Supplementary Information for

The Importance of Indirect Hotspots when Prioritizing Research in Green Chemical Synthesis

Philip G. Jessop and Alex R. MacDonald

Contents

S.1 Assumptions S.2 Base case (no modifications) S.3 G1 Strategy S.4 BY1 Strategy S.5 G2 Strategy S.6 BY2 Strategy

S.1 Assumptions

Here we take a generic two-step reaction sequence (Scheme S1) and define the following variables:

starting mass of A = a (in grams) stoichiometric coefficient of step 1 = b stoichiometric coefficient of step 2 = c molar masses of A, B, and C are M_A, M_B, and M_C yield of step 1 (before modification) = y_i yield of step 1 (after BY1 modification) = y_f yield of step 2 (before modification) = z_i yield of step 2 (after BY2 modification) = z_f harm of step 1 per g A (before modification) = m (g CO₂ eq. per g A) harm of step 1 per g A (after G1 modification) = m (g CO₂ eq. per g A) harm of step 2 per g B (before modification) = n (g CO₂ eq. per g B) yield of step 2 per g A (after G2 modification) = xn (g CO₂ eq. per g B)

Scheme S1. A two-step reaction with variable amounts of harm and variable reaction stoichiometry.

We also make the following assumptions:

• The harm of any step includes the harm of making, using, and/or disposing of the reagents (except the starting material), byproducts, side products, solvents, and energy.

• The harm is shown here to be global warming, in units of g of CO2 equivalents, but could equally well be any other harm with the appropriate units.

• The harm of generating the first starting material "A" is not included in the analysis. "A" could be a chemical feedstock, a farmer's field, or even a mineral deposit.

• The harm of a step includes the harm of post-reaction separations/purifications. However, it is possible for the second step to be a separation/purification rather than a reaction. In such a situation c = 1.

S.2 Base case (no modifications)

<u>a) step 1</u> starting mass of A = a (grams) starting moles of A = a/M_A yield of B = y_iab/M_A (moles) yield of B = y_iabM_B/M_A (grams) harm of step 1 = am (g of CO₂ equivalents)

<u>b) step 2</u> starting mass of B = y_iabM_B/M_A (grams) starting moles of B = y_iab/M_A (moles) yield of C = y_iz_iabc/M_A (moles) yield of C = $y_iz_iabcM_C/M_A$ (grams) harm of step 2 = ny_iabM_B/M_A (g of CO₂ equivalents)

S.3 G1 Strategy

If we change the harm of the 1^{st} step by a factor of x (where x is preferably less than 1, where an x of 1 means no change and an x of 0.1 means a 90% reduction in harm), then:

```
harm of step 1 = xam (g of CO<sub>2</sub> equivalents)
harm of step 2 = ny_iabM_B/M_A (g of CO<sub>2</sub> equivalents)
total harm = xam + ny_iabM_B/M_A (g of CO<sub>2</sub> equivalents)
total harm per g of C = (xam + ny_iabM_B/M_A)/(y_iz_iabcM_C/M_A)
         = (xm + ny_ibM_B/M_A)/(y_iz_ibcM_C/M_A)
         = (xmM_A + ny_ibM_B)/(y_iz_ibcM_C) (g of CO<sub>2</sub> equivalents per g of C)
                                              total harm per g C (before) - total harm per g C (after)
% reduction in total harm per g C = ----
                                                             total harm per q C (before)
         =\frac{(mM_A + ny_ibM_B)/(y_iz_ibcM_C) - (xmM_A + ny_ibM_B)/(y_iz_ibcM_C)}{(mM_A + ny_ibM_B)/(y_iz_ibcM_C)}
         = \frac{(mM_A + ny_ibM_B) - (xmM_A + ny_ibM_B)}{mM_A + ny_ibM_B}
```

 $= \frac{(1-x)mM_A}{mM_A + ny_i bM_B}$

S.4 BY1 Strategy

If we improve the yield of the 1st step to y_f, then: starting mass of $B = y_f ab M_B / M_A$ (grams) starting moles of $B = y_f ab/M_A$ (moles) yield of C = $y_f z_i abc/M_A$ (moles) yield of C = $y_f z_i abc M_C / M_A$ (mass) harm of step 2 = ny_fabM_B/M_A (g of CO₂ equivalents) total harm = am + ny_fabM_B/M_A (g of CO₂ equivalents) total harm per g of C = (am + ny_fabM_B/M_A) / (y_fz_iabcM_C/M_A) $= (m + ny_f bM_B/M_A) / (y_f z_i bcM_C/M_A)$ = $(mM_A + ny_f bM_B) / (y_f z_i bcM_C)$ (g of CO₂ equivalents per g of C)

% reduction in total harm per g C = total harm per g C (before) - total harm per g C (after) total harm per g C (before)

 $=\frac{(mM_A + ny_ibM_B)/(y_iz_ibcM_C) - (mM_A + ny_fbM_B)/(y_fz_ibcM_C)}{(mM_A + ny_fbM_B)/(y_fz_ibcM_C)}$ $(mM_A + ny_i bM_B)/(y_i z_i bcM_C)$

$$= \frac{(mM_{A} + ny_{i}bM_{B})/y_{i} - (mM_{A} + ny_{f}bM_{B})/y_{f}}{(mM_{A} + ny_{i}bM_{B})/y_{i}}$$

$$= \frac{(mM_{A} + ny_{i}bM_{B}) - (mM_{A} + ny_{f}bM_{B})(y_{i}/y_{f})}{mM_{A} + ny_{i}bM_{B}}$$

$$= 1 - \frac{y_{i}(mM_{A} + ny_{f}bM_{B})}{y_{f}(mM_{A} + ny_{i}bM_{B})}$$

$$= 1 - \frac{y_{i}mM_{A} + ny_{i}y_{f}bM_{B}}{y_{f}mM_{A} + ny_{i}y_{f}bM_{B}}$$

S.5 G2 Strategy

If we change the harm of the 2^{nd} step by a factor of x (where x is preferably less than 1, where an x of 1 means no change and an x of 0.1 means a 90% reduction in harm), then:

 $\begin{array}{l} \text{harm of step 1 = am} & (g \text{ of } CO_2 \text{ equivalents}) \\ \text{harm of step 2 = xny_iabM_B/M_A} & (g \text{ of } CO_2 \text{ equivalents}) \\ \text{total harm = am + xny_iabM_B/M_A} & (g \text{ of } CO_2 \text{ equivalents}) \\ \text{total harm per g of } C = (am + xny_iabM_B/M_A)/(y_iz_iabcM_C/M_A) \\ &= (m + xny_ibM_B/M_A)/(y_iz_ibcM_C/M_A) \\ &= (mM_A + xny_ibM_B)/(y_iz_ibcM_C) & (g \text{ of } CO_2 \text{ equivalents per g of } C) \end{array}$

% reduction in total harm per g C =
$$\frac{\text{total harm per g C (before) - total harm per g C (after)}}{\text{total harm per g C (before)}}$$
$$= \frac{(mM_A + ny_ibM_B)/(y_iz_ibcM_C) - (mM_A + xny_ibM_B)/(y_iz_ibcM_C)}{(mM_A + ny_ibM_B)/(y_iz_ibcM_C)}$$
$$= \frac{(mM_A + ny_ibM_B) - (mM_A + xny_ibM_B)}{mM_A + ny_ibM_B}$$
$$= \frac{(1-x)ny_ibM_B}{mM_A + ny_ibM_B}$$

S.6 BY2 Strategy

If we improve the yield of the 2nd step to z_f , then: yield of C = $y_i z_f abcM_C/M_A$ (mass) total harm = am + $ny_i abM_B/M_A$ (g of CO₂ equivalents) total harm per g of C = (am + $ny_i abM_B/M_A$) / ($y_i z_f abcM_C/M_A$) = (m + $ny_i bM_B/M_A$) / ($y_i z_f bcM_C/M_A$) = (mM_A + $ny_i bM_B$) / ($y_i z_f bcM_C$) (g of CO₂ equivalents per g of C) % reduction in total harm per g C = $\frac{\text{total harm per g C (before) - total harm per g C (after)}}{\text{total harm per g C (before)}}$

$$= \frac{(mM_{A} + ny_{i}bM_{B})/(y_{i}z_{i}bcM_{C}) - (mM_{A} + ny_{i}bM_{B})/(y_{i}z_{f}bcM_{C})}{(mM_{A} + ny_{i}bM_{B})/(y_{i}z_{i}bcM_{C})}$$

$$= \frac{(mM_{A} + ny_{i}bM_{B})/z_{i} - (mM_{A} + ny_{i}bM_{B})/z_{f}}{(mM_{A} + ny_{i}bM_{B})/z_{i}}$$

$$= \frac{(mM_{A} + ny_{i}bM_{B}) - (mM_{A} + ny_{i}bM_{B})(z_{i}/z_{f})}{mM_{A} + ny_{i}bM_{B}}$$

$$= 1 - \frac{z_{i}}{z_{f}}$$