > |
|-------------|-------|---------------------------------------------------|---------------------------|---|
|             | entry | solvent                                           | <b>3</b> (%) <sup>a</sup> |   |
|             | 1     | 3 wt % SDS                                        | 17                        |   |
|             | 2     | DMSO                                              | 13.5                      |   |
|             | 3     | 3 wt % Tween-20                                   | 67                        |   |
|             | 4     | 3 wt % PS-750-M                                   | 72                        |   |
|             | 5     | H <sub>2</sub> O                                  | 92                        |   |
|             | 6     | THF                                               | 75                        |   |
|             | 7     | DMF                                               | 12                        |   |
|             | 8     | Toluene                                           | traces*                   |   |
|             | 9     | CH₃CN                                             | 12                        |   |


**Conditions. 1** (0.25 mmol), **2** (0.50 mmol), NaN<sub>3</sub> (0.375 mmol, 1.5 equiv.), 1 mL **solvent**, 24 h. <sup>*a*</sup>All yields are based on GC-MS conversion using (0.25 mmol) mesitylene as internal standard. \* No perfluoroazide formation was observed.

# 2.3. Effect of Global Concentration



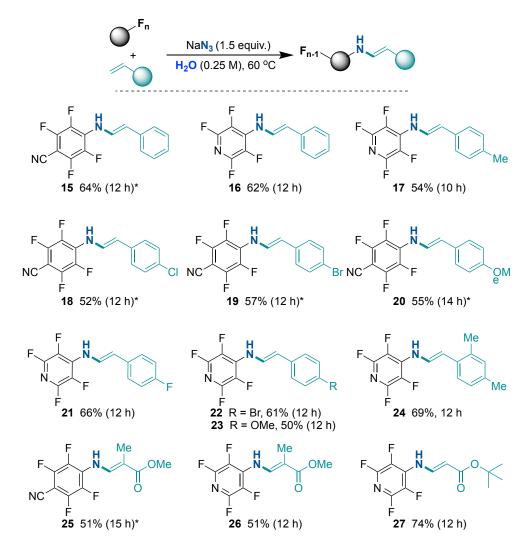
**Conditions. 1** (0.25 mmol), **2** (0.50 mmol), NaN<sub>3</sub> (0.375 mmol, 1.5 equiv.), x M H<sub>2</sub>O, 24 h. <sup>*a*</sup>All yields are based on GC-MS conversion using (0.25 mmol) mesitylene as internal standard.


## 2.4. Effect of NaN<sub>3</sub> equivalents



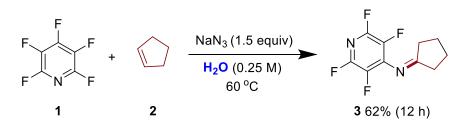
| entry | NaN <sub>3</sub>                 | <b>3</b> (%) <sup><i>a</i></sup> |
|-------|----------------------------------|----------------------------------|
| 1     | No deviation                     | 92                               |
| 2     | 2.0 equiv. instead of 1.5 equiv. | 91                               |

#### **3. GENERAL REACTION PROCEDURE**


Perfluoroarene (0.5 mmol, 1 equiv.), alkene (1.0 mmol, 2 equiv.), and NaN<sub>3</sub> (0.75 mmol, 1.5 equiv.) were taken in a 4 mL reaction vial equipped with a PTFE-coated magnetic stir bar. The reaction vial was closed with a rubber septum, and 1 mL water was added to the reaction mixture. The septum was wrapped with a parafilm. The reaction mixture was then stirred at 60 °C until complete consumption of the starting materials. **Initially, the mixture was biphasic, but it became monophasic upon completion of the reaction.** After reaction completion, as monitored by TLC or GC-MS for the consumption of perfluorazide intermediate, the reaction mixture was cooled to rt. 1 mL EtOAc was added to the reaction mixture and the mixture was stirred for a minute. Stirring was stopped and the organic layer was withdrawn with the aid of a syringe needle. The same protocol was repeated twice (2 x 1 mL EtOAc). The combined organic layers were dried over anhydrous sodium sulfate. Finally, volatiles were removed under reduced pressure to obtain a crude product, which was further purified by flash chromatography (if needed) using EtOAc/hexanes as eluent.



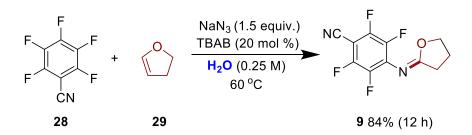
## 4. SUBSTRATE SCOPE USING INTERNAL CYCLOALKENES


**Conditions:** Perfluoroarene (0.25 mmol), alkene (0.50 mmol), NaN<sub>3</sub> (0.375 mmol, 1.5 equiv.), 0.25 M H<sub>2</sub>O, 60 °C. <sup>\*</sup>Tetrabutylammonium chloride (20 mol %) was used as additive. All yields are isolated.

## **5. SUBSTRATE SCOPE USING STYRENES**



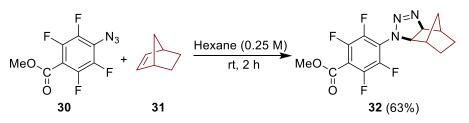
**Conditions:** Perfluoroarene (0.25 mmol), alkene (0.50 mmol), NaN<sub>3</sub> (0.375 mmol, 1.5 equiv.), 0.25 M H<sub>2</sub>O, 60 °C. <sup>\*</sup>Tetrabutylammonium chloride (20 mol %) was used as additive. All yields are isolated.


#### 6. GRAM-SCALE REACTIONS FOR THE SYNTHESIS OF 3



Scheme S1. Gram-scale reaction for the synthesis of 3

Perfluoropyridine (1g, 5.91 mmol, 1.0 equiv.), cyclopentene (971 mg, 11.82 mmol, 2.0 equiv.) and NaN<sub>3</sub> (576 mg, 8.86 mmol, 1.5 equiv.) were taken in a 50 mL round-bottom flask equipped with a PTFE-coated magnetic stir bar. Reaction vial was closed with a rubber septum and 12 mL H<sub>2</sub>O was added to the reaction mixture. Septum was wrapped with PTFE tape and a parafilm. and reaction mixture was stirred at 60 °C on pre-heated oil bath for 12 hours. After 12 hours, reaction mixture was cooled to rt. 10 mL EtOAc was added to the reaction mixture, and it was stirred for 2 minutes. Reaction completion was monitored by TLC (ethyl acetate/hexane, 0.5:9.5,  $R_f = 0.5$ ). The organic layer was separated from the aqueous layer using a separatory funnel. The same protocol was repeated two times (5 mL of EtOAc/time). Combined organic layers were dried over anhydrous sodium sulfate. Finally, volatiles were removed under reduced pressure to obtain crude product, which was further purified by flash chromatography using 5% EtOAc/hexanes as eluent. The purified product was dried under reduced pressure to obtain *N*-(perfluoropyridin-4-yl)cyclopentanimine (**3**) as final product (850 mg, 62%). The pure compound was then characterized by <sup>1</sup>H and <sup>13</sup>C NMR analysis.


#### 7. GRAM-SCALE REACTIONS FOR SYNTHESIS OF 9

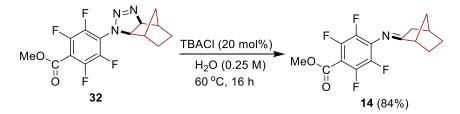


Scheme S2. Gram-scale reaction for synthesis of 9

2,3,4,5,6-pentafluorobenzonitrile (1g, 5.2 mmol, 1.0 equiv.), 2,3-dihydrofuran (729 mg, 10.4 mmol, 2.0 equiv.) and NaN<sub>3</sub> (507 mg, 7.8 mmol, 1.5 equiv.) were taken in a 50 mL round-bottom flask equipped with a PTFE-coated magnetic stir bar. Reaction vial was closed with a rubber septum and 10 mL H<sub>2</sub>O was added to the reaction mixture. Septum was wrapped with PTFE tape and a parafilm. and reaction mixture was stirred at 60 °C on pre-heated oil bath for 12 hours. After 12 hours, reaction mixture was cooled to rt. 10 mL EtOAc was added to the reaction mixture, and it was stirred for 2 minutes. Reaction completion was monitored by TLC (ethyl acetate/hexane, 1:9). The Organic layer was separated from the aqueous layer using a separatory funnel. The same protocol was repeated two times (5 mL of EtOAc/time). Combined organic layers were dried over anhydrous sodium sulfate. Finally, volatiles were removed under reduced pressure to obtain crude product, which was further purified by flash chromatography using 5% EtOAc/hexanes as eluent. The purified product was dried under reduced pressure to obtain 4- ((dihydrofuran-2(3*H*)-ylidene)amino)-2,3,5,6-tetrafluorobenzonitrile (**9**) as final product (1.02 g, 84%). The pure compound was then characterized by <sup>1</sup>H and <sup>13</sup>C NMR analysis.

#### 8. MECHANISTIC INVESTIGATION



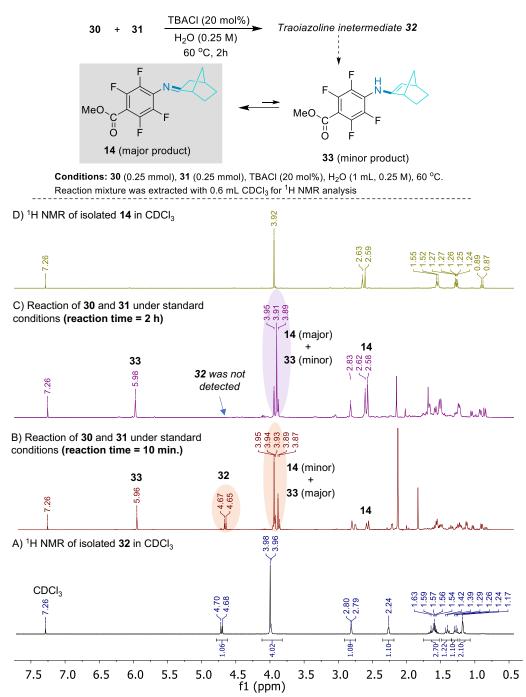

Conditions: 30 (0.5 mmol), 31 (0.6 mmol), hexane (0.25 M), rt, 2 h.

Scheme S3. Synthesis and isolation of triazoline intermediate (31)

#### 8a) Synthesis of triazoline intermediate 31

**Procedure:** The synthesis of **32** was performed following the reported literature procedure. methyl 4azido-2,3,5,6-tetrafluorobenzoate (**30**) (56.5 mg, 0.6 mmol, 1.2 equiv.) and norbornene (**31**) (124.5 mg mg, 0.5 mmol, 1.0 equiv.) and *n*-hexane (2 mL) were taken in a 4 mL reaction vial. Reaction vial was closed with a rubber septum and the reaction mixture was kept as is without any stirring. After 3 hours, the white solid was obtained. The white solid was separated from the hexane solution and washed three times with 3x1 mL of hexane. The solid collected was dried under reduced pressure to obtain methyl 2,3,5,6-tetrafluoro-4-3a,4,5,6,7,7a-hexahydro-1*H*-4,7-methanobenzo[d][1,2,3]triazol-1-yl)benzoate (**32**) as the final product (130 mg, 63%). The pure compound was then characterized by <sup>1</sup>H NMR analysis based on the literature report (Xie, S.; Lopez, S. A.; Ramström, O.; Yan, M.; Houk, K. N. 1,3-Dipolar Cycloaddition Reactivities of Per-fluorinated Aryl Azides with Enamines and Strained Dipolarophiles. *J Am Chem Soc* **2015**, 137, 2958–2966. https://doi.org/10.1021/ja511457g ).

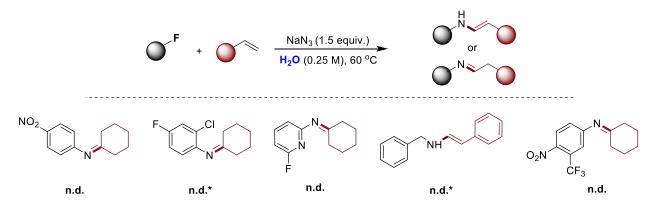
#### 8b) Conversion of 31 to final product 16 in water




Conditions: 31 (0.25 mmol), TBACI ( 20 mol%), H<sub>2</sub>O (0.25 M), 60 °C, 16 h.

#### Scheme S4. Synthesis of 14 from 32 under standard conditions

**Procedure**: Methyl-2,3,5,6-tetrafluoro-4-3a,4,5,6,7,7a-hexahydro-1*H*-4,7-methanobenzo[d][1,2,3]triazol-1-yl)benzoate (**32**) (0.25 mmol, 1 equiv.) and Tetrabutylammonium chloride (20 mol%, 0.05 mmol) were taken in a 4 mL reaction vial equipped with a PTFE-coated magnetic stir bar. Reaction vial was closed with a rubber septum and 1 mL water was added to the reaction mixture. Septum was wrapped with PTFE tape and a parafilm. The reaction mixture was then stirred at 60 °C for 16 hours. The reaction mixture was allowed to cool to rt. 2 mL EtOAc was added to the reaction mixture, and it was stirred for a minute. Reaction completion was monitored by TLC. Organic layer was withdrawn with the aid of syringe needle. The same protocol was repeated two times (2 x 2 mL EtOAc). The combined organic layer was dried over anhydrous sodium sulfate. Finally, volatiles was removed under reduced pressure to obtain crude product, which was further purified by flash chromatography using 5% EtOAc/hexanes as eluent. The viscous gel collected was dried under reduced pressure to obtain Methyl-4-(bicyclo[2.2.1]heptan-2-ylidene)amino-2,3,5,6-tetrafluorobenzoate (**14**) as the final product (66 mg, 84%). The pure compound was then characterized by <sup>1</sup>H and <sup>13</sup>C NMR analysis.


#### 9. CONTROL <sup>1</sup>H NMR ANALYSIS



**Scheme S5.** Control <sup>1</sup>H NMR analysis of the reaction to understand the various intermediates involved in the reaction

**Procedure:** A set of 3 reactions were set up according to the general procedure. To each reaction, methyl-4-azido-2,3,5,6-tetrafluorobenzoate (**29**) (62.25mg, 0.25 mmol, 1.2 equiv.) and norbornene (**30**) (23.5 mg, 0.25 mmol, 1.0 equiv.) and tetrabutylammonium chloride (13.64 mg, 20 mol %, 0.05 mmol) were taken in a 4 mL reaction vial equipped with a PTFE-coated magnetic stir bar. Reaction vials were closed with a rubber septum and 1 mL water was added to the reaction mixture. Septum was wrapped with PTFE tape and a parafilm. The reaction mixtures were then stirred at 60 °C. After 10 minutes, one of reaction vial was removed from the heating and quickly quenched with 0.5 mL of CDCl<sub>3</sub>. The organic layer was allowed to separate from the water. From the organic layer, 0.2 mL of CDCl<sub>3</sub> was transferred into the NMR tube using a needle syringe. An additional 0.4 mL of CDCl<sub>3</sub> was added to the NMR pure, which was quickly subjected to the NMR analysis to record <sup>1</sup>H NMR. A similar procedure was performed to the rest of the reaction after 1h and 2 h, and <sup>1</sup>H NMR was reordered.

## **10. UNSUCCESSFUL REACTIONS**



**Conditions:** Fluoroarene (0.25 mmol), alkene (0.50 mmol), NaN<sub>3</sub> (0.375 mmol, 1.5 equiv.), 0.25 M  $H_2O$ , 60 °C. <sup>\*</sup>Isolated azide was used as a starting material (No NaN<sub>3</sub> was used). n.d. = not detected.

#### **11. ANALYTICAL DATA**

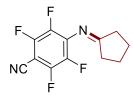
#### N-(perfluoropyridin-4-yl)cyclopentanimine (3)




Colorless liquid, yield 75 mg (67%),  $R_f 0.5$  (9.5:0.5, hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.66 (s, 2H), 2.17 (s, 2H), 1.95 (s, 4H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -91.29 – - 91.28 (m, 2F), -153.18 – -155.36 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  191.9, 143.6 (dd, *J* = 258.9, 13.8 Hz), 134.2 – 133.9 (m), 132.8 (dd, *J* = 255.3, 34.6 Hz), 36.8, 33.5, 24.7, 24.5. IR v (cm<sup>-1</sup>) = 3210 (m), 2950 (m), 1643(s). HRMS [(EI), (C<sub>10</sub>H<sub>8</sub>F<sub>4</sub>N<sub>2</sub>-H)<sup>-</sup>] calcd 231.0551, found m/z 231.0546.

## N-cyclopentylidene-2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (4)




Pale yellow solid, mp = 60-62 °C, yield 145 mg (96%), R<sub>f</sub> 0.5 (9:1 hexanes/ethyl acetate), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.64 (t, *J* = 7.2 Hz, 2H), 2.15 (t, *J* = 7.1 Hz, 2H), 2.03 – 1.83 (m, 4H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>).  $\delta$  -56.21 (t, *J* = 21.5 Hz, 3F), -139.12 – -146.54 (m, 2F), -149.77 – -155.68 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  192.2, 144.6 (dd, *J* = 258.9, 14.4 Hz), 137.9 (dd, *J* = 247.2, 13.8 Hz), 134.7 (t, *J* = 14.9 Hz), 121.3 (q, *J* = 272.5 Hz), 106.4 – 100.7 (m), 36.8, 33.5, 24.8, 24.6. IR v (cm<sup>-1</sup>) = 2972 (w), 1682 (w), 1652 (m), 1488 (s). HRMS [(ESI), (C<sub>12</sub>H<sub>8</sub>F<sub>7</sub>N+H)<sup>+</sup>] calcd 300.0618, found m/z 300.0620.

#### 1-(4-(Cyclopentylideneamino)-2,3,5,6-tetrafluorophenyl)ethenone (5)



Pale yellow, mp = 54-56 °C, yield 128 mg (90 %), R<sub>f</sub> 0.5 (9:1 hexanes/ethyl acetate), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.64 (t, *J* = 7.2 Hz, 2H), 2.15 (t, *J* = 7.1 Hz, 2H), 2.03 – 1.83 (m, 4H). <sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  -142.33 (dd, *J* = 21.8, 10.3 Hz), -152.16 (dd, *J* = 21.3, 9.7 Hz). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  192.2, 191.8, 144.8 (dd, *J* = 260.3, 7.2 Hz), 137.6 (dd, *J* = 247.2, 15.2 Hz), 133.7 (t, *J* = 14.8 Hz), 113.5 (t, *J* = 15.9 Hz), 36.7, 33.3, 32.6, 24.8, 24.6. IR v (cm<sup>-1</sup>) = 3387 (w), 2977 (w), 1698 (s), 1674 (m) 1641 (m), 1476 (s). HRMS [(ESI), (C<sub>13</sub>H<sub>11</sub>F<sub>4</sub>NO+H)<sup>+</sup>] calcd 274.0850, found m/z 274.0852.

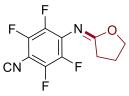
## 4-(Cyclopentylideneamino)-2,3,5,6-tetrafluorobenzonitrile (6)




White solid, mp = 48-50 °C, yield 120 mg (93%), R<sub>f</sub> 0.5(9:1 hexanes/ethyl acetate), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.66 (s, 1H), 2.15 (s, 1H), 1.95 (s, 2H). <sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  -62.61 (s), -132.55 - -134.11 (m), -149.26 - -150.54 (m). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  192.6, 147.8 (dd, *J* = 260.4, 11.3 Hz), 135.5 (dd, *J* = 243.6, 14.6 Hz), 133.5 - 129.7 (m), 109.2 - 108.6 (m), 108.1, 36.9, 33.7, 24.9, 24.6. **IR** v (cm<sup>-1</sup>) = 3356 (w), 2975 (w), 2239 (m), 1680 (m), 1645 (s), 1476 (s) **HRMS** [(ESI), (C<sub>12</sub>H<sub>8</sub>F<sub>4</sub>N<sub>2</sub>+H)<sup>+</sup>] calcd 257.0696, found m/z 257.0697.

## N-cyclohexylidene-2,3,5,6-tetrafluoropyridin-4-amine (7)




Colorless oil, yield 85 mg (69%), R<sub>f</sub> 0.5 (9.5:0.5 n-hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.58 (s, 2H), 2.24 – 2.07 (m, 2H), 2.02 – 1.81 (m, 2H), 1.79 – 1.67 (m, 4H). <sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  -55.58 (s), -55.64 (s), -55.70 (s), -141.97 – -142.23 (m), -151.31 – -151.52 (m). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  184.2, 143.7 (dd, *J* = 242.6, 16.2 Hz), 141.3 (d, *J* = 17.0 Hz), 133.1 (ddd, *J* = 253.5, 27.8, 6.1 Hz), 39.2, 34.1, 27.9, 27.3, 25.4. IR v (cm<sup>-1</sup>) = 3348 (w), 2925 (w), 2854 (w), 1643 (m), 1486 (s).

## N-cyclohexylidene-2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (8)

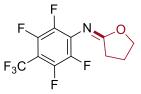


Pale yellow gel, yield 143 mg (92%), R<sub>f</sub> 0.5 (9.5:0.5 hexanes/ethyl acetate), <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.59 (t, *J*=8.0 Hz, 2H), 2.16 (t, *J* = 6.0 Hz, 2H), 2.03 – 1.88 (m, 2H), 1.77 – 1.64 (m, 4H). <sup>19</sup>**F** NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -55.64 (t, *J* = 21.5 Hz, 3F), -139.39 – -144.28 (m, 1F), -146.52 – -153.78 (m, 1F). <sup>13</sup>**C** NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  184.36, 144.49 (dd, *J* = 258.8, 15.5 Hz), 138.01 (dd, *J* = 246.6, 13.8 Hz), 133.6 (t, *J* = 15.4 Hz), 121.36 (q, *J* = 273.3 Hz), 104.2 – 102.7 (m), 39.3, 33.9, 27.9, 27.2, 25.4. **IR** v (cm<sup>-1</sup>) =3333 (w), 2945 (w), 2866 (w), 2125 (w), 1651 (m), 1486 (s). **HRMS** [(Cl), (C<sub>13</sub>H<sub>10</sub>F<sub>7</sub>N+H)<sup>+</sup>] calcd 314.0774, found m/z 314.0778.

#### (E)-4-((dihydrofuran-2(3H)-ylidene)amino)-2,3,5,6-tetrafluorobenzonitrile (9)

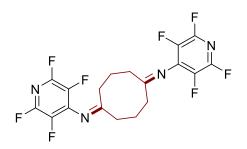


Yellow solid, mp = 60-61 °C, yield 120 mg (93%), R<sub>f</sub> 0.5 (8:2 hexanes/ethyl acetate), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.42 (t, J = 6.8 Hz, 2H), 2.89 (t, J = 7.4 Hz, 2H), 2.38 – 2.22 (m, 2H). <sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  -135.05 (d, J = 11.9 Hz), -148.09 (d, J = 11.9 Hz).<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>).  $\delta$  170.2, 147.4 (dd, J = 259.9, 14.5 Hz), 139.54 (dd, J = 248.8, 11.6 Hz), 134.31 (t, J = 14.0 Hz), 108.28, 87.34


(t, J = 17.6 Hz), 73.03, 29.83, 23.28. **IR** v (cm<sup>-1</sup>) = 3345 (w), 2931 (w), 2238 (m), 1700 (m), 1493 (s). **HRMS** [(EI), (C<sub>11</sub>H<sub>6</sub>F<sub>4</sub>N<sub>2</sub>O+H)<sup>+</sup>] calcd 259.0489, found m/z 259.0490.

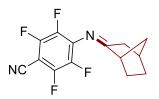
(E)-N-(dihydrofuran-2(3H)-ylidene)-2,3,5,6-tetrafluoropyridin-4-amine (10)




Colorless liquid, yield 99.5 mg (85%),  $R_f 0.5$  (8.5:1.5 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.51 – 4.14 (m, *J* = 3.2, 2.7, 1.1 Hz, 1H), 3.06 – 2.78 (m, 1H), 2.49 – 2.24 (m, *J* = 13.0, 6.8 Hz, 1H).<sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  -92.52 (s, 2F), -152.17 (s, 2F). IR v (cm<sup>-1</sup>) = 3331 (s), 1694 (w), 1635 (m). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  169.7, 143.6 (d, *J* = 265.6 Hz), 135 (d, *J* = 281.9 Hz), 72.9, 30, 23.4, 14.40. HRMS [(EI), (C<sub>9</sub>H<sub>6</sub>F<sub>4</sub>N<sub>2</sub>O+)<sup>+</sup>] calcd 234.0411, found m/z 234.0412

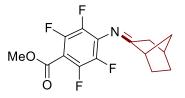
(E)-N-(dihydrofuran-2(3H)-ylidene)-2,3,5,6-tetrafluoro-4-(trifluoromethyl)aniline (11)




White solid, mp = 110-112 °C, yield 112 mg 74%, R<sub>f</sub> 0.3 (9.6:0.4, hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  4.41 (t, *J* = 7.0 Hz, 1H), 2.89 (t, *J* = 8.0 Hz, 1H), 2.35 – 2.25 (m, 1H). <sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  -56.31 (d, *J* = 46.4 Hz), -143.33 (d, *J* = 372.5 Hz), -150.71 (d, *J* = 433.9 Hz). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  169.8, 144.4 (dd, *J* = 253.6, 19.0 Hz), 139.9 (dd, *J* = 245.0, 8.8 Hz), 131.8 (t, *J* = 19.7 Hz), 118.3 (q, *J* = 281.2 Hz), 105.3 – 101.6 (m), 72.8, 29.8, 23.3. IR v (cm<sup>-1</sup>) = 3342 (w), 2919 (w), 1692 (m), 1649 (m), 1485 (s). HRMS [(ESI), (C<sub>11</sub>H<sub>6</sub>F<sub>7</sub>NO+H)<sup>+</sup>] calcd 302.0410, found m/z 302.0412.

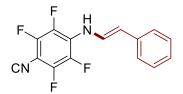
## N1, N5-bis(perfluoropyridin-4-yl)cyclooctane-1,5-diimine (12)




Off white solid, mp = 98- 100 °C, yield 59 mg (27%),  $R_f 0.5$  (9:1 hexanes/ethyl acetate) <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.19 – 2.61 (m, 5H), 2.39 (s, 3H), 2.14 – 1.62 (m, 4H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -81.97 – -94.75 (m, 2F), -138.56 – -167.97 (m, 2F). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  176.8, 143.7 (dd, *J* = 241.2, 17.0 Hz), 141.4 – 140 (m), 132.3 (dd, *J* = 257.1, 28.5 Hz), 39.2, 37.1, 36.5, 35.3, 34.2, 29.9, 27, 23.9, 22.7. **IR** v (cm<sup>-1</sup>) = 3348 (w), 3219 (w), 2949 (w), 1663 (s), 1485 (s). HRMS [(Cl), (C<sub>18</sub>H<sub>11</sub>F<sub>8</sub>N<sub>4</sub>O-H)-] calcd 435.0861, found m/z 435.0855.

## 4-Bicyclo[2.2.1]heptan-2-ylidene)amino)-2,3,5,6-tetrafluorobenzonitrile (13)




White solid, mp = 160- 162 °C, yield 120 mg (85%), R<sub>f</sub> 0.5 (9.5:0.5 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  2.65 (s, 3H), 1.70 – 1.44 (m, 4H), 1.38 – 1.21 (m, 2H), 0.91 (d, *J* = 10.2 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -134.43 – -136.73 (m, 2F), -146.94 – -154.90 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  147.6 (dd, *J* = 260.2, 12.6 Hz), 140.4 (dd, *J* = 249.3, 12.7 Hz), 138.1 (t, *J* = 8.3 Hz), 108.5, 84.4 (t, J = 17.5 Hz), 43.5, 36.4, 28.3, 25.9. **IR v (cm<sup>-1</sup>)** = 2928 (w), 2235 (m), 2130 (w), 1647 (s), 1485 (s). **HRMS** [(ESI), (C<sub>14</sub>H<sub>9</sub>F<sub>4</sub>N<sub>2</sub>-H)<sup>-</sup>] calcd 281.0707, found m/z 281.0700.

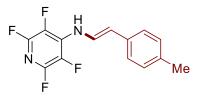
#### Methyl 4-bicyclo[2.2.1]heptan-2-ylidene)amino)-2,3,5,6-tetrafluorobenzoate (14)



Viscous gel, yield 56 mg (71%),  $R_f 0.5$  (9.5:0.5 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  3.92 (s, 3 H), 2.60 (d, J = 12 Hz, 3H), 1.53 (d, J = 8.6 Hz, 4H), 1.26– 1.24 (m, 2H), 0.88 (d, J = 10Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -139.84 – -142.87 (m, 2 F), -151.75 – -155.24 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  161, 145.83 (dd, J = 255.1, 9.9 Hz), 137.52 (dd, J = 404, 13.1 Hz), 103.3, 52.9, 43.1, 36.3, 28.3, 26. IR v (cm<sup>-1</sup>) = 2925 (w), 2245 (m), 2144 (w), 1677 (s), 1437 (s). HRMS [(APCl), (C<sub>15</sub>H<sub>14</sub>F<sub>4</sub>N<sub>2</sub>+H)<sup>+</sup>] calcd 316.0955, found m/z 316.0958.

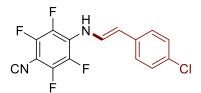
#### (E)-2,3,5,6-Tetrafluoro-4-(styrylamino)benzonitrile (15)




Colourless liquid, yield 94 mg (64%),  $R_f 0.5$  (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.51 – 7.40 (m, 1H), 7.36 – 7.27 (m, 4H), 7.23 -7.20 (m, 1H), 6.43 (d, *J* = 12 Hz, 1H), 6.15 (d, *J* = 16 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -129.37 – -141.35 (m, 2F), -157.81 - -157.90 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  137.7 (d, *J* = 32.2 Hz), 135.2 (d, *J* = 35.8 Hz), 129.0, 128.76, 128.0, 127.1, 125.5, 125.2, 125.1, 114.1, 108.5. IR v (cm<sup>-1</sup>) = 3300 (m), 2924 (w), 2232 (m), 1646 (s), 1512 (s). HRMS [(EI), (C<sub>15</sub>H<sub>8</sub>F<sub>4</sub>N<sub>2</sub>-H)<sup>-</sup>] calcd 291.0551, found m/z 291.0541.

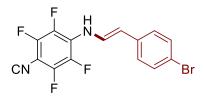
#### (E)-2,3,5,6-Tetrafluoro-N-styrylpyridin-4-amine (16)




Viscous yellow liquid, yield 83 mg (62%),  $R_f$  0.5 (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.56 – 7.45 (m, 1H), 7.35 – 7.28 (m, 4H), 7.22 (m, 1H), 6.52 (d, *J* = 12 Hz, 1H), 6.15 (d, *J* = 12 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -88.60 – -94.64 (m, 2F), -159.55 – -164.25 (m, 2F). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  145.0 – 143.5 (m), 135.3, 132.6, 132.4 – 130.4 (m), 129.8, 126.9, 125.4, 124.7, 113.8. **IR** v (cm<sup>-1</sup>) = 3400 (m), 2945 (m), 2239 (m), 1517 (s) **HRMS** [(EI), (C<sub>13</sub>H<sub>8</sub>F<sub>4</sub>N<sub>2</sub>+)<sup>+</sup>] calcd 268.0619, found m/z 268.0620.

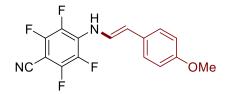
#### (E)-2,3,5,6-tetrafluoro-N-(4-methylstyryl)pyridin-4-amine (17)




White solid, mp = 125 – 127 °C, yield 76 mg (54%), R<sub>f</sub> 0.5 (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.58 – 7.37 (m, 1H), 7.20 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.48 (d, *J* = 10.6 Hz, 1H), 6.13 (d, *J* = 13.8 Hz, 1H), 2.34 (s, 3H).<sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -91.17 – -95.37 (m, 2F), -161.93 – -162.04 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.7 (d, *J* = 16.1 Hz), 143.20 (d, *J* = 15.0 Hz), 136.9, 132.9, 132.5, 129.7, 125.5, 124.1, 114.0, 21.3. IR v (cm<sup>-1</sup>) = 3340 (w), 2927 (w), 1636 (s), 1477 (s) HRMS [(EI), (C<sub>14</sub>H<sub>10</sub>F<sub>4</sub>N<sub>2</sub>+)] calcd 282.0775, found m/z 282.0773.

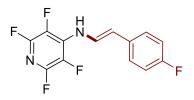
## (E)-4-((4-Chlorostyryl)amino)-2,3,5,6-tetrafluorobenzonitrile (18)




Waxy liquid, yield 85 mg (52%),  $R_f$  0.3 (9:1, hexanes/ethyl acetate). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.45 – 7.37 (m, 1H), 7.28 (d, *J* = 8 Hz, 2H), 7.21 (d, *J* = 8 Hz, 2H), 6.43 (d, *J* = 12 Hz, 1H), 6.10 (d, *J* = 13 Hz, 1H) <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -130.95 – -134.50 (m, 2F), -147.59 – -151.00 (m, 2F). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  148.8 – 146.8 (m), 136.8 – 134.6 (m), 133.9, 132.3, 131.5, 130.9, 129.7 – 129.1 (m), 128.9 (d, *J* = 12.0 Hz), 126.5, 125.5, 112.6, 108.5 (d, *J* = 63 Hz). IR v (cm<sup>-1</sup>) = 3455 (m), 3353 (m), 3226 (w), 2239 (m), 1665 (m), 1517 (s). HRMS [(EI), (C<sub>15</sub>H<sub>7</sub>ClF<sub>4</sub>N<sub>2</sub>+)<sup>+</sup>] calcd 326.0234, found m/z 326.0233.

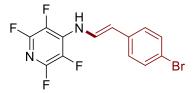
## (E)-4-((4-Bromostyryl)amino)-2,3,5,6-tetrafluorobenzonitrile (19)




Viscous yellow liquid, yield 106 mg (57%), R<sub>f</sub> 0.5 (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.49 – 7.39 (m, 3H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.45 (d, *J* = 10.7 Hz, 1H), 6.08 (d, *J* = 13.9 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -132.43 – -134.82 (m, 2F), -157.16 (d, J = 14.7 Hz, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.5 (d, *J* = 10.1 Hz), 146.9 (d, *J* = 14.0 Hz), 134.4, 132.7, 132.1, 129.7, 127, 125.7 (t, *J* = 6.8 Hz), 120.6, 112.8, 108.4. **IR** v (cm<sup>-1</sup>) = 3300 (m), 2924 (w), 2232 (m), 1646 (s), 1512 (s). **HRMS** [(APCl), (C<sub>15</sub>H<sub>7</sub>BrF<sub>4</sub>N<sub>2</sub>- H)<sup>-</sup>] calcd 370.9637, found m/z 370.9634.

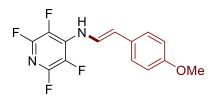
## (E)-2,3,5,6-Tetrafluoro-4-((4-methoxystyryl)amino)benzonitrile (20)




Dark brown liquid, yield 90 mg (55%), R<sub>f</sub> 0.5 (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 – 7.11 (m, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 6.39 (d, *J* = 10.4 Hz, 1H), 6.10 (d, *J* = 13.6 Hz, 1H), 3.80 (s, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -129.46 – -136.43 (m, 2F), -157.60 (d, J = 15 Hz, 2F). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  158.7 (d, *J* = 16.7 Hz), 147.9 (dd, *J* = 274.0, 16.5 Hz), 135.8 (dd, *J* = 229.7, 15.4 Hz), 128.1 (s), 127.8 (d, *J* = 17.2 Hz), 126.4 (d, *J* = 17.1 Hz), 123.2 (s), 114.2 (d, *J* = 17.2 Hz), 113.7 (d, *J* = 16.5 Hz), 108.5 (d, *J* = 16.3 Hz), 80.7 (d, *J* = 17.1 Hz), 55.2 (d, *J* = 17.4 Hz). IR v (cm<sup>-1</sup>) = 3461(w), 3348 (m), 3222 (m), 2234 (s), 1663 (s), 1513 (s). HRMS [(EI), (C<sub>16</sub>H<sub>10</sub>F<sub>4</sub>N<sub>2</sub>O+)<sup>+</sup>] calcd 268.0624, found m/z 268.0627.

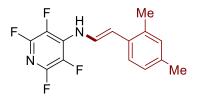
## (E)-2,3,5,6-tetrafluoro-N-(4-fluorostyryl)pyridin-4-amine (21)




White solid, mp = 158 - 160 °C, yield 94 mg (66%), R<sub>f</sub> 0.5 (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (m, 1H), 7.29 – 7.18 (m, 2H), 7.11 – 6.93 (m, 2H), 6.49 (d, *J* = 10.8 Hz, 1H), 6.11 (d, *J* = 13.9 Hz, 1H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -90.76 – -93.21 (m, 2F), -111.14 – -119.89 (m, 1F), -149.39 – -167.81 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  149.5 (d, *J* = 5.0 Hz), 137.4 (d, *J* = 19.4 Hz), 135.5 (d, *J* = 15.6 Hz), 129.0, 128.8, 128.0, 127.1, 125.5, 125.2 (d, *J* = 6.3 Hz), 114.1. IR v (cm<sup>-1</sup>) = 3303 (w), 3121 (w), 1637 (s), 1482 (s). HRMS [(ESI), (C<sub>13</sub>H<sub>7</sub>F<sub>5</sub>N<sub>2</sub>-H)<sup>-</sup>] calcd 285.0457, found m/z 285.0452.

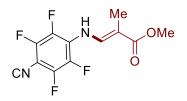
## (E)-N-(4-bromostyryl)-2,3,5,6-tetrafluoropyridin-4-amine (22)




Off-white solid, mp = 120 - 122 °C, yield 105 mg (61%), R<sub>f</sub> 0.5 (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.50 (m, 1H), 7.46 – 7.45 (m, 1H), 7.44 – 7.42 (m, 2H), 7.19 – 7.14 (m, 2H), 6.53 (d, *J* = 11.4 Hz, 1H), 6.08 (d, *J* = 13.9 Hz, 2H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -89.72 – -96.56 (m, 2F), -158.08 – -168.64 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.73 (d, *J* = 16.3 Hz), 143.33 (d, *J* = 20.0 Hz), 134.47, 132.59, 132.06, 127.00, 125.46 (t, *J* = 6.4 Hz), 120.56, 112.69. **IR** v (cm<sup>-1</sup>) = 3323 (w), 3100 (w), 1646 (s), 1524 (s) **HRMS** [(ESI), (C<sub>13</sub>H<sub>7</sub>BrF<sub>4</sub>N<sub>2</sub>+H)<sup>+</sup>] calcd 346.9625, found m/z 346.9629.

## (E)-2,3,5,6-tetrafluoro-N-(4-methoxystyryl)pyridin-4-amine (23)




Yellow viscous liquid, yield 75 mg (50%),  $R_f$  0.5 (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.62 – 7.37 (m, 1H), 7.39 – 7.26 (m, 2H), 6.95 (d, *J* = 8.6 Hz, 2H), 6.53 (d, *J* = 10.5 Hz, 1H), 6.19 (d, *J* = 13.8 Hz, 1H), 3.90 (s, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -86.21 – -97.71 (m, 2F), -156.33 – -168.40 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  158.9 (s), 144.4 (dd, *J* = 239.5, 17.4 Hz), 132.9 (s), 131.2 (dd, *J* = 219.9, 29.3 Hz), 128.0, 126.7, 123.2, 114.5, 113.8, 55.5. IR v (cm<sup>-1</sup>) = 3355 (w), 2842 (w), 1684 (s), 1598 (s) HRMS [(ESI), (C<sub>14</sub>H<sub>10</sub>F<sub>4</sub>N<sub>2</sub>O+ H)<sup>+</sup>] calcd 298.0728, found m/z 299.0728.

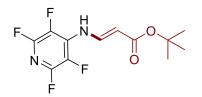
#### (E)-N-(2,4-dimethylstyryl)-2,3,5,6-tetrafluoropyridin-4-amine (24)



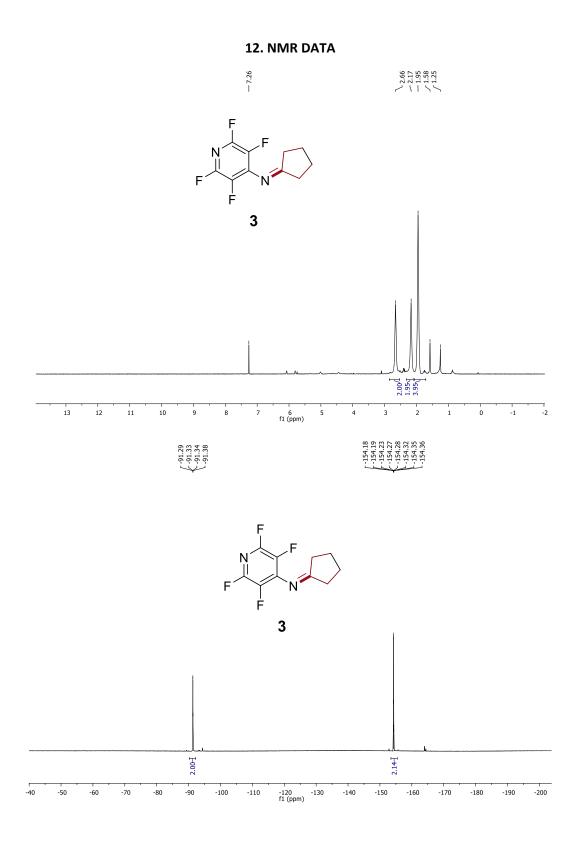
Off-white solid, mp = 140 – 142 °C, yield 102 mg (69%), R<sub>f</sub> 0.5 (9:1 hexanes/ethyl acetate). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.28 (m, 1H), 7.19 (d, *J* = 8.3 Hz, 1H), 6.99 – 6.91 (m, 2H), 6.49 (d, *J* = 11.0 Hz, 1H), 6.24 (d, *J* = 13.7 Hz, 1H), 2.26 (s, 6H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>)  $\delta$  -90.50 – -93.94 (m, 2F), -159.92 – -164.99 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  145.7 (d, *J* = 16.6 Hz), 143.4 (d, *J* = 18.0 Hz), 137.0, 134.9, 132.9, 131.4, 131.4, 131.1, 127.2, 124.9, 112.0, 21.2, 20.1. IR v (cm<sup>-1</sup>) = 3320 (w), 28430 (w), 1624 (s), 1551 (s) HRMS [(ESI), (C<sub>15</sub>H<sub>12</sub>F<sub>4</sub>N<sub>2</sub>-H)<sup>-</sup>] calcd 295.0859, found m/z 295.0864.

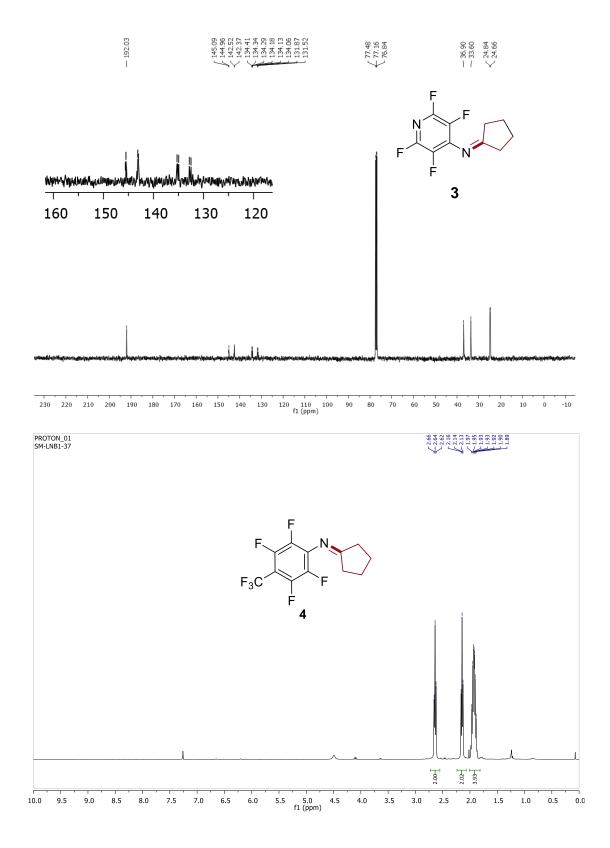
(E)-methyl 3-((4-cyano-2,3,5,6-tetrafluorophenyl)imino)-2-methylpropanoate (25)

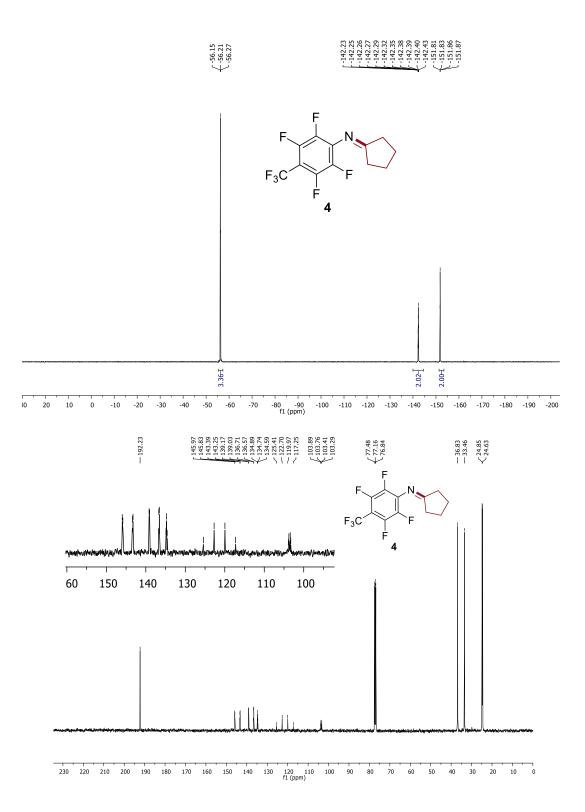


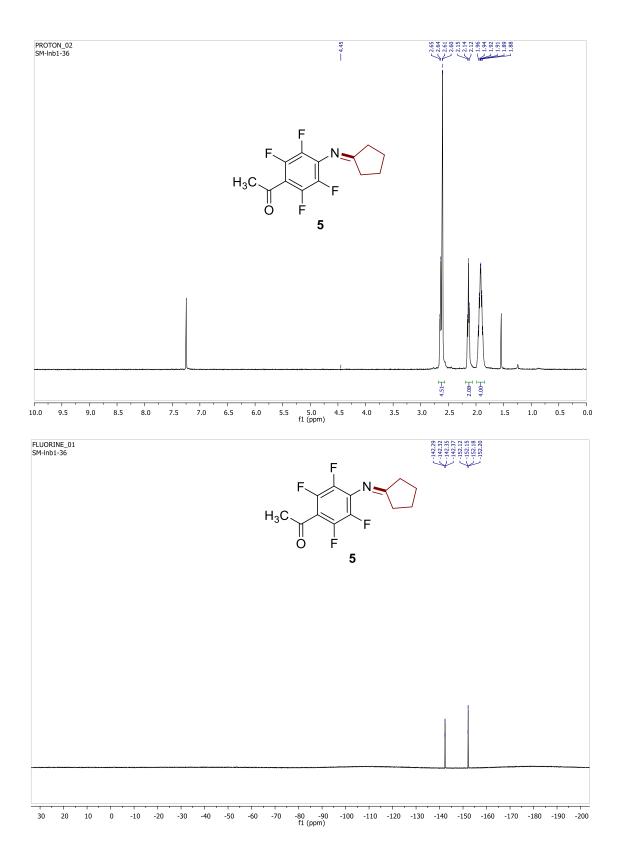

Pale yellow liquid (viscos gel), yield 74 mg (51%),  $R_f$  0.5(8:2 hexanes/ethyl acetate), <sup>1</sup>H NMR <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>  $\delta$  8.04 – 7.93 (m, 1H), 6.35 (d, *J* = 12.3 Hz, 1H), 3.76 (s, 3H), 1.90 (d, *J* = 1.4 Hz, 3H). <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>).  $\delta$  -131.98 – -133.19 (m, 2F), -152.96 – -156.90 (m, 2F). <sup>13</sup>C NMR (100 MHz, CDCl3)  $\delta$  167.95, 148.10 (dd, *J* = 259.7, 13.9 Hz), 137.03 (dd, *J* = 246.8, 14.3 Hz), 134.87 (t, *J* = 6.8 Hz), 127.18 (d, *J* = 9.6 Hz), 108.16, 107.91, 51.96, 31.00, 9.64. IR v (cm<sup>-1</sup>) = 3342 (w), 2238 (w),1702 (m), 1645 (s), 1509 (s). HRMS [(EI), (C<sub>12</sub>H<sub>8</sub>F<sub>4</sub>N<sub>2</sub>O<sub>2</sub>+)<sup>+</sup>] calcd 288.0516, found m/z 288.0509.

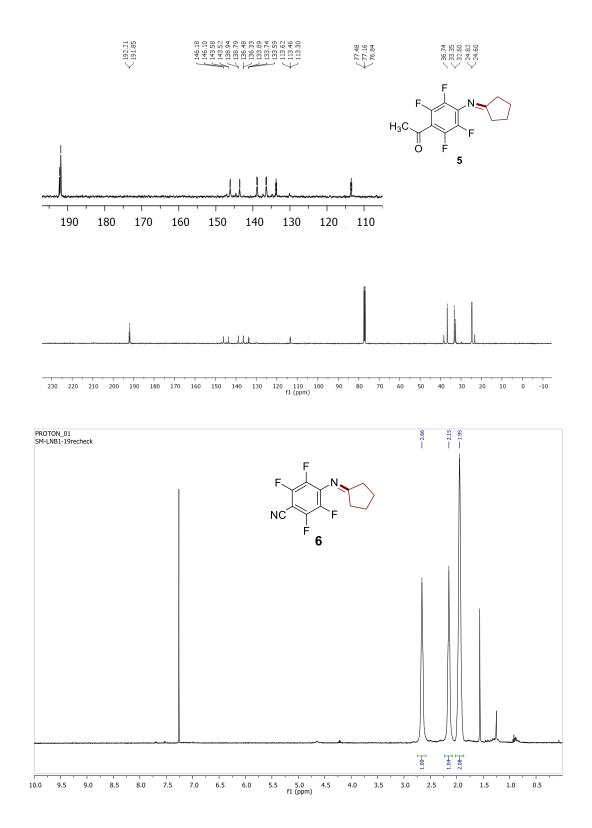
## (E)-methyl 2-methyl-3-((perfluoropyridin-4-yl)amino)acrylate (26)

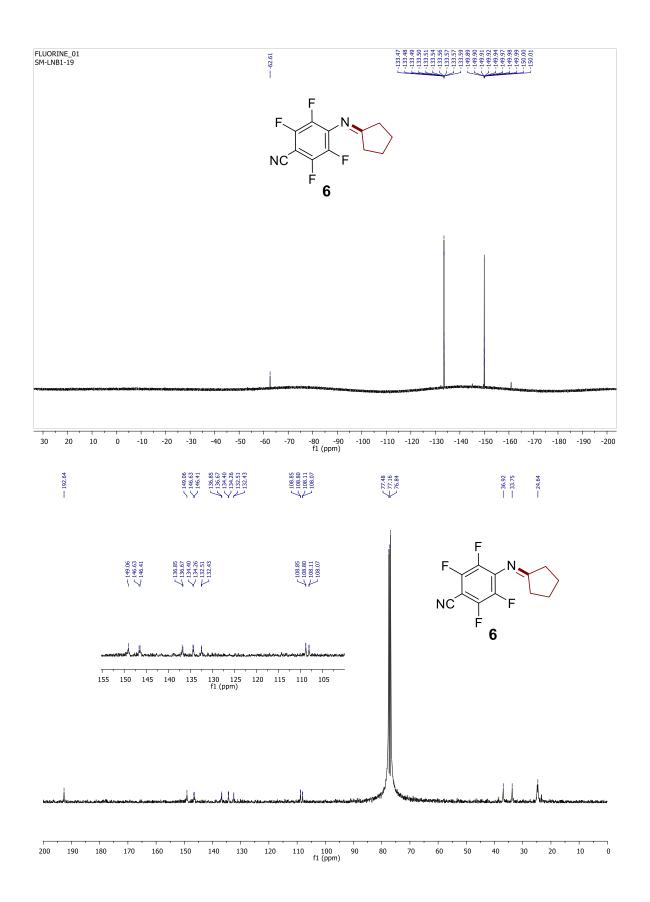


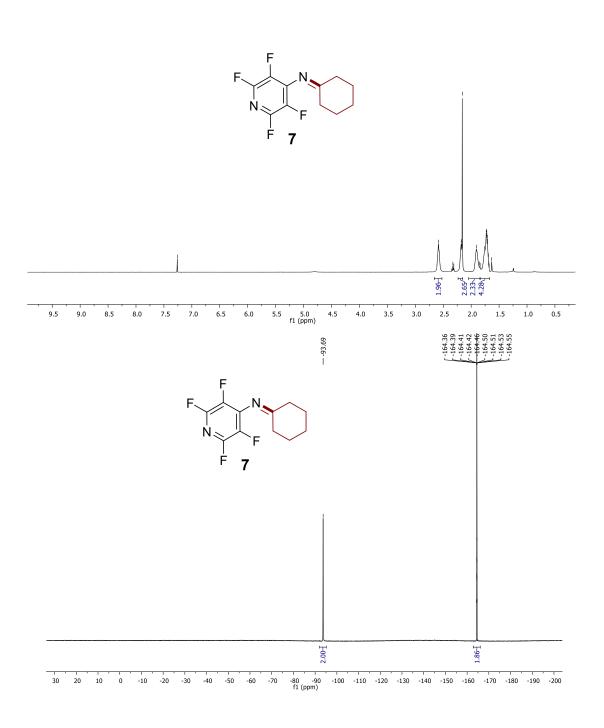


White solid, mp = 124-126 °C, yield 67 mg (51%), R<sub>f</sub>: 0.5(9.5:0.5 hexanes/ethyl acetate), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, *J* = 12.6 Hz, 1H), 6.38 (d, *J* = 12.2 Hz, 1H), 3.77 (s, 3H), 1.90 (d, *J* = 1.2 Hz, <sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  -132.90 (d, *J* = 12.3 Hz), -155.43 (m). <sup>13</sup>C NMR (176 MHz, CDCl<sub>3</sub>)  $\delta$  185.2, 167.9, 144.3 (dd, *J* = 244.1, 17.8 Hz), 134.5 – 133.9 (m), 132 (dd, *J* = 249.1, 11.4 Hz), 108.3, 52, 9.7. IR v (cm<sup>-1</sup>) =, 3418 (w), 3319 (w), 2957 (w), 1698 (m) 1645 (s), 1636 (s), 1535 (m). HRMS [(Cl), (C<sub>10</sub>H<sub>8</sub>F<sub>4</sub>N<sub>2</sub>O<sub>2</sub>-H)<sup>-</sup>] calcd 263.0449, found m/z 263.0445.


(E)-tert-butyl 3-((perfluoropyridin-4-yl)amino)acrylate (27)

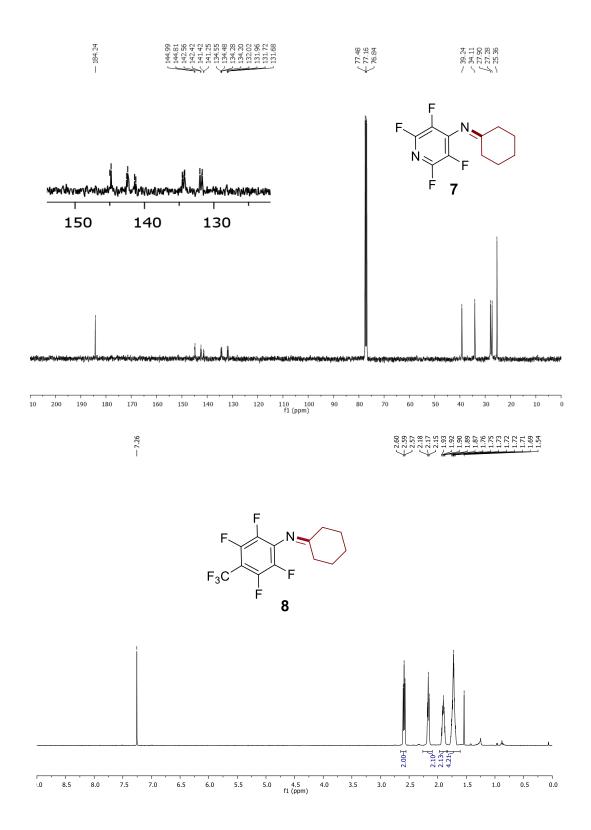


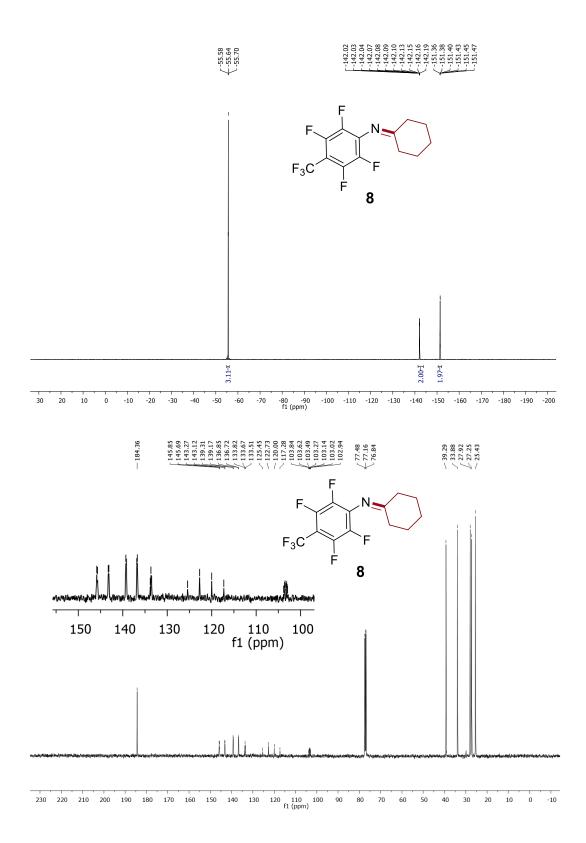


White solid, mp = 130-132 °C, yield 108 mg (74%), R<sub>f</sub>: 0.5(9:1 hexanes/ethyl acetate), <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (t, *J* = 13.0 Hz, 1H), 6.75 (d, *J* = 12.3 Hz, 1H), 5.42 (d, *J* = 13.3 Hz, 1H), 1.50 (s, 9H) <sup>19</sup>F NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  -90.65 (m, *J* = 14.6 Hz), -159.31 (t, *J* = 16.0 Hz). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  166.0, 144.3 (dd, *J* = 246.9, 17.5 Hz), 143.6 – 142.8 (m), 139.3, 132.2 (dd, *J* = 253.8, 29.3 Hz), 104.2, 80.8, 28.4. IR v (cm<sup>-1</sup>) = 3221 (w), 3065 (w), 2987 (w), 1643 (s), 1626 (s) HRMS [(EI), (C<sub>12</sub>H<sub>12</sub>F<sub>4</sub>N<sub>2</sub>O<sub>2</sub>-H)<sup>-</sup>] calcd 291.0762, found m/z 291.0758.

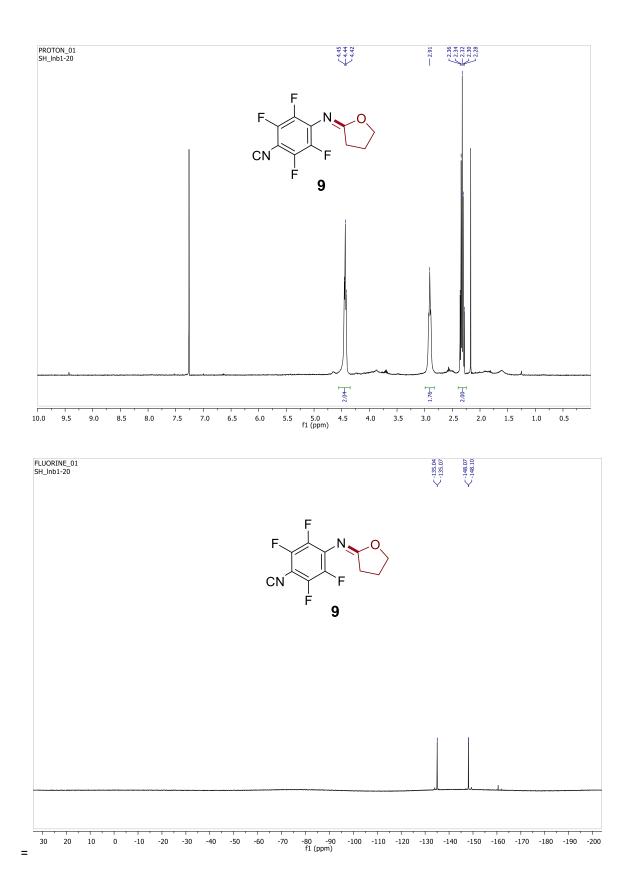


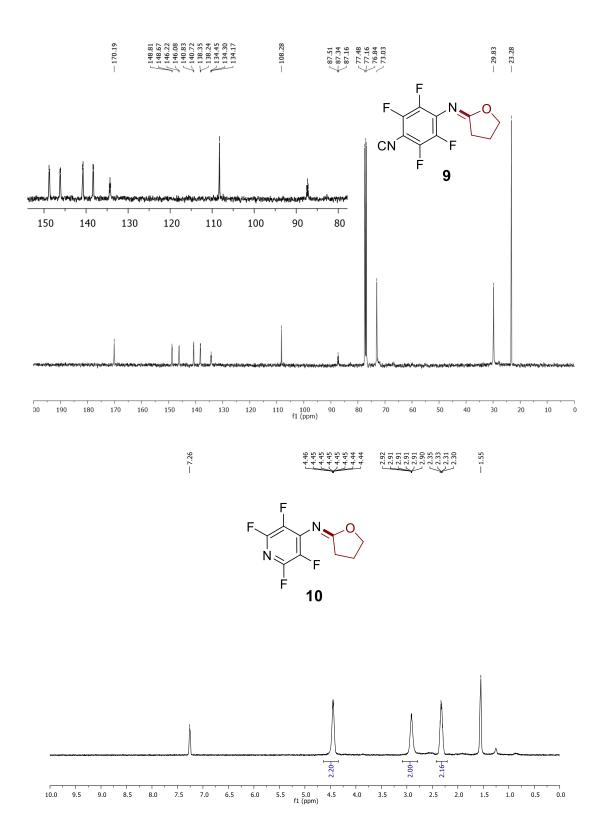



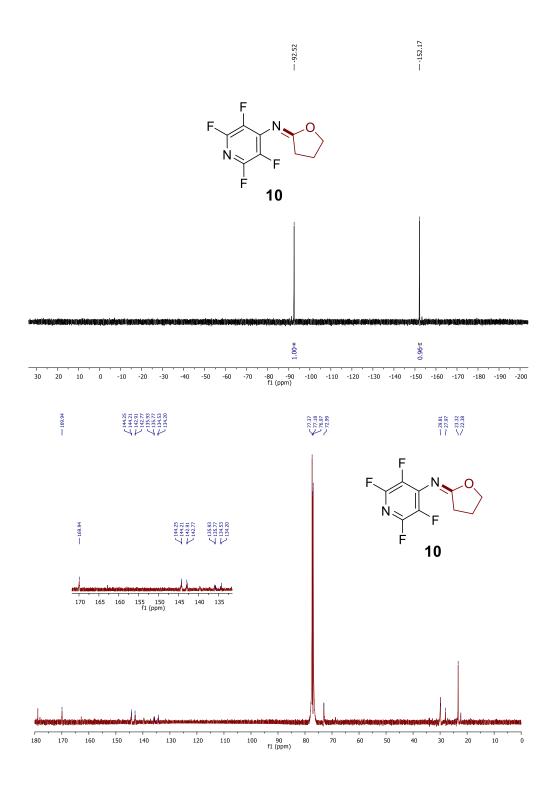


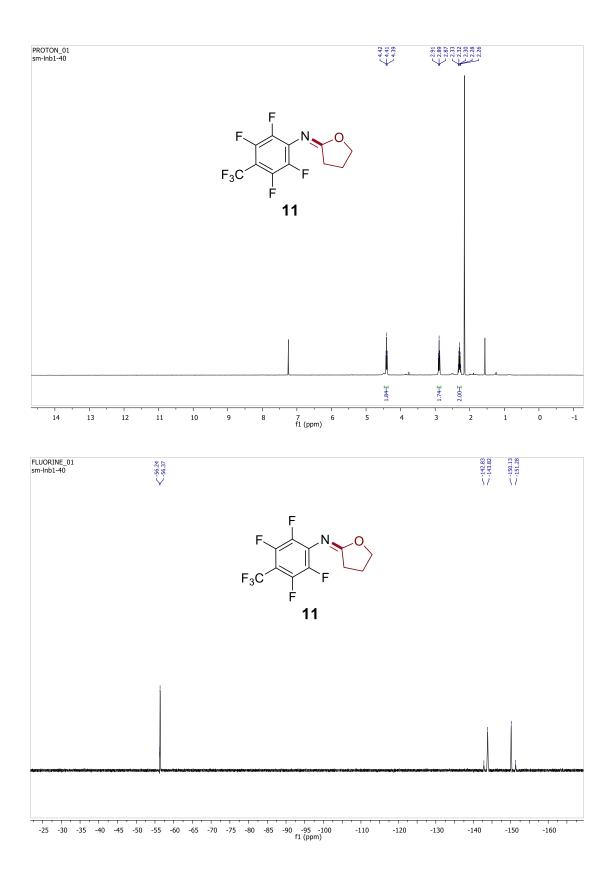



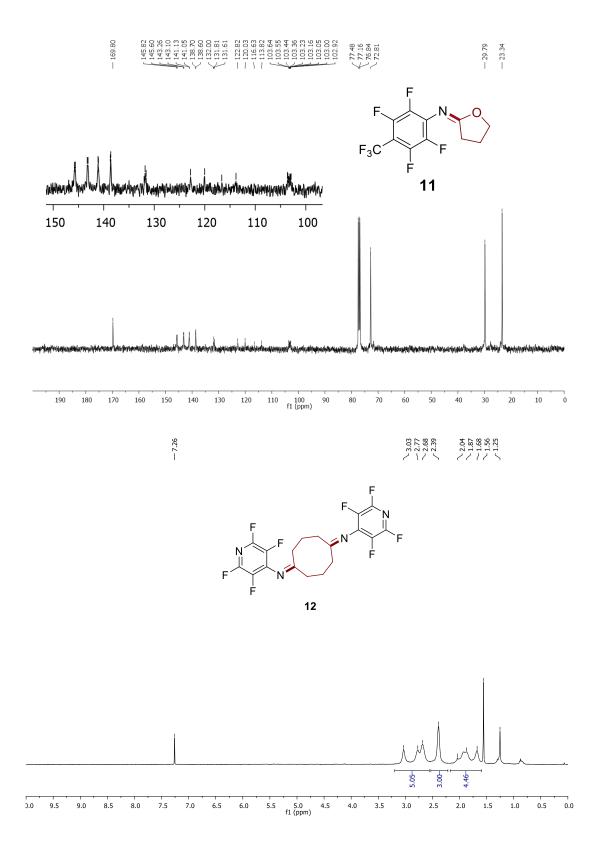



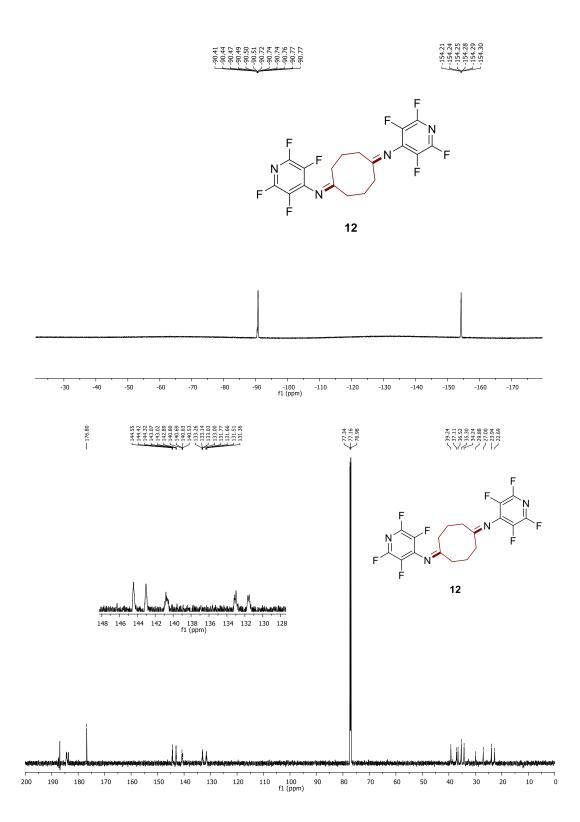



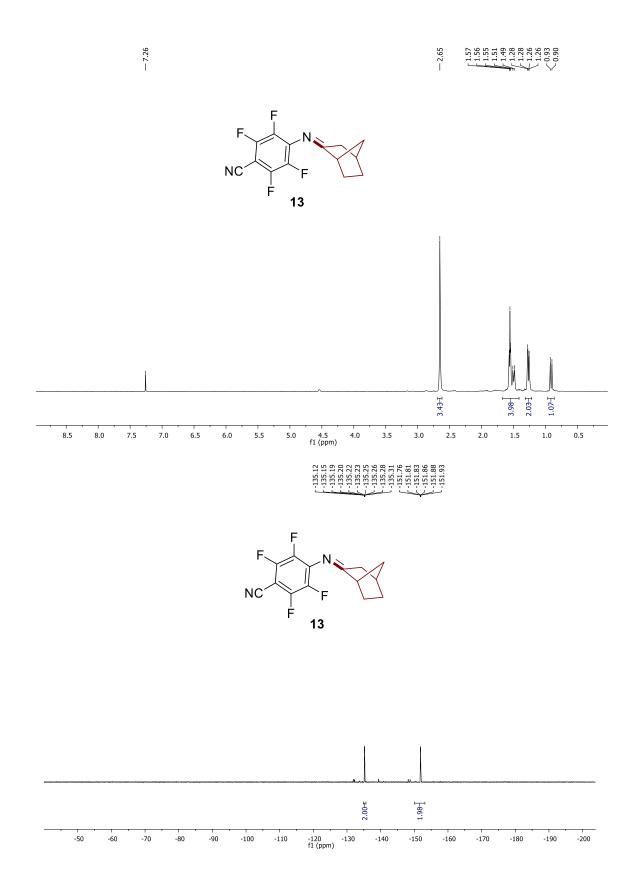



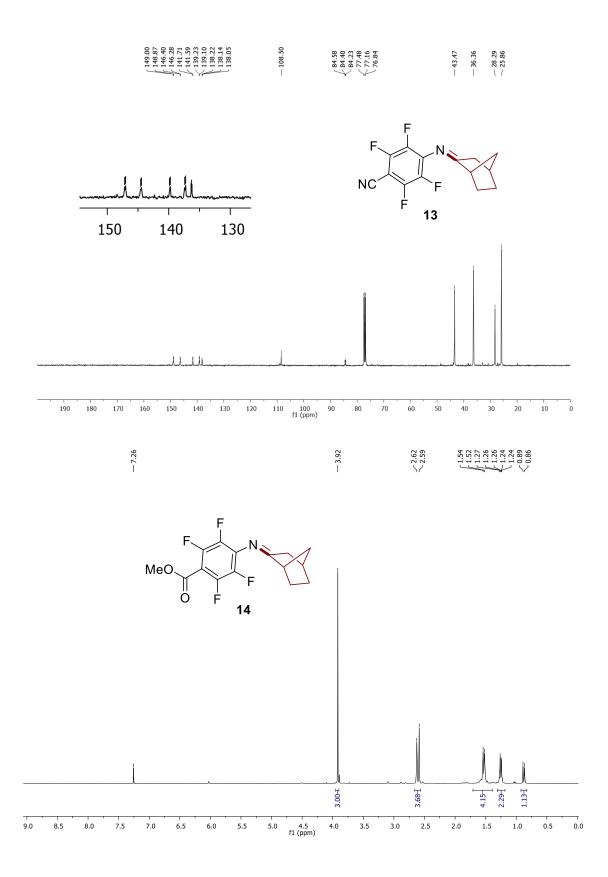


-- 7.26

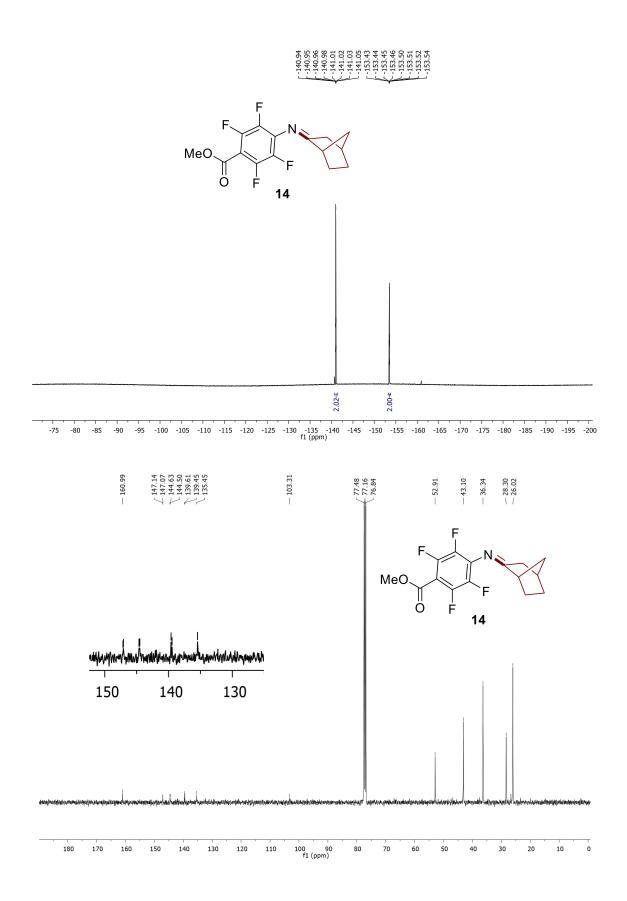


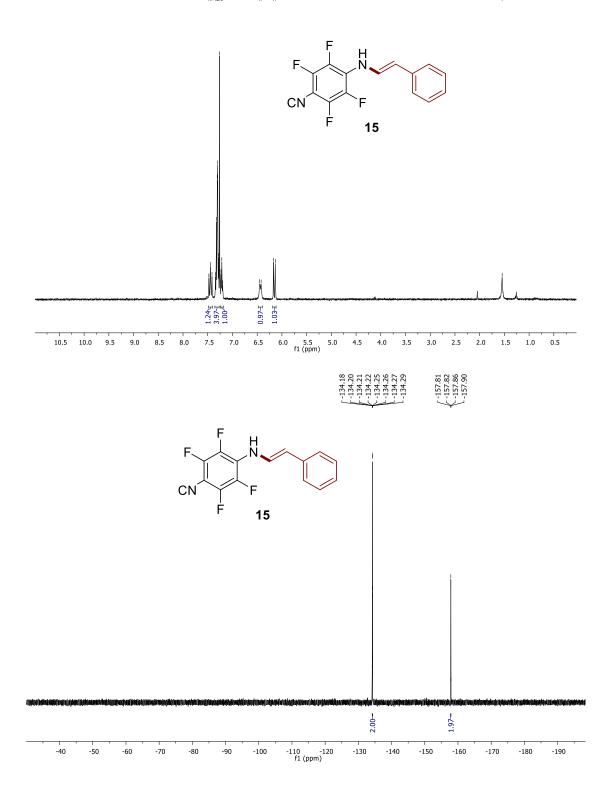



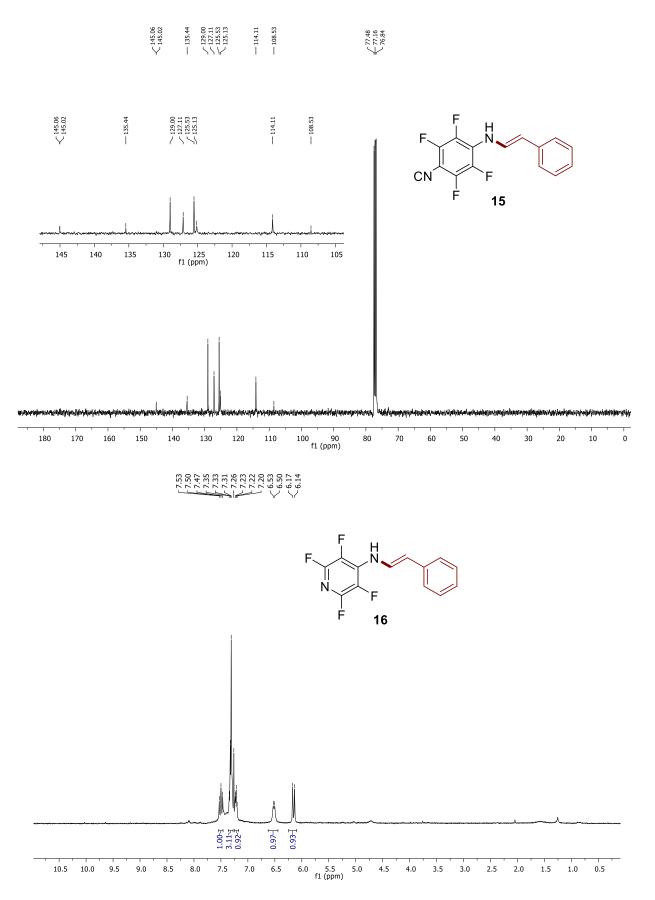



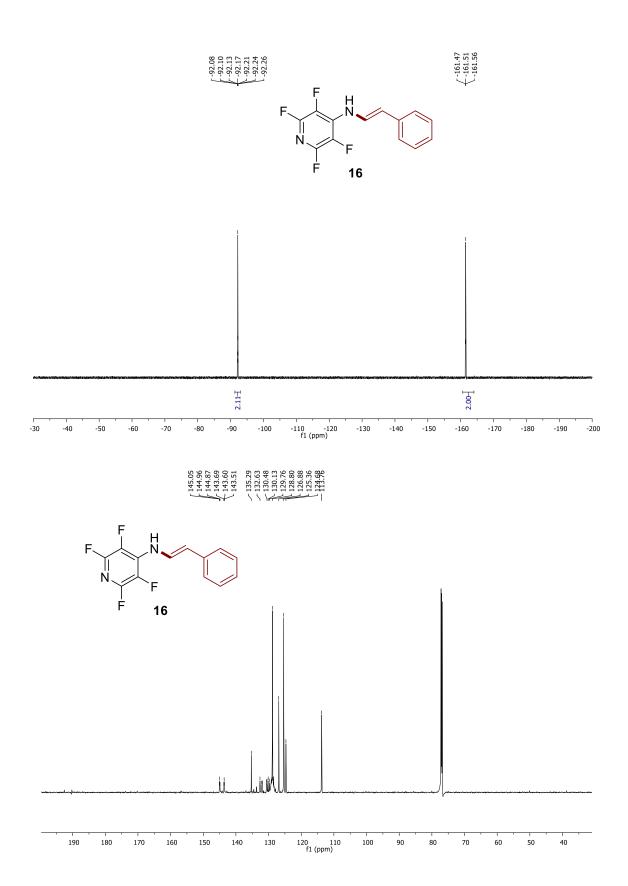



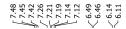



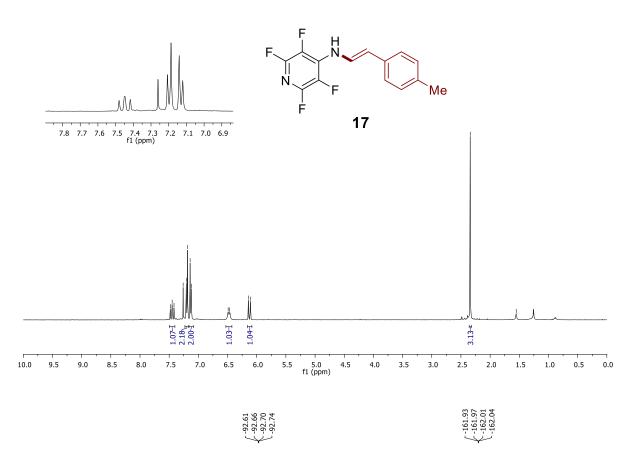



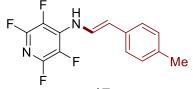



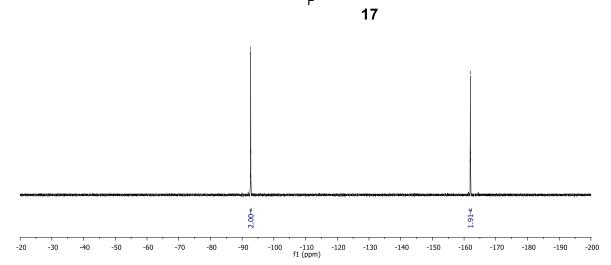



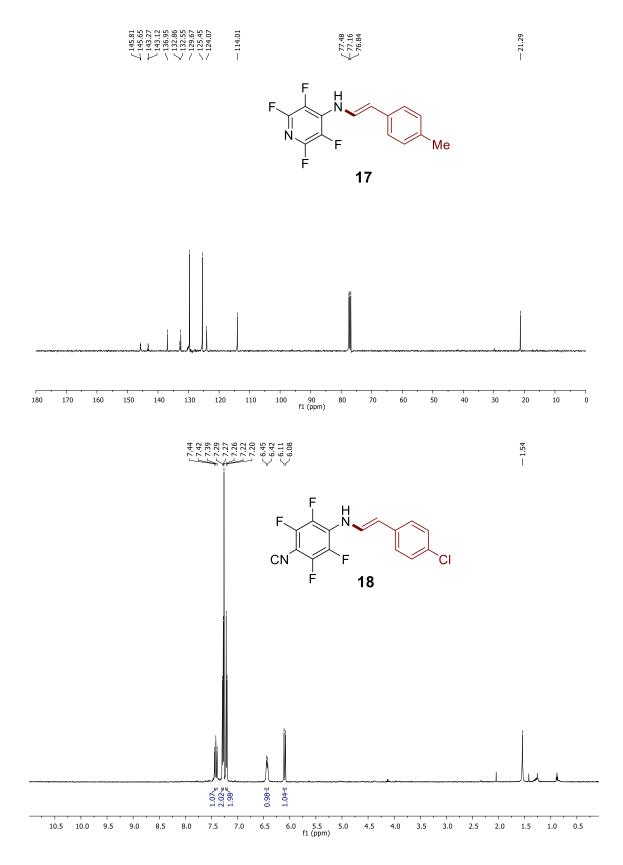



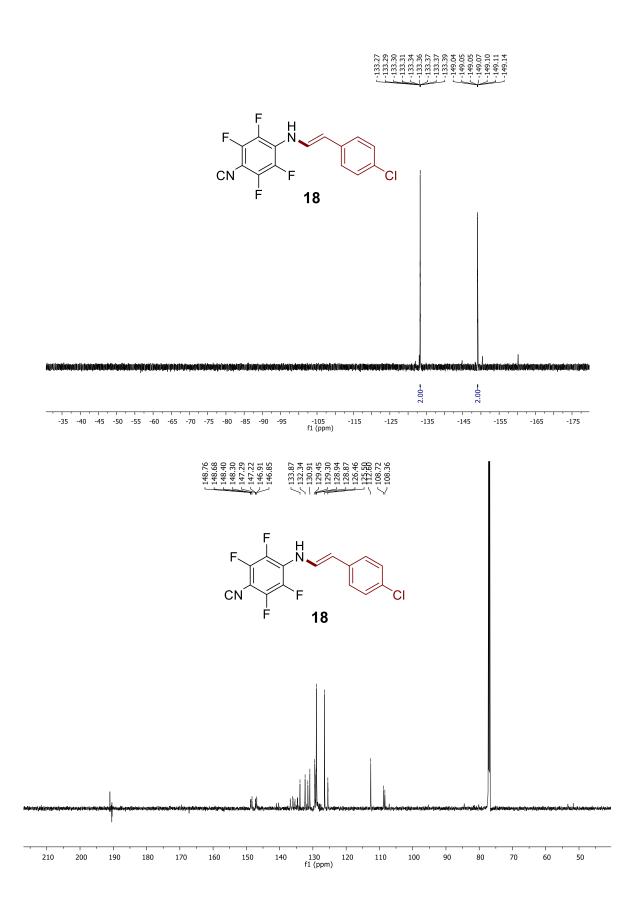


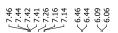


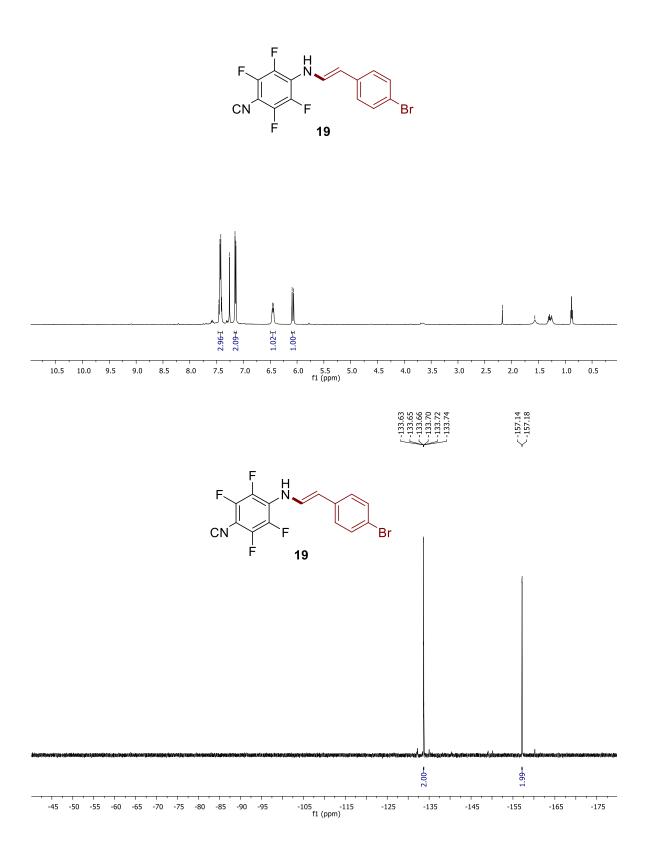



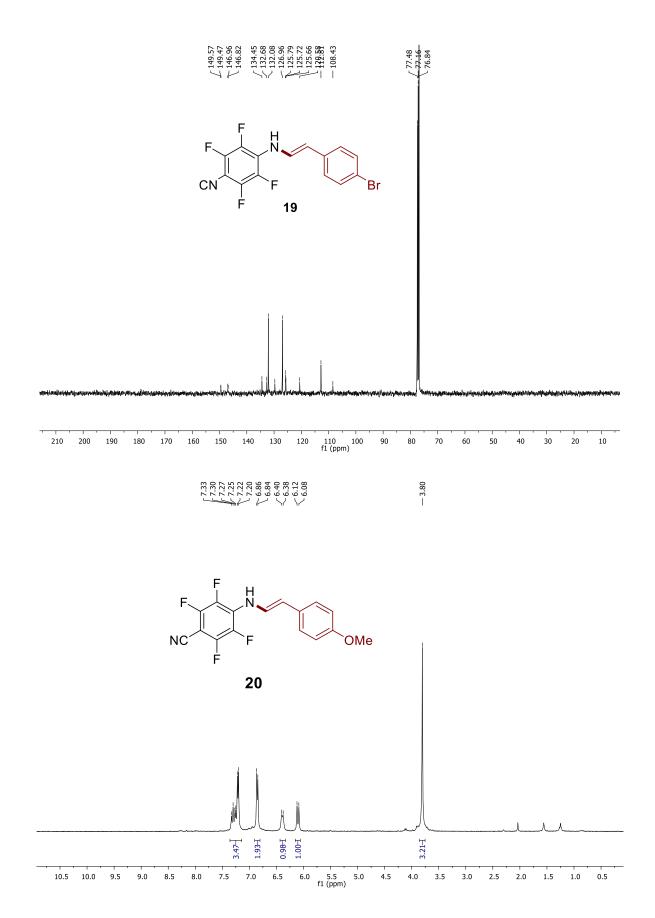



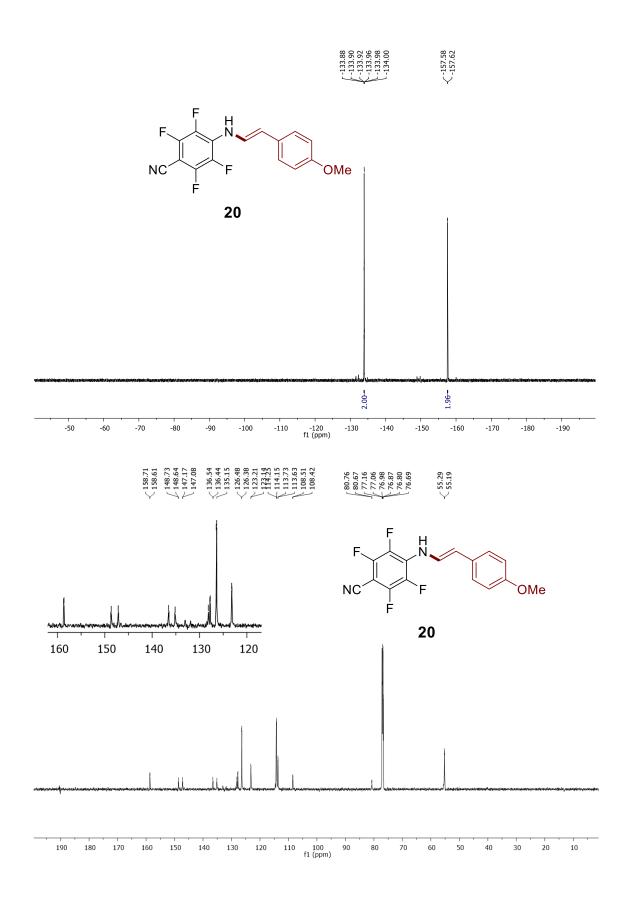


— 2.34


-1.55

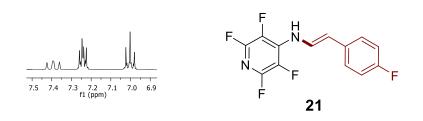


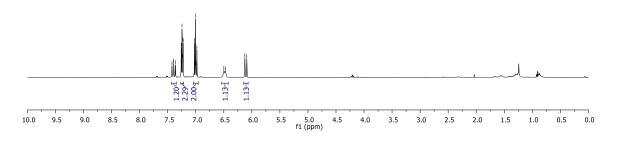


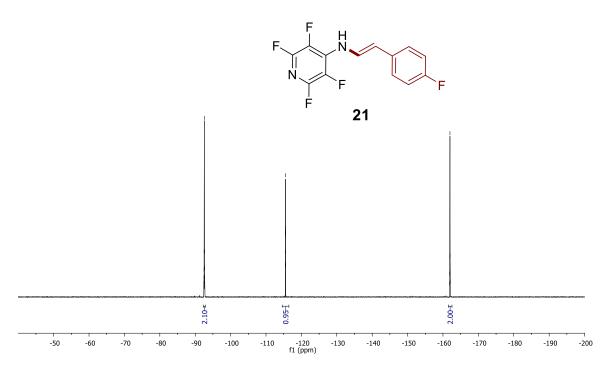


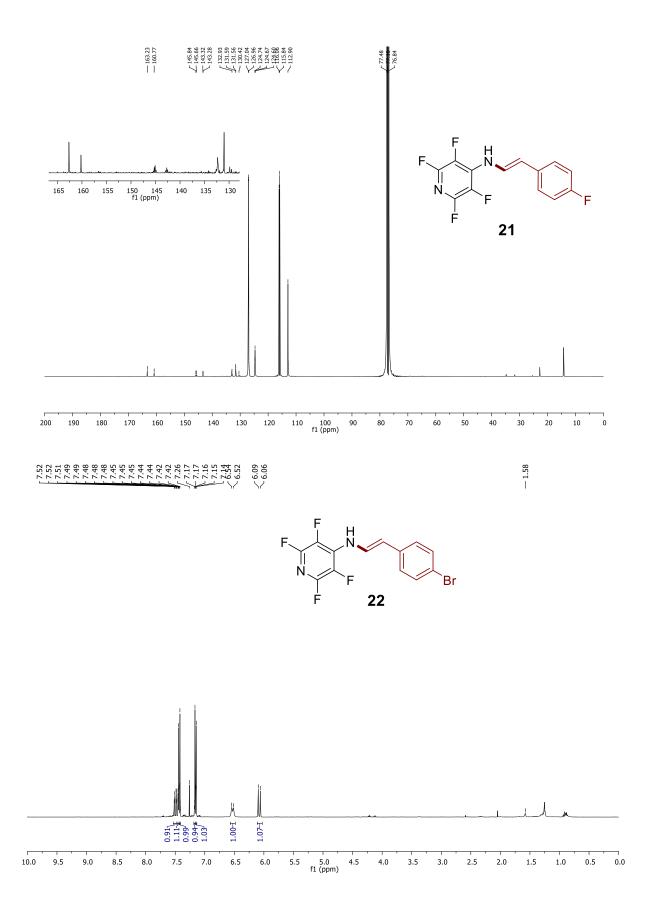


-2.17 -1.57

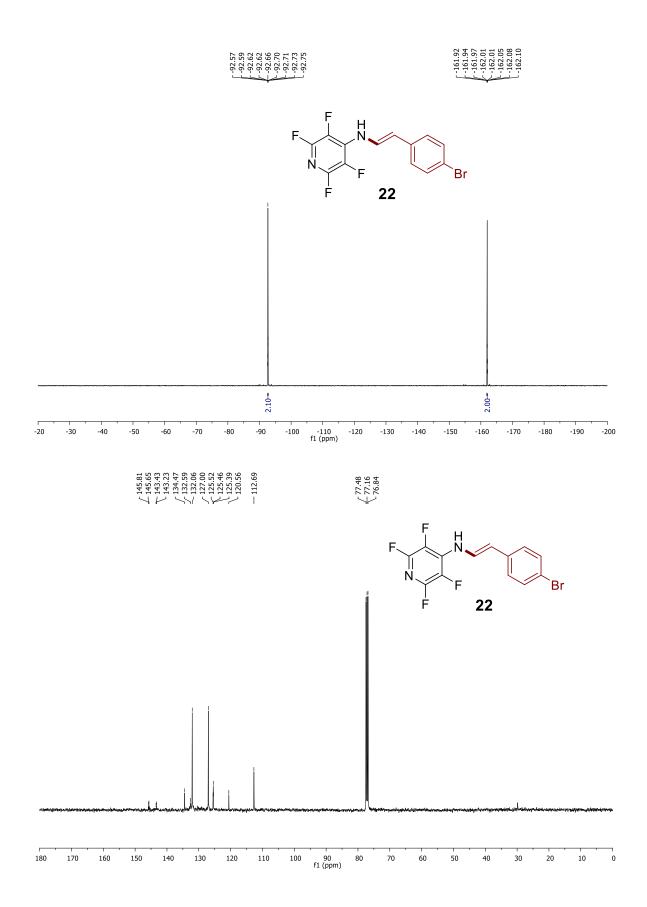


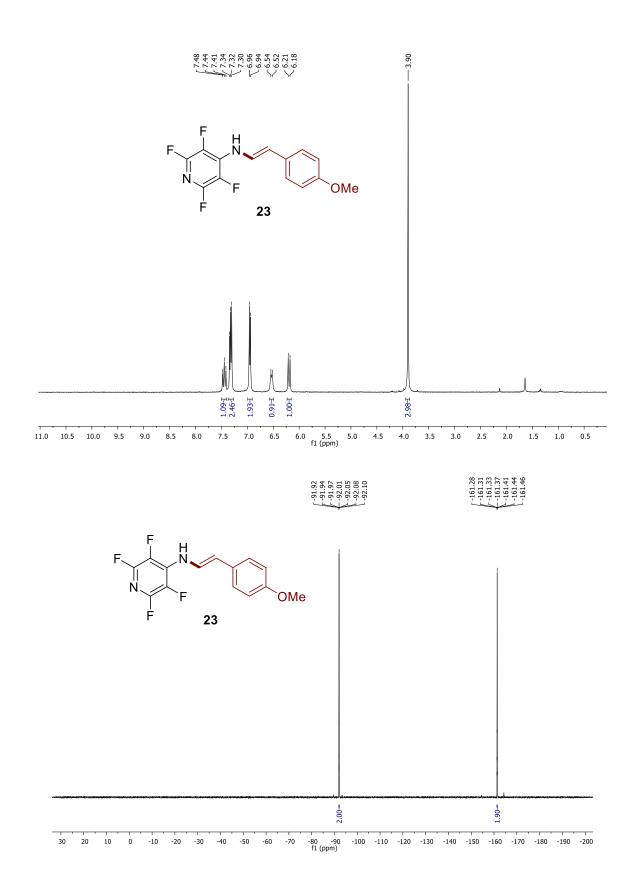


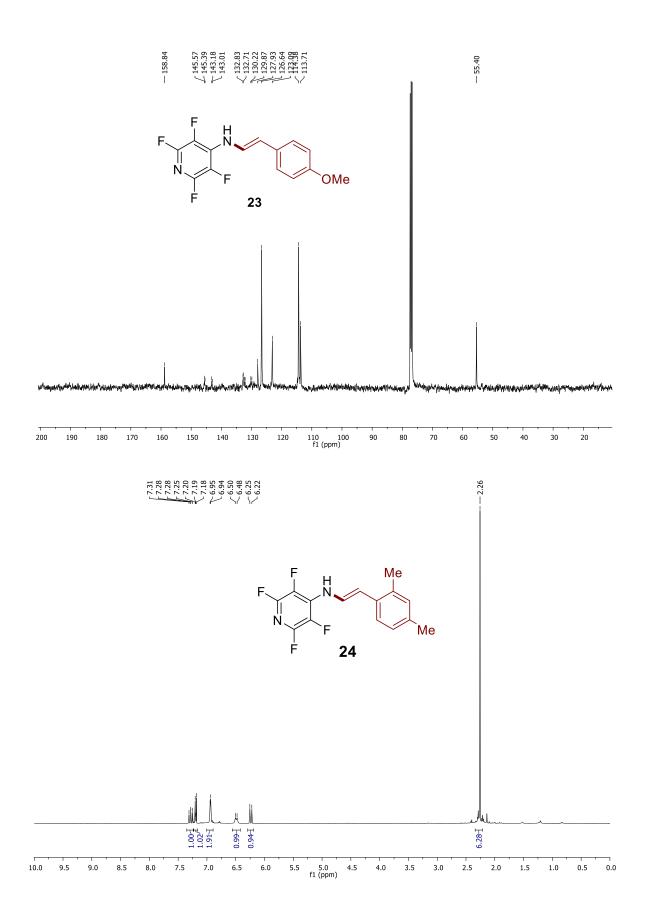


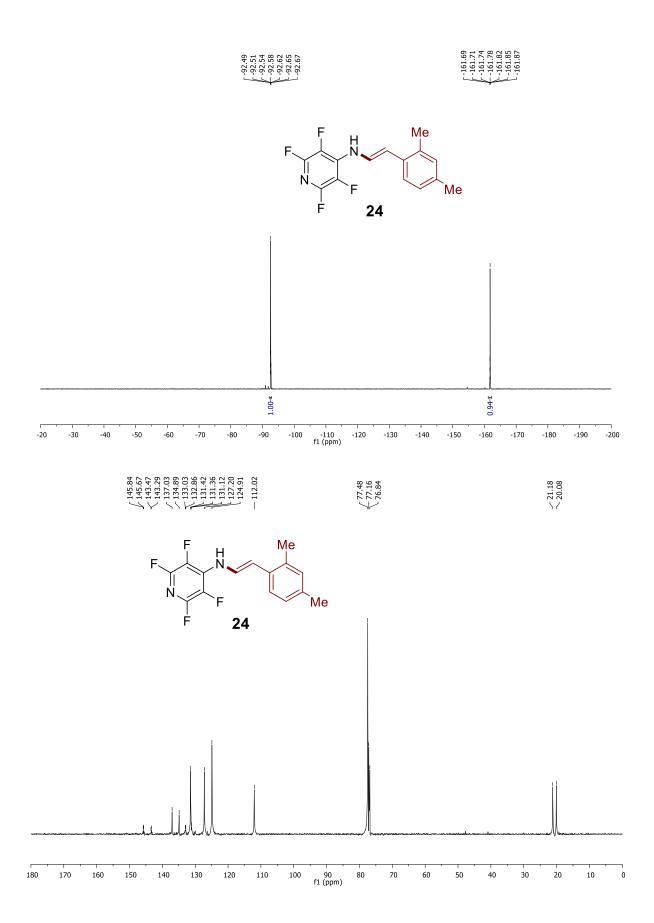


## C.1.25 C.1.25

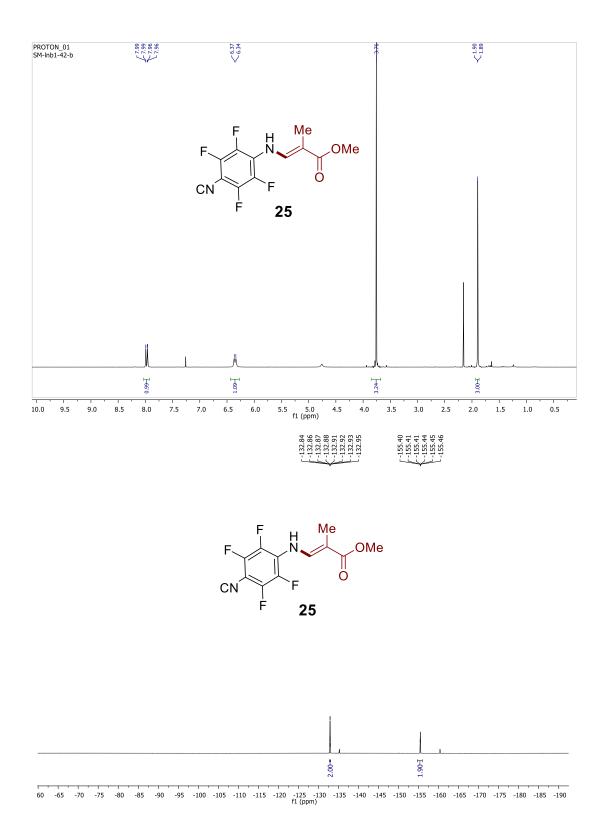


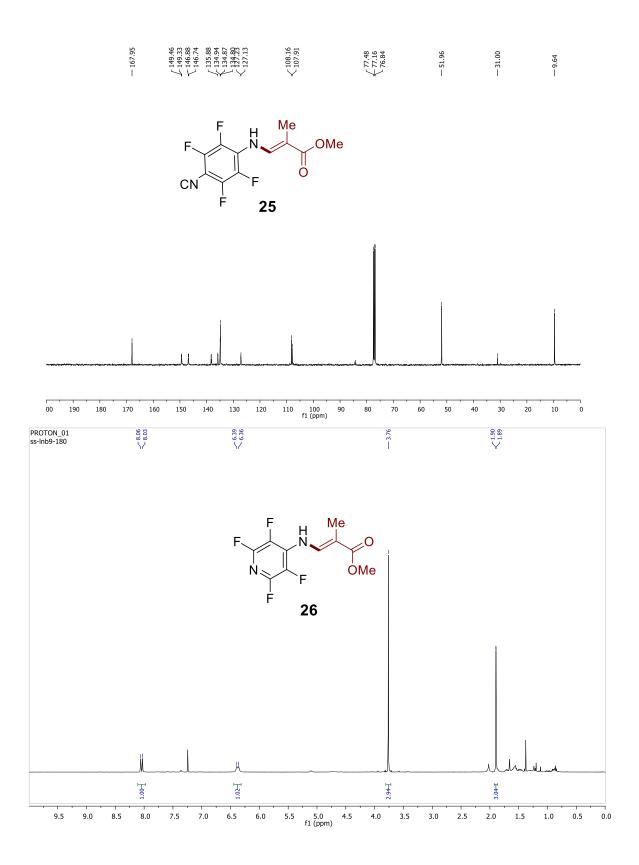



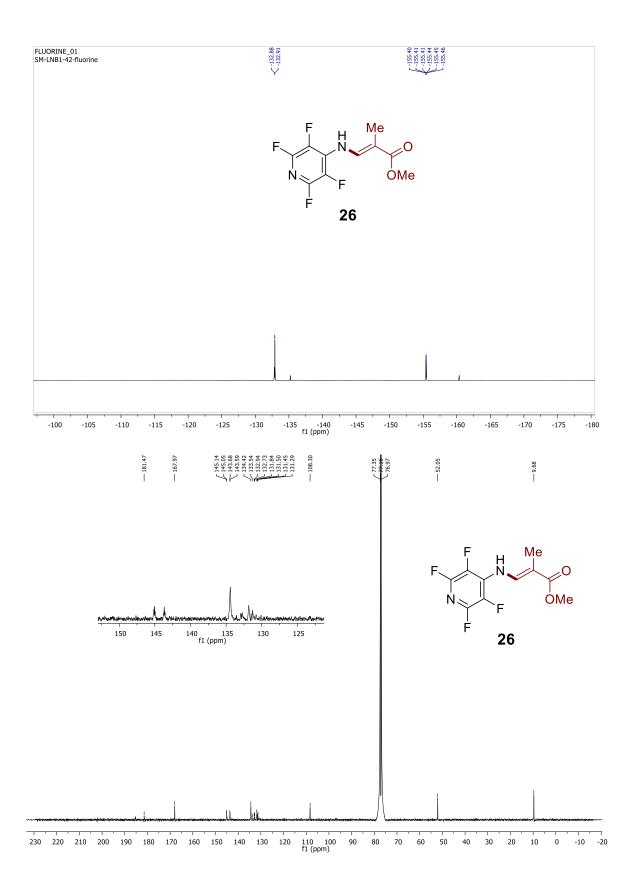



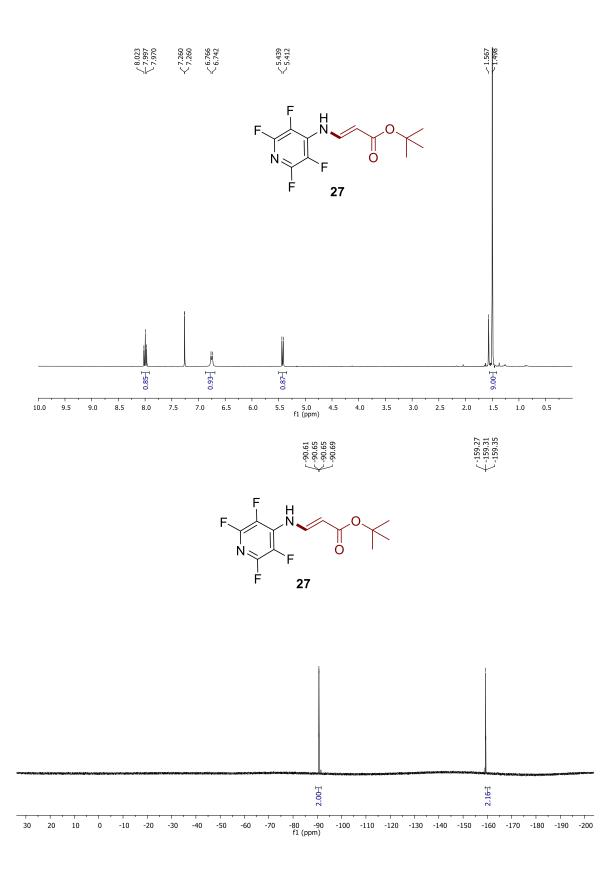



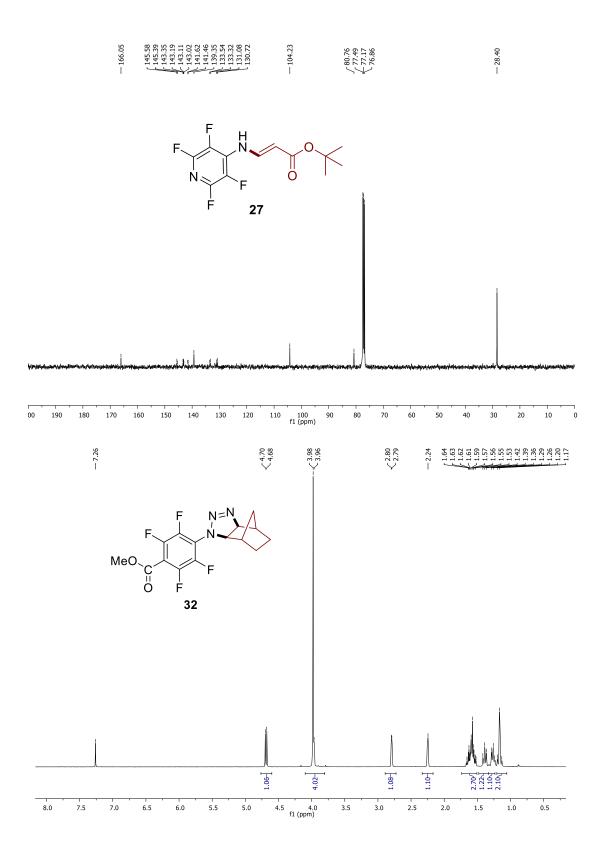



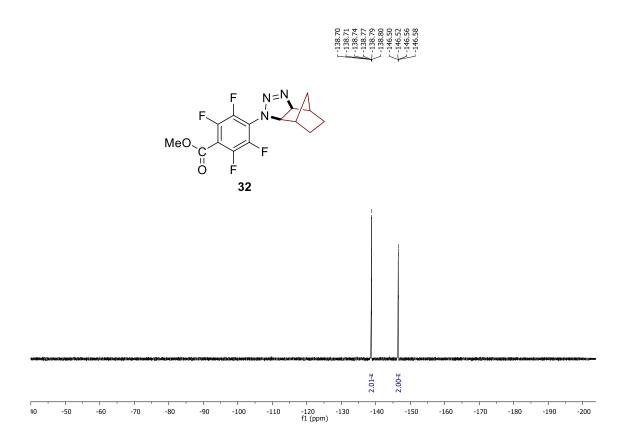



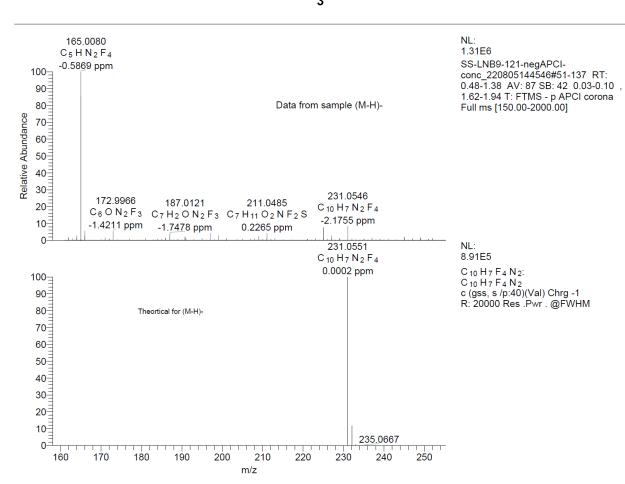



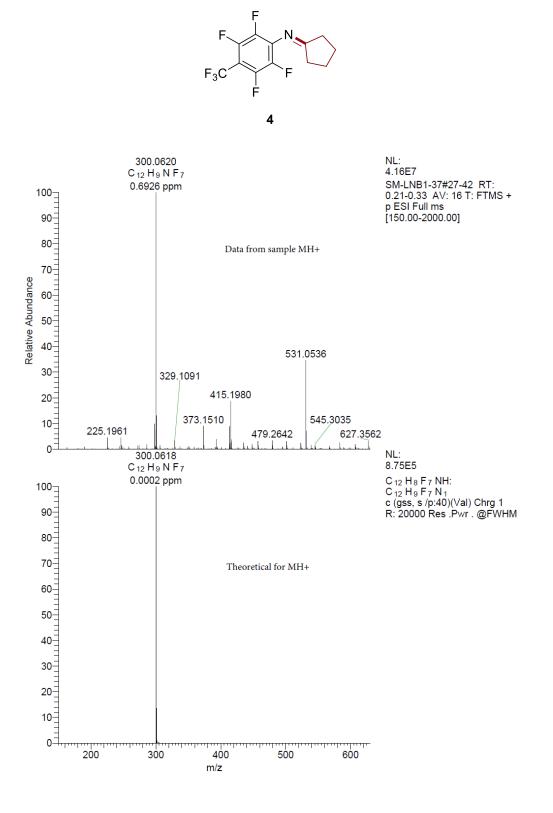



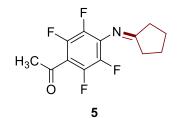



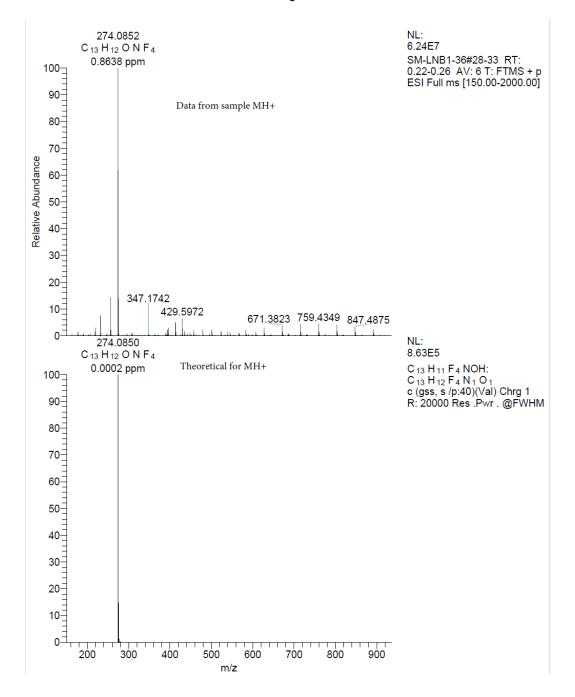


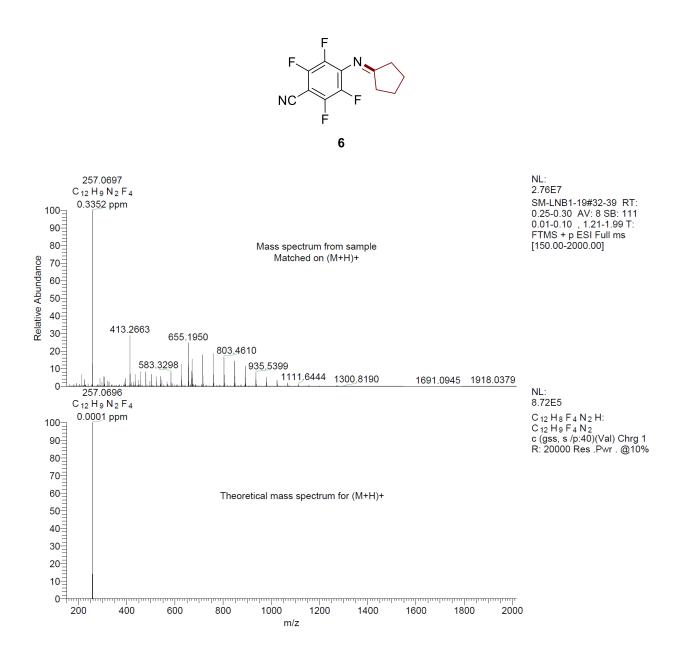


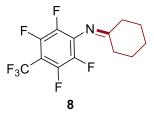



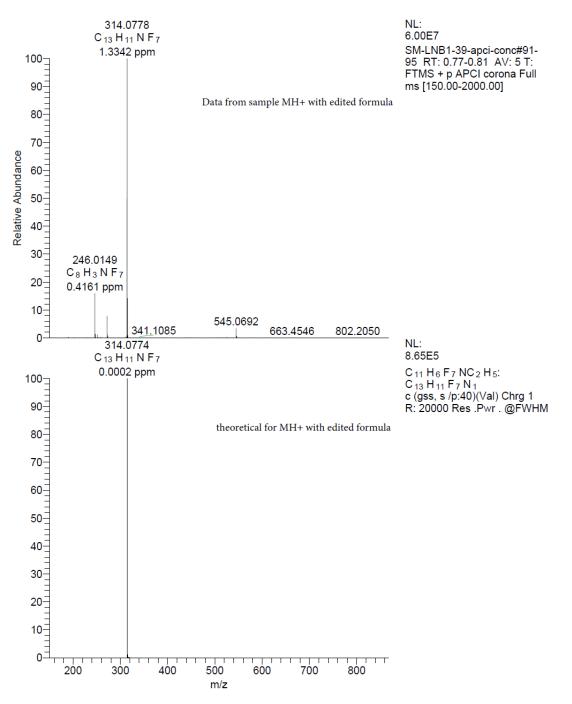



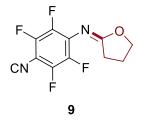



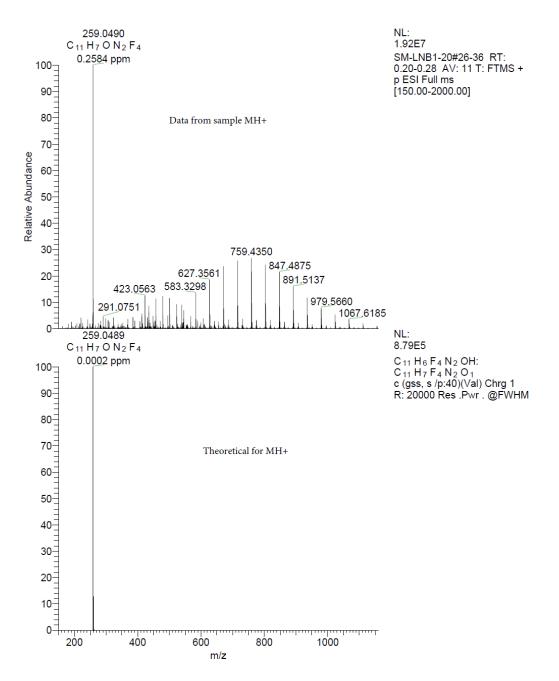


## **13. HRMS ANALYSIS**

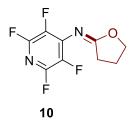


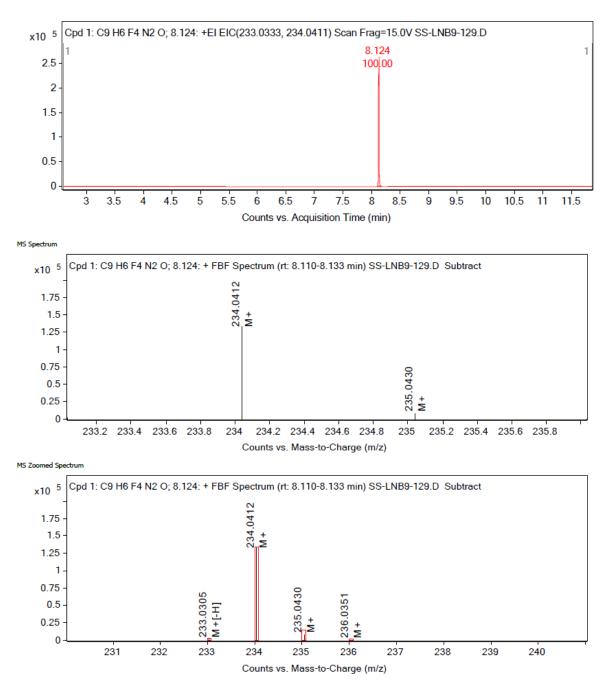



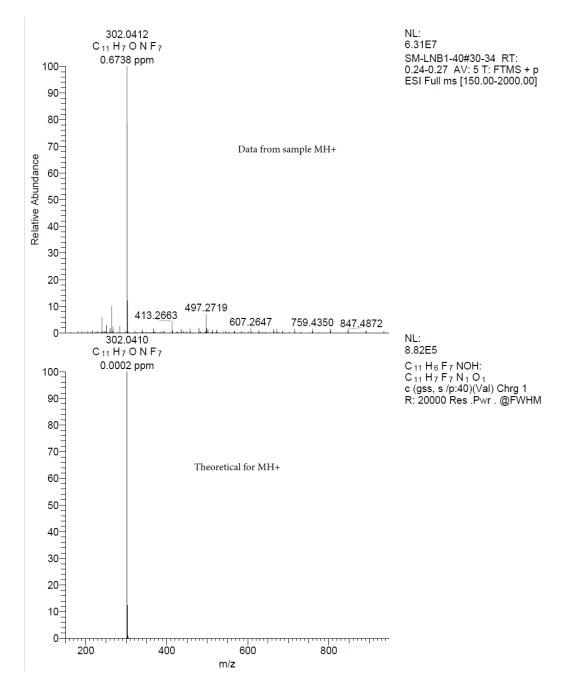



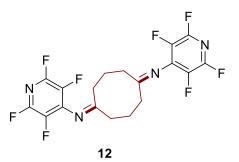



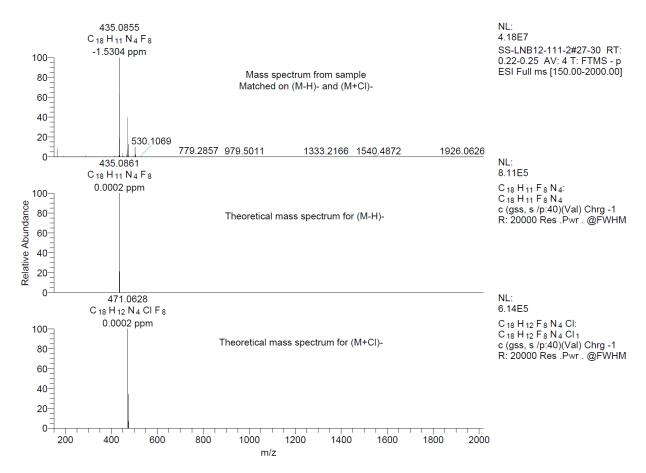



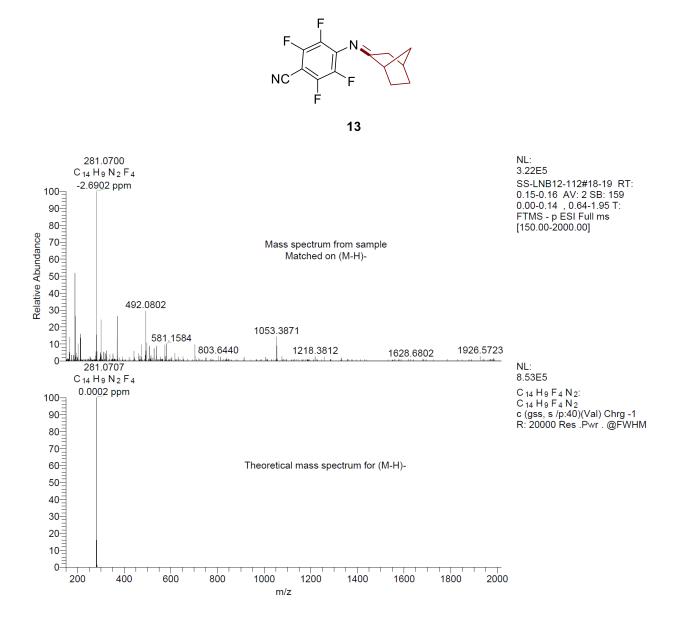


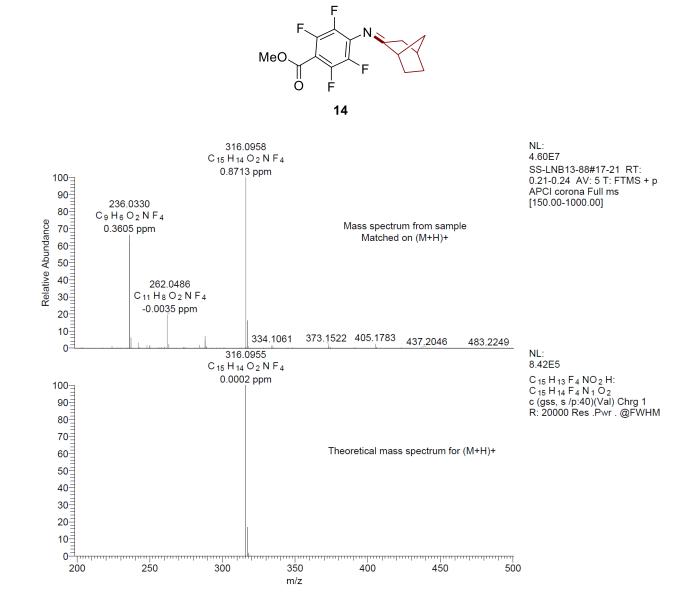


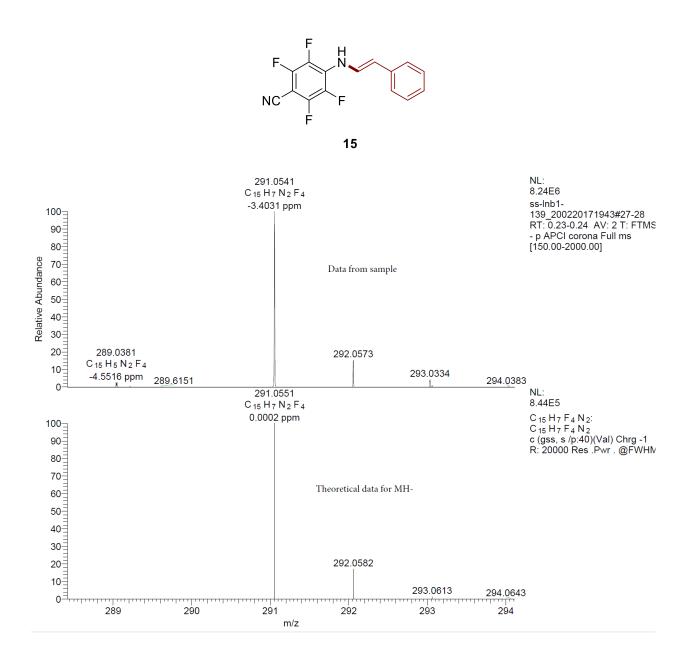


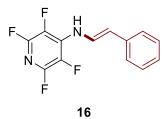



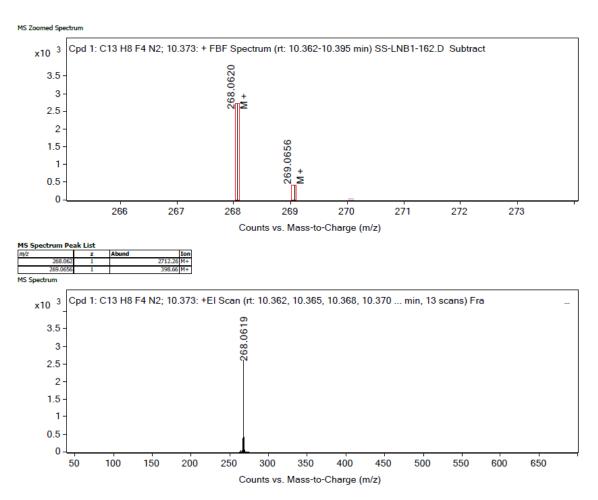



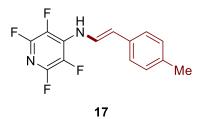



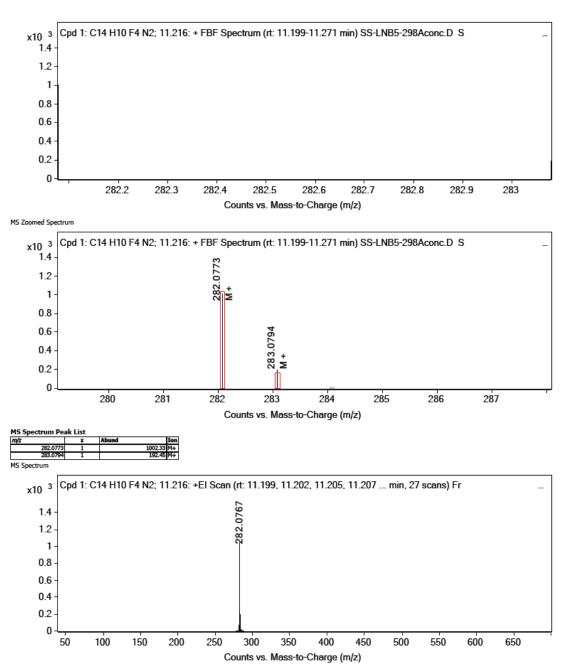



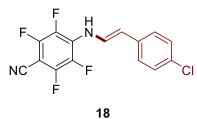



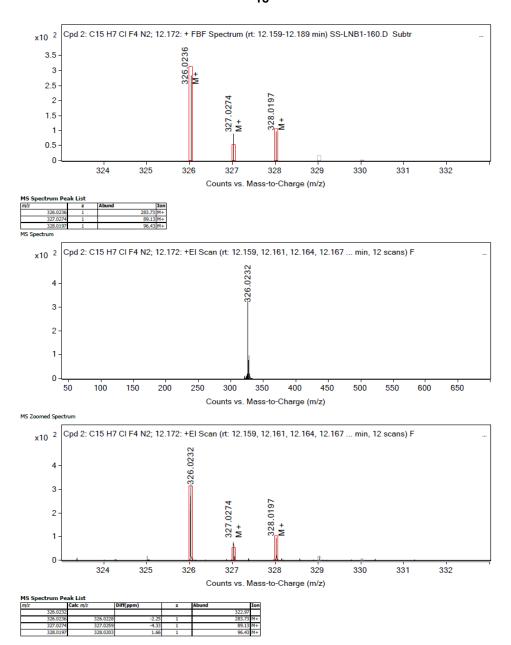



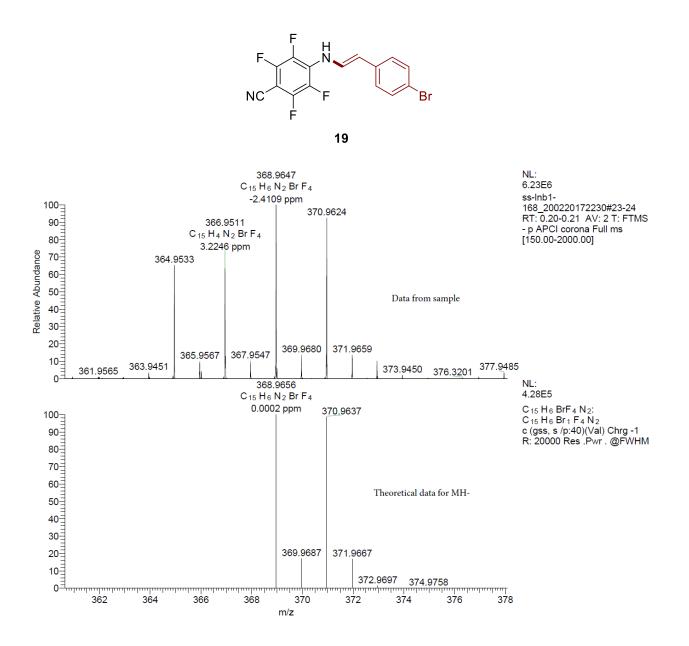





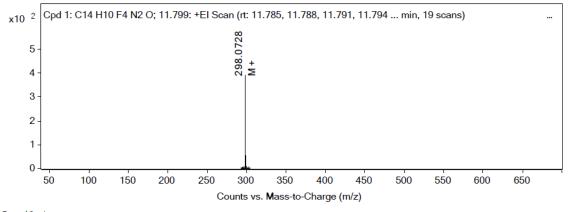





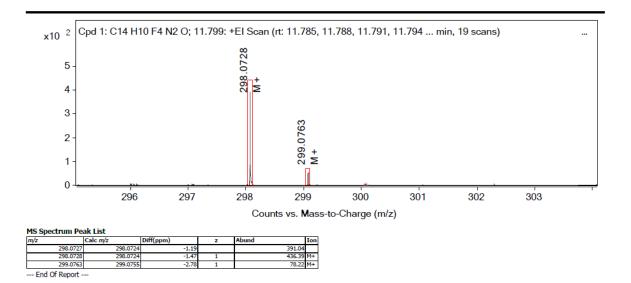



MS Zoomed Spectrum

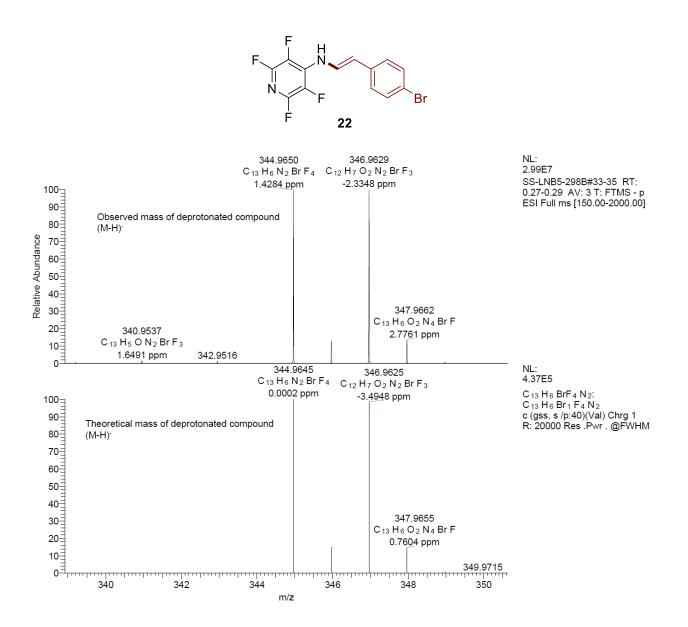


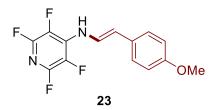


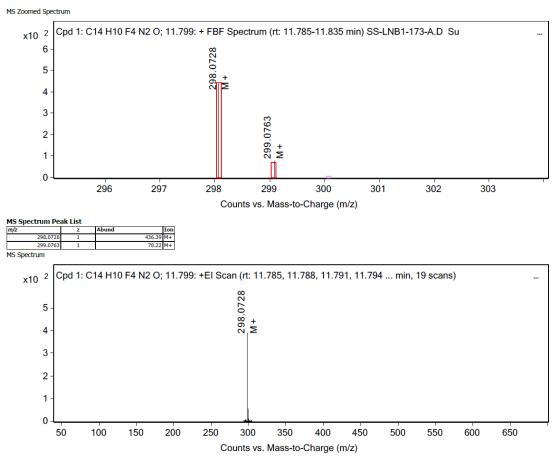




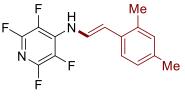




MS Zoomed Spectrum

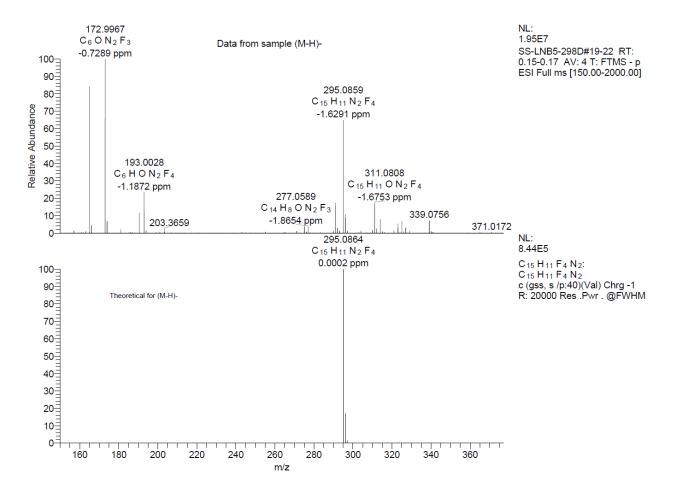

Page 8 of 9 Printed at 2:16 PM on 20-Feb-2020
Agilent Technologies

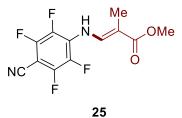

## **Qualitative Compound Report**

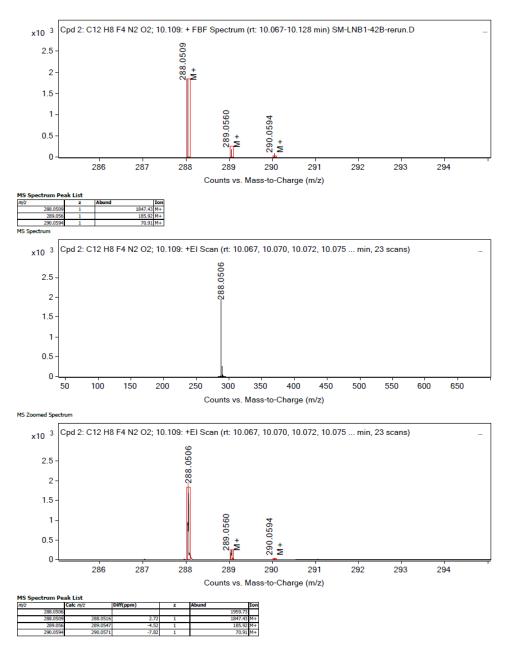








MS Zoomed Spectrum

