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Supplementary Figures, Schemes and Tables

DFT calculation method

All calculations were conducted using the CP2K package (version 7.1) within 

the framework of density functional theory, employing a hybrid Gaussian and 

plane-wave approach. The PBE functional was used for electronic structure 

calculations. The molecular orbitals of valence electrons were expanded with 

DZVP-MOLOPT-SR-GTH basis sets, while atomic core electrons were 

described using Goedecker-Teter-Hutter pseudopotentials. A plane-wave density 

cutoff of 500 Ry was applied. The long-range van der Waals interactions were 

accounted for using the DFT-D3 method. To prevent artificial interactions 

between periodic images, a 15 Å vacuum layer was introduced perpendicular to 

the sheet. The K-point mesh was set to 2 × 2 × 1. Structural relaxation was 

performed using the BFGS algorithm within CP2K, with a force convergence 

threshold of 4.5 × 10−4 hartree/bohr.
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Figure S1. H-type cell containing 30 mL PBS (left) and FF (right)



S4

Figure S2. SEM of WMoB nanoflakes.
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Table S1. Elemental analysis of WMoB by ICP-OES (Agilent 5110) 

Elements Element content (%)

B 15.0020%

Mo 2.9737%

W 81.6095%
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Figure S3. XPS survey spectra of WMoB nanoflakes and WB.
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Figure S4. Electrochemical performance. The relationship between current and scan 

rate (5–50 mV s−1) was obtained from the CV curves. (a) ECH and (b) ECD. (c) The 

Cdl was collected by cyclic voltammetry at different scan rates. (d) The Tafel slopes of 

WB and WMoB nanoflakes.
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Figure S5. HPLC standard curves of FF.
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Figure S6. HPLC standard curves of FA.
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Figure S7. NMR standard curves of HFN.
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Figure S8. HPLC standard curves of DHMF.
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Figure S9. HPLC standard curves of HMF.
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Figure S10. Mass spectra of FF.
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Figure S11. Mass spectra of HFN.
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Figure S12. Mass spectra of FA.
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Figure S13. Original sample (left) and post-reaction sample (right).
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Figure S14. The selectivity of WMoB nanoflakes for HFN with error bars at different 

potentials.
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Figure S15. The selectivity for different products with error bars of WMoB 

nanoflakes at different potentials.
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Figure S16. (a) The selectivity of HFN with error bars under different FF 

concentrations; (b) The conversion for FF and selectivity for HFN of WMoB 

nanoflakes with error bars in different electrolytes.
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Figure S17. Cumulative concentration of HFN generated during long-term 

electrolysis over 48 h..
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Figure S18. SEM and TEM of WMoB nanoflakes after the reaction.
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Figure S19. Comparison of XRD patterns of WMoB nanoflakes before and after the 

reaction.
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Figure S20. The XPS spectrum of WMoB nanoflakes after the reaction.
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Economic analysis:

To evaluate the practical potential of the ECD process, a simplified economic analysis 

was carried out based on a standard experiment involving 30 mL of 1.0 M PBS under 

a constant potential of −1.3 V. In this system, FF was introduced at a concentration of 

10 mM. Given that two FF molecules were required to form one molecule of HFN, the 

theoretical concentration of HFN produced was calculated to be 3.8 mM, corresponding 

to a yield of 1.2 × 10−4 mol HFN h−1. Based on its molecular weight (192.2 g mol−1), 

the hourly production of HFN was estimated to be approximately 21.8 mg. At a market 

price of $800 g−1, the value of the product was determined to be $17.44 h−1. These 

results highlight the promising economic potential of FF-to-HFN conversion via the 

ECD process under mild and energy-efficient conditions.
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Table S2. Comparison of FF conversion along with selectivity of HFN

Catalyst Potential (V vs RHE) Electrolyte FF (mM) SelHFN Refs

ed-Ag/NF −0.45 0.5 M NaOH 50 47.2 2

Cu–Ni/NF −0.45 0.5 M NaOH 10 15.8 2

Cu foil −0.55 0.5 M Sulphate solution 

(pH = 3) with CH3CN 

(1:4 v/v%)

50 6.5 3

MoS2 −0.47 0.4 M sodium borate 

buffer with methanol 

(1:4 v/v%)

20 28.96 4

CuSn −0.55 0.1 M

phosphate buffer 

(pH=6.8)

20 60 5

WMoB −0.59 1 M phosphate buffer 

(Ph=6.55)

10 76.67 This work
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