Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2025

Supplemental Information

Soft Glass Interphase Engineering for Ultra-stable Aluminum Metal Batteries

Shibin Zhang¹, Yan Xu¹, Danni Zhang¹, Lishun Bai¹, Yue Liu¹, Ying He¹, Feiyan Yu¹, Chengjun Liu¹, Sijie Li^{2*}, Zhi Chang^{1*}

Affiliations:

¹School of Materials Science and Engineering, Key Laboratory of Electronic Packaging and Advanced Functional Materials of Hunan Province, Central South University, Changsha, 410083, Hunan, China.

E-mail: zhichang@csu.edu.cn (Prof. Z. C.)

Dr. S. Li

²College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.

E-mail: li.sijie@csu.edu.cn (Dr. S. L.)

Figure S1. Schematic diagram of the microstructure of ZnP-H₂Im powder

Figure S2. Schematic diagram of the microstructure of ZnP-H₂Im glass.

Figure S3. SEM image of ZnP-H₂Im powder.

Figure S4. TEM image of ZnP-H₂Im powder.

Figure S5. TEM image of ZnP-H₂Im glass.

Figure S6. Thermogravimetric analysis (TGA) curve of ZnP-H₂Im powder.

Figure S7. Photographs of the 0–48 hours permeation experiment using ZnP-H₂Im glass.

Figure S8. (a) Raman spectra of ZnP-H₂Im powder, ZnP-H₂Im glass, ZnP-H₂Im glass soaked in AlCl₃/[EMIm]Cl electrolyte for 12 hours, and AlCl₃/[EMIm]Cl electrolyte. (b) Contact angle photograph of AlCl₃/[EMIm]Cl droplet on Al foil. (c) Contact angle photograph of AlCl₃/[EMIm]Cl droplet on ZnP-H₂Im glass.

Figure S9. SEM images of the ZnP-H₂Im soft glass-coated aluminum foil: (a) top view and (b) cross-sectional view.

Figure S10. SEM image of the Al electrode surface from the ZnP-H₂Im@Al//ZnP-H₂Im@Al symmetric battery after cycling for 1200 hours at 0.1 mA/cm² and 0.1 mAh/cm², with the surface ZnP-H₂Im soft glass layer removed.

Figure S11. SEM image of the Al electrode surface from the Al//Al symmetric battery after cycling for 1200 hours at 0.1 mA/cm² and 0.1 mAh/cm².

Figure S12. SEM image of the Al electrode surface from the Al//Al symmetric battery after cycling for 650 hours at 0.2 mA/cm² and 0.2 mAh/cm².

Figure S13. SEM image of the Al electrode surface from the Al//Al symmetric battery after cycling for 210 hours at 0.5 mA/cm² and 0.5 mAh/cm².

Figure S14. SEM image of the Al electrode surface from the ZnP-H₂Im@Al//ZnP-H₂Im@Al symmetric battery after cycling for 650 hours at 0.2 mA/cm² and 0.2 mAh/cm², with the surface ZnP-H₂Im soft glass layer removed.

Figure S15. SEM image of the Al electrode surface from the ZnP-H₂Im@Al//ZnP-H₂Im@Al symmetric battery after cycling for 210 hours at 0.2 mA/cm² and 0.2 mAh/cm², with the surface ZnP-H₂Im soft glass layer removed.

Figure S16. Stress-strain profiles of the ZnP-H₂Im glass.

Figure S17. Long-term cycling performance and post-cycling characterization of ZnP-H₂Im@Al symmetric cells: (a) Cycling profiles at 0.2 mA/cm² and 0.2 mAh/cm², (b) profiles at 0.5 mA/cm² and 0.5 mAh/cm², (c) cross-sectional SEM image of the cycled electrode.

Figure S18. Long-term cycling performance and post-cycling characterization of ZnP-H₂Im@Al symmetric cells: (a) Cycling profiles at 0.2 mA/cm² and 0.2 mAh/cm², (b) profiles at 0.5 mA/cm² and 0.5 mAh/cm², (c) cross-sectional SEM image of the cycled electrode.

Figure S19. Electrochemical impedance spectra (EIS) of ZnP-H₂Im@Al//ZnP-H₂Im@Al symmetric cells and Al//Al symmetric cells: (a) before cycling and (b) after cycling.

Figure S20. (a) EIS spectra of the SS//glass fiber//SS cell and SS//ZnP-H₂Im//SS cell, (b) magnified view of the EIS spectra; (c) photograph of the ZnP-H₂Im soft glass separator, (d) photograph of the glass fiber separator.

Figure S21. (a) Impedance spectra for total electronic conductivity of Soft Glass. (b) DC polarization curves for electronic conductivity of Glass at 0.01 V.

Figure S22. (a) Schematic diagram of the chemical structure of DDQ. (b) Schematic diagram of the chemical structure of TCQ.

Figure S23. Photograph of TCQ powder.

Figure S24. SEM image of TCQ powder.

Figure S25. SEM image of the surface of the TCQ@Mo cathode.

Figure S26. Photograph of the TCQ@Mo cathode electrode.

Figure S27. (a) Charge/discharge curves of the $TCQ@Mo//ZnP-H_2Im@Al$ full cell. (b) Charge/discharge curves of the DDQ@Mo//ZnP-H_2Im@Al full cell.

Figure S28. Photograph of DDQ powder.

Figure S29. SEM image of DDQ powder.

Figure S30. SEM image of the surface of the DDQ@Mo cathode electrode.

Figure S31. Photograph of the DDQ@Mo cathode electrode.

		Current density			
al a atrea da	Electrolyte	(mA/cm ²)/Areal	Life	Voor	Ref.
cicettode		capacity of Al	time(h)	I cai	
		deposition(0.5mAh/cm ²)			
7 II. I (2. A.1	AlCl ₃ /[EMIm]Cl	0.5 / 0.5	10000		This
Znp-H ₂ Im@AI		0.2/0.2	10000		work
1 1	AlCl ₃ /[EMIm]Cl	0.5 / 0.5	210		This
bareAl		0.2/0.2	650		work
Al soaked in					
electrolyte for 6	AlCl ₃ /[BMIM]Cl	0.04/0.4	1200	2017	1
hours					
Zn-supported		0.0/0.0	1500	2020	2
Zn– Al alloy	$2 \text{ M Al}(OIF)_3$	0.2/0.2	1500	2020	2
Porous Al	AlCl ₃ /[EMIm]Cl	5/0.25	360	2020	3
NCRA	AlCl ₃ /[EMIm]Cl	0.5/0.5	300	2020	4
		1/1	300	2020	4
a patterned		1/0.0	2.000		
substrate		4/0.8	3600	2 2 2 1	_
composed of	AlCl ₃ /[EMIm]Cl	1.6/3.2	3600	2021	5
carbon fibres		1.6/8	3600		

E-Al82Cu18	2M Al(OTF) ₃	0.5 / 0.5	2000	2022	6
Al@a-Al	0.5 M Al ₂ (SO ₄) ₃	0.05/0.1	800	2022	7
		0.4/5	3000		
SA-Co/NPCS	AlCl ₃ /[EMIm]Cl	0.4/10	1000	2023	8
		40/0.4	1500		
Al	AlCl ₃ /[EMIm]Cl with CTAC	0.5/0.5	300	2024	9
	additives	3/1	1200		

Table S1 Electrochemical Performance Comparison of ZnP-H2Im@Al Symmetric Cells with

 Previously Reported Systems

Sample	Melting temperature (T m) /°C	Synthesis time required/h	Mechanical properties	Year	Ref.
ZnP-H ₂ Im glass	160	20	Soft		This
α-[Cu(ipim)] β-[Cu(ipim)]	185 146	115		15	work 10
ZIF-4	590	100	TT 1	16	11
TIF-4	467	130	Hard	10	11
[Zn(im)1.62(5-					
Clbim)0.38](ZIF-76)	451	130	hard	18	12
[Zn(im)1.33(5-mbim)0.67]	471	150	nard	10	12
(ZIF-76-mbim)					
ZIF-62	440	160	Hard	20	13
Zn-P dmbIm	176				
Cd-P-dmbIm	172	11	soft	21	14
Cu-P-dmbIm	166	11	5011	<i>L</i> 1	17
Mn-P-dmbIm	162				
(TPrA)[Mn(dca)3]	271	150	Soft	21	15

(TPrA)[Fe(dca)3]	263				
(TPrA)[Co(dca) 3]	230				
Cobalt-ZIF-62	270	110	Hard	22	16
$a_{gf}ZIF-62$	378	100	Soft	22	17
ZIF-62	414	90	Hard	23	1 /
MUV-24	482	100	Hard	23	18
G-Mg-adp	284	20	Hand	24	10
G-Mn-adp	238	30	Hard	24	19

Table S2. Comparative Analysis of ZnP-H2Im Glass Synthesis Conditions and MechanicalProperties with Prior Studies.

Sample	Cost (USD/kg)	toxicity	productivity	Waste disposal methods	Ref.
Znp-H ₂ Im	292	Low	95%	Electrocatalytic oxidation	This work
Zn-P-dmbIm	2065	low	90%	Electrocatalytic oxidation	20
MoO ₃	21188	Medium	92%	Chemical precipitation method	21
Ti _{0.95} D _{0.05} O _{1.79} Cl _{0.08} (OH) _{0.13}	616	Medium	88%	Chemical precipitation method	22
ZIF-62 (Co) Crystal	7233	Medium	85%	Chemical precipitation method	23
FeFe(CN) ₆	1921	Low	91%	Chemical precipitation method	24

				Chemical	
CoHCF	767	Medium	83	precipitation method	25

Table S3 presents a comparative statistical table of ZnP-H₂Im soft glass and previously reported materials in lithium-ion and aluminum batteries, analyzing parameters including cost, toxicity, yield, and waste treatment methods.

References

- 1 F. Wu, N. Zhu, Y. Bai, Y. Gao and C. Wu, *Green Energy Environ.*, 2018, 3, 71-77.
- 2 C. Yan, C. Lv, L. Wang, W. Cui, L. Zhang, K. N. Dinh, H. Tan, C. Wu, T. Wu, Y. Ren, J. Chen, Z. Liu, M. Srinivasan, X. Rui, Q. Yan and G. Yu, *J. Am. Chem. Soc.*, 2020, **142**, 15295-15304.
- 3 Y. Long, H. Li, M. Ye, Z. Chen, Z. Wang, Y. Tao, Z. Weng, S.-Z. Qiao and Q.-H. Yang, *Energ. Storage Mater.*, 2021, **34**, 194-202.
- 4 H. Jiao, S. Jiao, W.-L. Song, X. Xiao, D. She, N. Li, H. Chen, J. Tu, M. Wang and D. Fang, *Nano Res.*, 2021, 14, 646-653.
- J. Zheng, D. C. Bock, T. Tang, Q. Zhao, J. Yin, K. R. Tallman, G. Wheeler, X. Liu, Y. Deng, S. Jin, A. C. Marschilok, E. S. Takeuchi, K. J. Takeuchi and L. A. Archer, *Nat. Energy*, 2021, 6, 398-406.
- 6 Q. Ran, H. Shi, H. Meng, S.-P. Zeng, W.-B. Wan, W. Zhang, Z. Wen, X.-Y. Lang and Q. Jiang, *Nat. Commun.*, 2022, 13, 576.
- 7 C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao, X. Guo, H. Liu, W. Xu, D. Liu, L. Yang, J. Liu, H. H. Hng, W. Chen, L. Song, S. Li, Z. Liu, Q. Yan and G. Yu, *J. Am. Chem. Soc.*, 2022, 144, 11444-11455.
- 8 L. Yao, S. Ju, G. Xia, D. Sun and X. Yu, ACS Energy Lett., 2024, 9, 253-261.
- 9 Y. Xie, X. Du, Y. Meng, Y. Liu, S. Wang, W. You, M. Liu, Y. Guo, Z. Liang and D. Li, *Energy Storage Mater.*, 2024, **70**, 103545.
- 10 Y.-J. Su, Y.-L. Cui, Y. Wang, R.-B. Lin, W.-X. Zhang, J.-P. Zhang and X.-M. Chen, *Cryst. Growth Des.*, 2015, **15**, 1735-1739.
- 11 T. D. Bennett, Y. Yue, P. Li, A. Qiao, H. Tao, N. G. Greaves, T. Richards, G. I. Lampronti, S. A. T. Redfern, F. Blanc, O. K. Farha, J. T. Hupp, A. K. Cheetham and D. A. Keen, *J. Am. Chem. Soc.*, 2016, **138**, 3484-3492.

- 12 C. Zhou, L. Longley, A. Krajnc, G. J. Smales, A. Qiao, I. Erucar, C. M. Doherty, A. W. Thornton, A. J. Hill, C. W. Ashling, O. T. Qazvini, S. J. Lee, P. A. Chater, N. J. Terrill, A. J. Smith, Y. Yue, G. Mali, D. A. Keen, S. G. Telfer and T. D. Bennett, *Nat. Commun.*, 2018, 9, 5042.
- 13 Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan and Z. Jiang, *Angew. Chem. Int. Ed.*, 2020, **59**, 4365-4369.
- 14 J. Li, J. Wang, Q. Li, M. Zhang, J. Li, C. Sun, S. Yuan, X. Feng and B. Wang, *Angew. Chem. Int. Ed.*, 2021, **60**, 21304-21309.
- 15 B. K. Shaw, A. R. Hughes, M. Ducamp, S. Moss, A. Debnath, A. F. Sapnik, M. F. Thorne, L. N. McHugh, A. Pugliese, D. S. Keeble, P. Chater, J. M. Bermudez-Garcia, X. Moya, S. K. Saha, D. A. Keen, F.-X. Coudert, F. Blanc and T. D. Bennett, *Nat. Chem.*, 2021, 13, 778-785.
- C. Gao, Z. Jiang, S. Qi, P. Wang, L. R. Jensen, M. Johansen, C. K. Christensen, Y. Zhang, D. B. Ravnsbæk and Y. Yue, *Adv. Mater.*, 2022, 34, 2110048.
- 17 Z. Yang, Y. Belmabkhout, L. N. McHugh, D. Ao, Y. Sun, S. Li, Z. Qiao, T. D. Bennett, M. D. Guiver and C. Zhong, *Nat. Mater.*, 2023, **22**, 888-894.
- 18 L. León-Alcaide, R. S. Christensen, D. A. Keen, J. L. Jordá, I. Brotons-Alcázar, A. Forment-Aliaga and G. Mínguez Espallargas, *J. Am. Chem. Soc.*, 2023, **145**, 11258-11264.
- 19 M. Kim, H.-S. Lee, D.-H. Seo, S. J. Cho, E.-c. Jeon and H. R. Moon, *Nat. Commun.*, 2024, **15**, 1174.
- 20 L. Bai, Y. Xu, Y. Liu, D. Zhang, S. Zhang, W. Yang, Z. Chang and H. Zhou, *Nat. Commun.*, 2025, 16, 3484.
- 21 H. Lahan and S. K. Das, *Journal of Power Sources*, 2019, **413**, 134-138.
- 22 X. Wu, N. Qin, F. Wang, Z. Li, J. Qin, G. Huang, D. Wang, P. Liu, Q. Yao, Z. Lu and J. Deng, Energy Storage Mater., 2021, **37**, 619-627.
- C. Gao, Z. Jiang, S. Qi, P. Wang, L. R. Jensen, M. Johansen, C. K. Christensen, Y. Zhang, D. B. Ravnsbæk and Y. Yue, *Adv. Mater.*, 2022, 34, 2110048.
- 24 R. Bai, J. Yang, G. Li, J. Luo and W. Tang, Energy Storage Mater., 2021, 41, 41-50.
- 25 X. Yuan, X. Yuan, S. Zhang, P. Chen, X. Wu, J. Ye, L. Liu, L. Fu, T. Wang, K. I. Ozoemena and Y. Wu, *Adv. Energy Mater.*, 2024, **14**, 2302712.