Supporting Information

Electrochemical selective incorporation of SO₂ to synthesize the fused-ring framework

Zhi-Long Lei,‡^a Dan Tan,‡^a Jin-Tao Qin,^a Xiu-Jin Meng,*^a Fei-Hu Cui,*^a Hai-Tao Tang^a and Ying-Ming Pan*^{a, b}

^aKey Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China. ^bGuangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, Key Laboratory of Medical Biotechnology and Translational Medicine, School of Pharmacey, Guilin Medical University, Guilin 541199, People's Republic of China.

E-mail: xiujinmeng@mailbox.gxnu.edu.cn; cuifeihuhao@163.com; panym@mailbox.gxnu.edu.cn

1. General methods	S3
2. Supplementary experiments	S4
3. Synthesis of substrates	S6
4. General procedure for the preparation of products	S7
5. Control experiments	S8
6. Cyclic voltammetry studies	
7. Electrochemical applications	S14
8. Single-crystal X-Ray diffraction	S16
9. Characterization data for the products	S20
10. Copies of the NMR spectra	S32
11. References	S65

1. General methods

Unless otherwise noted, all reagents and solvents were obtained commercially and used without further purification. Column chromatography on silica gel (300-400 mesh) was carried out using technical grade 60-90 °C petroleum ether and analytical grade EtOAc (without further purification). ¹H and ¹³C and ¹⁹F spectra were recorded on a 400 MHz or 600MHz spectrometer. Chemical shifts were reported in ppm. ¹H and ¹⁹F NMR spectra were referenced to CDCl₃ (7.26 ppm) or DMSO (2.5 ppm) or MeOD (4.87 ppm), and ¹³C-NMR spectra were referenced to CDCl₃ (7.26 ppm) or DMSO (39.5 ppm) or MeOD (49.0 ppm). Peak multiplicities were designated by the following abbreviations: s, singlet; d, doublet; t, triplet; m, multiplet; brs, broad singlet and J, coupling constant in Hz. The HRMS spectrum was measured by micromass QTOF₂ Quadrupole/Time of Flight Tandem mass spectrometer with electron spray ionization. Potentiostat was purchased from Shanghai Xinrui Companyand the model is DJS-292B.

2.Supplementary experiments

Table S1 Reaction conditions for insertion of two-component SO_2 into fused-ring framework compounds^{*a*}

Entry	Electrode	Current	additive	"SO ₂ "	Solvent	time	Yield
		(mA)					(%) ^[b]
1	C(+) C(-)	8 mA	MsOH	$Na_2S_2O_5$	МеОН	2 h	40%
2	C(+) C(-)	8 mA	НСООН	$Na_2S_2O_5$	МеОН	2 h	25%
3	C(+) C(-)	8 mA	CH ₃ OOH	$Na_2S_2O_5$	МеОН	2 h	33%
4	C(+) C(-)	8 mA	<i>p</i> -	$Na_2S_2O_5$	МеОН	2 h	18%
			Toluenesulf				
			onic acid				
5	C(+) C(-)	8 mA	-	Na ₂ S ₂ O ₅	МеОН	2 h	trace
6	C(+) C(-)	8 mA	MsOH	Na ₂ S ₂ O ₅	MeOH/CH ₃ CN (1 : 1)	2 h	17%
7	C(+) C(-)	8 mA	MsOH	$Na_2S_2O_5$	MeOH/HFIP (1 : 1)	2 h	27%
8	C(+) C(-)	8 mA	MsOH	Na ₂ S ₂ O ₅	MeOH/DCE (1 : 1)	2 h	28%
9	C(+) C(-)	8 mA	MsOH	Na ₂ S ₂ O ₅	MeOH/DCM (1 : 1)	2 h	18%
10	C(+) C(-)	8 mA	MsOH	Na ₂ S ₂ O ₅	MeOH/DMA (1 : 1)	2 h	0%
11	C(+) C(-)	8 mA	MsOH	Na ₂ S ₂ O ₅	MeOH/DMSO (1 : 1)	2 h	0%
12	C(+) Pt(-)	8 mA	MsOH	Na ₂ S ₂ O ₅	МеОН	2 h	51%
13	C(+) Ni(-)	8 mA	MsOH	$Na_2S_2O_5$	МеОН	2 h	23%
14	GF(+) GF(-)	8 mA	MsOH	$Na_2S_2O_5$	МеОН	2 h	9%
15	Pt(+) Pt(-)	8 mA	MsOH	Na ₂ S ₂ O ₅	МеОН	2 h	35%
16	RVC(+) RV	8 mA	MsOH	$Na_2S_2O_5$	МеОН	2 h	19%
	C(-)						
17	C(+) Pt(-)	8 mA	MsOH	Na ₂ S ₂ O ₅	MeOH (dry)	2 h	51%
18	C(+) Pt(-)	6 mA	MsOH	Na ₂ S ₂ O ₅	MeOH (dry)	3 h	60%
19	C(+) Pt(-)	4 mA	MsOH	Na ₂ S ₂ O ₅	MeOH (dry)	4 h	71%
20	C(+) Pt(-)	4 mA	MsOH	$K_2S_2O_5$	MeOH (dry)	4 h	44%
21	C(+) Pt(-)	4 mA	MsOH	DABSO	MeOH (dry)	4 h	25%
22	C(+) Pt(-)	8 mA	MsOH	$K_2S_2O_8$	MeOH (dry)	4 h	0%
23	C(+) Pt(-)	0 mA	MsOH	$Na_2S_2O_5$	MeOH (dry)	4 h	0%
24	C(+) Pt(-)	8 mA	MsOH	$Na_2S_2O_5$	MeOH (dry)	4 h	0%[c]
25	C(+) C(-)	4 mA	MsOH	$Na_2S_2O_5$	MeOH (dry)	4 h	24%
26	GF(+) GF(-)	4 mA	MsOH	$Na_2S_2O_5$	MeOH (dry)	4 h	14%

27	C(+) Pt(-)	4 mA	MsOH	$Na_2S_2O_5$	$MeOH/H_2O(1:1)$	4 h	0%
28	C(+) Pt(-)	4 mA	MsOH	$Na_2S_2O_5$	MeOH/DCM (1 : 1)	4 h	19%
29	C(+) C(-)	4 mA	НСООН	$Na_2S_2O_5$	MeOH(dry)	4 h	27%
30	C(+) C(-)	4 mA	CH ₃ COOH	$Na_2S_2O_5$	MeOH(dry)	4 h	33%

^[a] Reaction conditions: **1a** (0.25 mmol), **2a** (1 mmol), MeOH (dry) as solvent (10 mL), electrolysis at a constant current of 4 mA for 4 h in an undivided cell. ^[b] Yield determined by ¹H NMR analysis based on **1a** (using 1,3,5-trimethoxybenzene as the internal standard). ^[c] In the air atmosphere.

Table S2 Reaction conditions for insertion of single-component SO_2 into fused-ring framework compounds^{*a*}

Entry	Electrode	Current	"SO ₂ "	Solvent	time	Yield
		(mA)				(%) ^[b]
1	C(+) C(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	28%
2	C(+) Pt(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	21%
3	C(+) SS(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	17%
4	Pt(+) SS(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	7%
5	C(+) Pb(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	36%
6	C(+) Cu(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	18%
7	C(+) Fe(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	50%
8	C(+) Zn(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	21%
9	Al(+) Fe(-)	5 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	5 h	trace
10	C(+) Fe(-)	3 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	11 h	39%
11	C(+) Fe(-)	3 mA	$Na_2S_2O_5$	CH ₃ OH/CH ₃ CN (1:1)	7 h	76%
12	C(+) Fe(-)	8 mA	$Na_2S_2O_5$	CH ₃ OH/CH ₃ CN (1:1)	4 h	34%
13	C(+) C(-)	8 mA	$Na_2S_2O_5$	CH ₃ OH/CH ₃ CN (1:1)	4 h	61%
14	C(+) C(-)	3 mA	$Na_2S_2O_5$	CH ₃ OH/CH ₃ CN (1:1)	7 h	70%
15	C(+) Pt(-)	3 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	7 h	12%
16	C(+) Fe(-)	3 mA	$Na_2S_2O_5$	H ₂ O/CH ₃ CN (1:1)	7 h	0%
17	C(+) Fe(-)	3 mA	Na ₂ S ₂ O ₅	CH ₃ OH/DCM (1:1)	7 h	12%
18	C(+) Fe(-)	6 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	4.5 h	45%
19	C(+) Fe(-)	0 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	7 h	0%
20	C(+) Fe(-)	3 mA	$K_2S_2O_5$	CH ₃ OH/CH ₃ CN (1:1)	7 h	22%
21	C(+) Fe(-)	3 mA	$K_2S_2O_8$	CH ₃ OH/CH ₃ CN (1:1)	7 h	0%
22	C(+) Fe(-)	3 mA	DABSO	CH ₃ OH/CH ₃ CN (1:1)	7 h	31%
23	C(+) Fe(-)	4 mA	$Na_2S_2O_5$	CH ₃ OH (dry)	6 h	23%
24	C(+) Fe(-)	4 mA	Na ₂ S ₂ O ₅	CH ₃ OH/CH ₃ CN (1:1)	6 h	67%

^[a] Reaction conditions: **1a** (0.25 mmol), **2a** (1.25 mmol), MeOH /CH₃CN (1:1) as solvent (10 mL), electrolysis at a constant current of 3 mA for 7 h in an undivided cell. ^[b] Yield determined by ¹H NMR analysis based on **1a** (using 1,3,5-trimethoxybenzene as the internal standard).

3. Synthesis of substrates

To a solution of cyanogen bromide (1.0 equiv.) in Et_2O and THF (0. 75 M) was added S-1 (1.7 equiv.) at 0 °C. Then the mixture was stirred at room temperature for the desired time before being diluted with Et_2O . Following was purified by flash column chromatography (silica gel, EtOAc/Petroleum ether) to afford the ponding compounds S-2.

Under a N₂ atmosphere, to a two neck round bottom flask was added S-2 (1.0 equiv.), $K_2C_2O_3$, (2.0 equiv.) and DMF at 0 °C, bromide S-3 (1.1 equiv.) was added dropwise at 0 °C after the reaction mixture was stirred for half an hour. Then the reaction mixture was warmed to room temperature and stirred for 14 h. Upon completion, H₂O was added and the mixture was extracted with EtOAc, and the combined organic layers were washed by brine and dried over Na₂SO₄, then filtered and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, EtOAc/Petroleum ether) to give the desired substrate S-4. The following substrates are synthesized based on reported literatures ^[1-3]

4. General procedure for the preparation of products

General method for synthesis of two-component SO_2 into fused-ring framework compounds **3a-3n**.

A 10 ml three-necked round-bottomed flask was charged sequentially with **1a** (0.25 mmol, 1.0 eq.), **2a** (1 mmol, 4.0 eq.) and MsOH (5 eq.). The electrolytic cell was equipped with a graphite rod anode ($\Phi 6$ mm) and a platinum plate cathode (1 cm × 1 cm). The three-necked flask was pumped and vented three times to fill the interior with argon. The three-neck flask was then filled with dry MeOH. Electrolysis was carried out at room temperature at a constant current of 4 mA for the appropriate time. At the end of the reaction, the reaction mixture was washed with water and extracted with dichloromethane (3 × 10 mL). The organic layers were combined, dried with Na₂SO₄ and concentrated. Flash column chromatography on silica gel gave the pure product .

General method for synthesis of single-component SO₂ into fused-ring framework compounds **4a-4l**.

A 10 ml three-necked round-bottomed flask was filled with **1a** (0.25 mmol, 1.0 eq.), **2a** (1.25 mmol, 5.0 eq.). The electrolytic cell was equipped with a graphite rod anode ($\Phi 6$ mm) and an iron sheet cathode (1 cm × 1 cm). The three-necked flask was pumped and vented three times to fill the interior with argon. The three-neck flask was then charged with MeCN and MeOH. Electrolysis was carried out at room temperature at a constant current of 3 mA for the appropriate time. At the end of the reaction, the reaction mixture was washed with water and extracted with dichloromethane (3 × 10 mL). The organic layers were combined, dried with Na₂SO₄ and concentrated. Flash column chromatography on silica gel gave the pure product .

5.Control experiments

D/H CN C(+)C(-), Ar Na₂S₂O₅ CH₃OH (dry)/MeCN (dry) D = 0% Ň 8 mA, 4 h.) (10 equiv) ó Ő 2a 1-4 **4d**, 53% D/H CN C(+)C(-), Ar Na₂S₂O₅ CD₃OH/MeCN, 8 mA, 4 h _N D = 0% ó ° 1-1 2a **4a**, 53% D/H ÇN C(+)C(-), Ar Na₂S₂O₅ CH₂OD/MeCN, 8 mA, 4 h D = 99%Ň ó Ő 2a 4a, 51% 1-1

5.1 Labeling experiment

Fig. S1: Labeling experiment

6.Cyclic voltammetry studies

The cyclic voltammograms were recorded in an electrolyte solution of nBu_4NBF_4 (0.1 M) in CH₃OH using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.

Fig. S2: Cyclic voltammograms in CH₃OH (4 mL) + 0.1 M nBu₄NBF₄. a) pink line: Blank. b) blue

line: **1a** (0.15 mmol). c) wine red line: **2a** (0.45 mmol). d) olive-green line: MsOH (0.75 mmol) and **1a** (0.45 mmol). e) olive-green line: MsOH (0.75 mmol) and **2a** (0.45 mmol).

The cyclic voltammograms were recorded in an electrolyte solution of nBu_4NBF_4 (0.1 M) in CH₃OH/CH₃CN using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.

Fig. S3: Cyclic voltammograms in CH₃OH/ CH₃CN (2 mL / 2 mL) + 0.1 M nBu₄NBF₄. a) pink line: Blank. b) wine red line: **1a** (0.15 mmol). c) blue line: **2a** (0.45 mmol).

The cyclic voltammograms were recorded in an electrolyte solution of nBu_4NBF_4 (0.1 M) in CH₃OH/CH₃CN using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.

Fig. S4: Cyclic voltammograms in CH₃OH/ CH₃CN (2 mL / 2 mL) + 0.1 M nBu₄NBF₄. a) blue line: Blank. b) purple line: **3a** (0.1 mmol). c) orange line: MsOH (0.6 mmol) and **3a** (0.1 mmol). The cyclic voltammograms were recorded in an electrolyte solution of nBu₄NBF₄ (0.1 M) in CH₃OH/CH₃CN using a glassy carbon disk working electrode (diameter, 3 mm), a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.

Fig. S5: Cyclic voltammograms in CH₃OH/ CH₃CN (2 mL / 2 mL) + 0.1 M nBu₄NBF₄. a) blue line: Blank. b) brown line: **3a** (0.1 mmol).

The cyclic voltammograms were recorded in an electrolyte solution of nBu_4NBF_4 (0.1 M) in CH₃OH/CH₃CN using a glassy carbon disk working electrode (diameter, 3 mm),

a Pt wire auxiliary electrode and a Ag/AgCl reference electrode. The scan rate was 100 mV/s.

Fig. S6: Cyclic voltammograms in CH₃OH/ CH₃CN $(2 \text{ mL} / 2 \text{ mL}) + 0.1 \text{ M nBu}_4\text{NBF}_4$. a) blue line: Blank. b) dark blue line: **3a** (0.1 mmol) and **2a** (0.2 mmol). c) orange line: **3a** (0.1 mmol) and **2a** (0.3 mmol).

6.1 Charge measurement

Fig. S7: Amplifying device

$$Q = +7.922e + 0.001C = 79.22C$$

$$n_e = \frac{Q}{F} = \frac{79.22C}{96485} = 0.00082mol$$

$$n_2 = \frac{n_e}{n_1} = \frac{0.00082mol}{0.00025mol} = 3.28 \approx 3$$

F: Faraday constant. Q: Total charge. ne: Electron molar number. n1: The number of moles of

reaction. n₂: The number of electrons transferred.

6.2 Current efficiency

0

Current efficiency calculation^[4] of **3a**

$$Q = I \times t = 0.004 A \times 14400 s = 57.6 C$$
$$n_1 = \frac{Q}{n \times F} = \frac{57.6}{2 \times 96485} \approx 0.2985 mmol$$

 $n_2 = 0.25 mmol \times 71 \% = 0.1775 mmol$

$$CE \% = \frac{n_2}{n_1} \times 100 \% = \frac{0.1775}{0.2985} \times 100 \% \approx 59.5 \%$$

F: Faraday constant. Q: Total charge. n: Electron transfer number. n₁: Theoretical product quantity.

n₂: Actual product quantity. CE: Current efficiency.

Current efficiency calculation of 3a (2 mmol)

$$Q = I \times t = 0.010 A \times 36000 s = 360 C$$
$$n_1 = \frac{Q}{n \times F} = \frac{360}{2 \times 96485} \approx 1.865 mmol$$

$$n_2 = 2 \ mmol \ \times 48 \ \% \ = 0.96 \ mmol$$

$$CE \% = \frac{n_2}{n_1} \times 100 \% = \frac{0.96}{1.865} \times 100 \% \approx 51.5 \%$$

F: Faraday constant. Q: Total charge. n: Electron transfer number. n₁: Theoretical product quantity.

n₂: Actual product quantity. CE: Current efficiency.

Current efficiency calculation of 4a

$$Q = I \times t = 0.003 A \times 25200 s = 75.6 C$$
$$n_1 = \frac{Q}{n \times F} = \frac{75.6}{3 \times 96485} \approx 0.2613 mmol$$
$$n_2 = 0.25mmol \times 76 \% = 0.19mmol$$

$$CE \% = \frac{n_2}{n_1} \times 100 \% = \frac{0.19}{0.2613} \times 100 \% \approx 72.7 \%$$

F: Faraday constant. Q: Total charge. n: Electron transfer number. n₁: Theoretical product quantity.

n₂: Actual product quantity. CE: Current efficiency.

7. Electrochemical applications

7.1 Preparation of scale-up reactions

A 25 ml round-bottomed flask was filled sequentially with **1a** (2 mmol, 1.0 eq.), **2a** (8 mmol, 4.0 eq.). The cell was equipped with a graphite rod anode (Φ 6 mm) and a Pt plate cathode (1 cm × 1 cm). MeOH (20 ml) were added to a round-bottomed flask and the flask was filled with argon. Electrolysis was carried out at room temperature at a constant current of 10 mA for the appropriate time. At the end of the reaction, the reaction mixture was washed with water and extracted with dichloromethane (3 × 20 mL). The organic layers were combined, dried with Na₂SO₄ and concentrated. Flash column chromatography on silica gel gave the pure product **3a** in 48% (0.330 g) yield (DCM: MeOH = 100 : 1).

Fig. S8: Amplifying device

7.2 Derivatisation of products

To solution of **4d** (0.2 mmol) in THF (0.2M) was added EtMgBr (2.3 equiv.) at 0°C.Then, the mixture was stirred at 50 °C for 16 h. Upon completion, the reaction was quenched with saturated ammonium chloride solution at 0 °C, and the mixture was extracted with DCM. The combined organic phases were washed with brine before being dried Na₂SO₄ and concentrated in vacuo. Purification by column chromatography on silica gel (EtOAc/petroleum ether = 1/1) to afford **7d** (68%,) as colorless oil.

To solution of **4h** (0.2 mmol) in THF (0.2 M) was added LiAlH₄ (1.3 equiv.) dropwise at 0 °C. Then the reaction mixture was warmed to 30 °C and allowed to proceed for 12 h. The resulting mixture was cooled to 0 °C and quenched by dropwise addition the solution of NaOH (1 N). The aqueous layer was extracted with DCM. The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was evaporated under reduced pressure. The crude product was purified by chromatography on a silica gel column (EtOAc/petroleum ether = 1/12) to afford **8h** (72%) as white solid.

8. Single-crystal X-Ray diffraction

Fig. S9: X-ray molecular structure of **3a**

Table S3. Crys	stal data and str	ructure refineme	nt for 3a
----------------	-------------------	------------------	------------------

Identification code	3a
Empirical formula	C13H16N2O5S2
Formula weight	344.40
Temperature/K	295.81(10)
Crystal system	monoclinic
Space group	P21/c
a/Å	11.27430(10)
b/Å	24.3447(3)
c/Å	11.0893(2)
α/°	90
β/°	96.9450(10)
$\gamma/^{\circ}$	90
Volume/Å ³	3021.34(7)
Z	8
pcalcg/cm ³	1.514
μ/mm-1	3.438
F(000)	1440.0
Crystal size/mm ³	0.2 imes 0.18 imes 0.14
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.262 to 154.778
Index ranges	$\textbf{-13} \leqslant h \leqslant \textbf{14}, \textbf{-30} \leqslant k \leqslant \textbf{28}, \textbf{-12} \leqslant \textbf{I} \leqslant \textbf{14}$
Reflections collected	23617
Independent reflections	6084 [Rint = 0.0576, Rsigma = 0.0419]

Data/restraints/parameters	6084/190/476
Goodness-of-fit on F ²	1.066
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0686, wR2 = 0.1843
Final R indexes [all data]	R1 = 0.0807, wR2 = 0.1916
Largest diff. peak/hole / e Å ⁻³	0.79/-0.58

Table S4. Selected bond distances and angles for 3a.

Bond Distances(Å)						
N3-C18	1.	.398(4)	C	24A-C25A	1.	511(8)
N3-C21	1.	.336(5)	C	24B-C25B	1.	497(15)
N3-C22	1.	.475(4)	C	1-C2	1.	514(6)
S3-N4	1.	.610(3)	N	1 - C5	1.	396(4)
S3-O6	1.	.425(3)	N	1-C8	1.	343(4)
S3-O7	1.	.423(3)	N	1-C9	1.	472(4)
S3-C17	1.	.743(3)	0	01-S1	1.	426(3)
N4-C21	1.	.294(5)	S	1-N2	1.	609(3)
S4-O8A	1.	.356(6)	S	1-02	1.	419(3)
S4-O8B	1.	.452(12)	S	1-C6	1.	756(3)
S4-O9A	1.	.440(5)	C	2-C3	1.	386(6)
S4-O9B	1.	311(10)	C	2-C7	1.	382(5)
S4-O10A	1.	.543(5)	N	2-C8	1.	295(4)
S4-O10B	1.	.625(11)	S	2-03	1.	417(6)
S4-C25A	25A 1.782(6)		S	S2-O4		360(4)
S4-C25B	1.	.745(10)	S	2-05	1.	522(5)
O10A-C26A	1.	.272(10)	S	2-C12A	1.	806(9)
O10B-C26B	1.	254(18)	S	2-C12B	1.	773(5)
C14-C15	1.	.508(5)	C	3-C4	1.	376(6)
C15-C16	1.	.386(5)	C	4-C5	1.	401(5)
C15-C20	1.	.383(6)	C	5-C6	1.	393(4)
C16-C17	1.	.396(5)	0	95-C13	1.	435(7)
C17-C18	1.	.391(4)	C	6-C7	1.	389(5)
C18-C19	1.	.398(5)	C	8-C11A	1.	545(11)
C19-C20	1.	.376(6)	C	8-C11B	1.	530(6)
C21-C24A	1.	.528(6)	C	9-C10	1.	503(6)
C21-C24B	1.	.545(13)	C	10-C11A	1.	495(11)
C22-C23	1.	.504(7)	C10-C11B		1.	538(7)
C23-C24A	1.	.478(8)	C11A-C12A		1.	518(13)
C23-C24B	1.	513(14)	C	11B-C12B	1.	504(8)
		Bond A	ng	les (Å)		
C18-N3-C22		123.3(3)		C24A-C25A-S4		110.7(4)
C21-N3-C18		122.0(3)		C24B-C25B-S4		117.9(9)
C21-N3-C22		112.9(3)		C5-N1-C9		123.9(3)
N4-S3-C17		104.32(16)		C8-N1-C5		122.5(3)

O6-S3-N4	109.0(2)	C8-N1-C9	112.9(3)
O6-S3-C17	108.50(17)	01-S1-N2	108.8(2)
O7-S3-N4	107.89(19)	01-S1-C6	108.40(16)
07-S3-O6	116.1(2)	N2-S1-C6	105.62(15)
O7-S3-C17	110.29(17)	02-S1-O1	116.18(18)
C21-N4-S3	119.7(3)	O2-S1-N2	107.38(19)
08-S4-O9A	117.4(5)	O2-S1-C6	109.96(17)
08A-S4-O10A	116.5(4)	C3-C2-C1	121.0(4)
08A-S4-C25A	112.6(5)	C7-C2-C1	121.2(4)
O8B-S4-O10B	97.2(8)	C7-C2-C3	117.8(3)
O8B-S4-C25B	102.2(8)	C8-N2-S1	121.5(3)
O9A-S4-O10A	104.2(4)	O3-S2-O5	106.3(3)
O9A-S4-C25A	108.5(4)	O3-S2-C12A	86.8(4)
O9B-S4-O8B	108.2(12)	O3-S2-C12B	114.3(3)
O9B-S4-O10B	111.6(7)	O4-S2-O3	113.8(4)
O9B-S4-C25B	121.4(8)	O4-S2-O5	111.6(3)
O10A-S4-C25A	95.1(3)	O4-S2-C12A	111.7(4)
O10B-S4-C25B	112.7(7)	O4-S2-C12B	112.7(3)
C26A-O10-AS4	129.9(8)	O5-S2-C12A	123.9(4)
C26B-O10B-S4	139(2)	O5-S2-C12B	96.7(3)
C16-C15-C14	120.6(4)	C4-C3-C2	122.8(3)
C20-C15-C14	121.5(4)	C3-C4-C5	119.4(3)
C20-C15-C16	117.9(3)	N1-C5-C4	121.1(3)
C15-C16-C17	120.3(3)	C6-C5-N1	120.6(3)
C16-C17-S3	119.7(2)	C6-C5-C4	118.3(3)
C18-C17-S3	119.2(3)	C13-O5-S2	121.2(4)
C18-C17-C16	120.9(3)	C5-C6-S1	119.7(3)
N3-C18-C19	121.9(3)	C7-C6-S1	119.1(3)
C17-C18-N3	119.4(3)	C7-C6-C5	121.1(3)
C17-C18-C19	118.6(3)	C2-C7-C6	120.7(4)
C20-C19-C18	119.3(3)	N1-C8-C11A	108.0(5)
C19-C20-C15	122.9(3)	N1-C8-C11B	109.1(3)
N3-C21-C24A	107.5(3)	N2-C8-N1	128.8(3)
N3-C21-C24B	110.4(6)	N2-C8-C11A	121.3(5)
N4-C21-N3	128.7(3)	N2-C8-C11B	121.4(4)
N4-C21-C24A	123.2(4)	N1-C9-C10	103.8(3)
N4-C21-C24B	119.3(6)	C9-C10-C11B	105.8(3)
N3-C22-C23	102.9(3)	C11A-C10-C9	108.9(5)
C22-C23-C24B	110.7(6)	C10-C11A-C8	102.8(7)
C24A-C23-C22	105.9(4)	C10-C11A-C12A	115.3(9)
C23-C24A-C21	103.1(4)	C12A-C11A-C8	103.5(8)
C23-C24A-C25A	118.2(6)	C8-C11B-C10	101.5(4)
C25A-C24A-C21	110.6(5)	C12B-C11B-C8	109.0(4)

C23-C24B-C21	100.7(8)	C12B-C11B-C10	120.2(6)
C25B-C24B-C21	100.8(9)	C11A-C12A-S2	110.0(8)
C25B-C24B-C23	122.0(13)	C11B-C12B-S2	109.6(4)

Fig. S10: X-ray molecular structure of 4a

Table S5. Crystal data and structure refinement for 4a				
Identification code	4a			
Empirical formula	$C_{12}H_{14}N_2O_2S$			
Formula weight	250.31			
Temperature/K	296.74(10)			
Crystal system	triclinic			
Space group	P-1			
a/Å	7.5524(4)			
b/Å	8.9178(5)			
c/Å	9.3580(5)			
$\alpha/^{\circ}$	83.619(4)			
β/°	80.454(5)			
$\gamma/^{\circ}$	66.215(5)			
Volume/Å ³	568.07(6)			
Z	2			
pcalcg/cm ³	1.463			
μ/mm-1	2.469			
F(000)	264.0			
Crystal size/mm ³	0.22 imes 0.18 imes 0.11			
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)			
2Θ range for data collection/°	9.596 to 153.966			
Index ranges	$-7 \le h \le 9, -11 \le k \le 11, -11 \le 1 \le 11$			

Reflections collected	5277
Independent reflections	2201 [Rint = 0.0369, Rsigma = 0.0372]
Data/restraints/parameters	2201/0/156
Goodness-of-fit on F ²	1.116
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0844, WR2 = 0.2608
Final R indexes [all data]	R1 = 0.0918, $wR2 = 0.2676$
Largest diff. peak/hole / e Å ⁻³	0.94/-0.41

 Table S6. Selected bond distances and angles for 4a.

Bond Distances(Å)					
S001-O002	1.431(3)			C009-C00D	1.396(6)
S001-O003	1.431(3)			C009-C00E	1.395(6)
S001-N005	1.604(4)			С009-С00Н	1.506(6)
S001-C007	1.751(4)			C00A-C00F	1.483(6)
N004-C006	1.402(5)			C00A-C00G	1.332(7)
N004-C008	1.339(5)			C00B-C00F	1.521(6)
N004-C00B	1.476(5)			C00C-C00E	1.379(6)
N005-C008	1.306(5)			C007-C00D	1.396(5)
C006-C007	1.397(5)			C008-C00A	1.486(5)
C006-C00C	1.386(6)				
Bond Angles (Å)					
O002-S001-N005		109.1(2)	C00D-C007-C006		120.6(4)
O002-S001-C007		108.67(19)	N004-C008-C00A		108.8(3)
O003-S001-O002		114.6(2)	N005-C008-N004		128.3(4)
O003-S001-N005		108.9(2)	N005-C008-C00A		122.9(4)
O003-S001-C007		109.42(19)	C00D-C009-C00H		120.8(4)
N005-S001-C007		105.82(18)	C00E-C009-C00D		117.7(4)
C006-N004-C00B		123.2(3)	С00Е-С009-С00Н		121.4(4)
C008-N004-C006		123.3(3)	C00F-C00A-C008		107.4(4)
C008-N004-C00B		113.4(3)	C00G-C00A-C008		122.6(4)
C008-N005-S001		122.0(3)	C00G-C00A-C00F		130.0(4)
C007-C006-N004		119.8(3)	N004-C00B-C00F		104.1(3)
C00C-C006-N004		121.2(3)	C00E-C00C-C006		119.9(4)
C00C-C006-C007		119.0(4)	C009-C00D-C007		120.4(4)
C006-C007-S001		120.7(3)	C00C-C00E-C009		122.2(4)
C00D-C007-S001		118.6(3)	C00A-C00F-C00B		106.3(3)

9. Characterization data for the products

N-(but-3-en-1-yl)-*N*-(4-(tert-butyl)phenyl)cyanamide (1-4). yellow liquid (74%).¹H NMR (400 MHz, Chloroform-d) δ 7.39-7.37 (m, 2H), 7.07-7.04 (m, 2H), 5.84- 5.80 (m, 1H), 5.21-5.14 (m, 2H), 3.63 (t, *J* = 7.3 Hz, 2H), 2.58-2.53 (m, 3H), 1.30 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 146.7, 137.3, 133.2, 126.6, 118.5, 115.8, 113.9, 48.9, 34.3, 31.7, 31.4. HRMS(m/z)(ESI): calcd for C₁₅H₂₁N₂⁺ [M+H]⁺ 229.1700, found 229.1705.

N-(but-3-en-1-yl)-*N*-(4-(sec-butyl)phenyl)cyanamide (1-5). yellow liquid (64%).¹H NMR (500 MHz, Chloroform-d) δ 7.22-7.20 (m, 2H), 7.09-7.07 (m, 2H), 5.90- 5.84 (m, 1H), 5.24-5.18 (m, 2H), 3.66 (t, *J* = 7.3 Hz, 2H), 2.63-2.57 (m, 3H), 1.62- 1.58 (m, 2H), 1.25 (d, *J* = 7.0 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 3H).¹³C NMR (126 MHz, Chloroform-d) δ 143.3, 137.6, 133.2, 128.2, 118.5, 116.1, 113.9, 49.0, 40.9, 31.8, 31.2, 21.9, 12.2. HRMS(m/z)(ESI): calcd for C₁₅H₂₁N₂⁺ [M+H]⁺ 229.1700, found 229.1702.

N-(but-3-en-1-yl)-*N*-(4-cyclohexylphenyl)cyanamide (1-7). red liquid (69%).¹H NMR (500 MHz, Chloroform-d) δ 7.25-7.23 (m, 2H), 7.10-7.08 (m, 2H), 5.90-5.83 (m, 1H), 5.24-5.18 (m, 2H), 3.65 (t, *J* = 7.3 Hz, 2H), 2.60-2.52 (m, 2H), 2.52-2.50 (m, 1H), 1.89-1.85 (m, 4H), 1.81-1.78 (m, 1H), 1.45-1.38 (m, 4H), 1.31-1.27 (m, 1H). ¹³C NMR (126 MHz, Chloroform-d) δ 143.7, 137.6, 133.3, 128.0, 118.5, 116.1, 113.9, 49.0, 43.8, 34.5, 31.8, 26.9, 26.1. HRMS(m/z)(ESI): calcd for C₁₇H₂₃N₂⁺ [M+H]⁺ 255.1856, found 255.1860.

N-(but-3-en-1-yl)-*N*-(3-isopropylphenyl)cyanamide. red liquid (70%). ¹H NMR (500 MHz, Chloroform-d) δ 7.33-7.30 (m, 1H), 7.04-7.03 (m, 1H), 7.01-7.00 (m, 1H), 6.95-6.93 (m, 1H), 5.90-5.85 (m, 1H), 5.24-5.18 (m, 2H), 3.69-3.66 (m, 2H), 2.95- 2.92 (m, 1H), 2.63-2.58 (m, 2H), 1.28 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, Chloroform-d) δ 151.0, 139.8, 133.2, 129.6, 121.8, 118.6, 114.5, 113.8, 113.3, 48.9, 34.3, 31.8, 23.9. HRMS(m/z)(ESI): calcd for C₁₄H₁₉N₂⁺ [M+H]⁺ 215.1453, found 215.1451.

methyl(7-methyl-5,5-dioxido-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3a). white solid (71%). m.p. 90.2-92.5 °C. ¹H NMR (500 MHz, Chloroform-d) δ 7.78 (m, 1H), 7.46-7.44 (m, 1H), 6.99-6.97 (m, 1H), 4.20-4.16 (m, 1H), 4.01-3.99 (m, 1H), 3.98 (s, 3H), 3.96-3.82 (m, 1H), 3.70-3.64 (m, 1H), 3.30- 3.25(m, 1H), 2.86-2.81 (m, 1H), 2.44 (s, 3H), 2.36-2.26 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.4, 137.7, 134.2, 132.0, 125.0, 121.8, 115.0, 56.6, 50.4, 48.0, 40.4, 25.4, 21.1. HRMS(m/z)(ESI): calcd for C₁₂H₁₇N₂O₅S₂⁺ [M+H]⁺ 345.0574, found 345.0578.

methyl(7-ethyl-5,5-dioxido-2,3-dihydro-1*H*-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3b). white solid (65%). m.p. 94.2-94.5 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.81 (m, 1H), 7.50-7.47 (m, 1H), 7.02-7.00 (m, 1H), 4.22-4.11 (m, 1H), 4.03-3.98 (m, 1H), 3.97 (s, 3H), 3.95–3.89 (m, 1H), 3.74-3.63 (m, 1H), 3.31-3.21 (m, 1H), 2.88-2.80 (s, 1H), 2.77-2.71 (m, 2H), 2.34-2.19 (m, 1H), 1.29-1.25 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.5, 144.0 133.2, 132.2, 123.9, 121.9, 115.1, 56.7, 50.5, 48.1, 40.4, 28.4, 25.4, 15.1. HRMS(m/z)(ESI): calcd for C₁₄H₁₈NaN₂O₅S₂⁺ [M+Na]⁺ 381.0555, found 381.0553.

methyl(7-isopropyl-5,5-dioxido-2,3-dihydro-1*H*-benzo[e]pyrrolo[2,1c][1,2,4]thiadiazin-3-yl)methanesulfonate (3c). white solid (70%). m.p. 89.1-90.3 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.84-7.83 (m, 1H), 7.53-7.50 (m, 1H), 7.03-7.01 (m, 1H), 4.18-4.16 (m, 1H), 4.00-.99 (m, 1H), 3.97 (s, 3H), 3.95-3.93 (m, 1H), 3.70-3.62 (m, 1H), 3.31-3.25 (m, 1H), 3.03-2.96 (m, 1H), 2.86-2.79 (m, 1H), 2.31-2.25 (m, 1H), 1.28-1.26 (m, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.5, 148.6, 132.2, 131.9, 122.5, 121.9, 115.2, 56.6, 50.4, 48.1, 40.4, 33.9, 25.4, 23.7. HRMS(m/z)(ESI): calcd for $C_{15}H_{20}NaN_2O_5S_2^+$ [M+Na]⁺ 395.0711, found 395.0711.

methyl(7-(tert-butyl)-5,5-dioxido-2,3-dihydro-1*H*-benzo[e]pyrrolo[2,1c][1,2,4]thiadiazin-3-yl)methanesulfonate (3d). white solid (78%). m.p. 94.9-95.1 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.97-7.96 (m, 1H), 7.69-7.67 (m, 1H), 7.04-7.03 (m, 1H), 4.21-4.10 (m, 1H), 4.02-3.97 (m, 1H), 3.96 (s, 3H), 3.94 -3.93 (m, 1H), 3.71-3.62 (m, 1H), 3.31-3.25 (m, 1H), 2.86-2.79 (m, 1H), 2.33-2.25 (m, 1H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.5, 151.1, 132.0, 131.0, 121.6, 121.4, 114.9, 56.7, 50.4, 48.0, 40.3, 35.2, 31.1, 25.4. HRMS(m/z)(ESI): calcd for $C_{16}H_{23}N_2O_5S_2^+$ [M+H]⁺ 387.1043, found 387.1043. HRMS(m/z)(ESI): calcd for $C_{16}H_{22}NaN_2O_5S_2^+$ [M+Na]⁺ 409.0863, found 409.0866.

methyl(7-(sec-butyl)-5,5-dioxido-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3e). white solid (70%). m.p. 88.7-91.0 °C. ¹H NMR (500 MHz, Chloroform-d) δ 7.81 (m, 1H), 7.49-7.46 (m, 1H), 7.03-7.01 (m, 1H), 4.19-4.17 (m, 1H), 3.99 (m, 1H), 3.98 (s, 3H), 3.96 (m, 1H), 3.68-3.64 (m, 1H), 3.30-3.25 (m, 1H), 2.86-2.83 (m, 1H), 2.73-2.69 (m, 1H), 2.32-2.26 (m, 1H), 1.63-1.58 (m, 2H), 1.26-1.25 (m, 3H), 0.83-0.80 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.6, 147.5, 132.3, 123.0, 121.8, 115.3, 56.7, 50.4, 48.1, 41.3, 40.4, 30.9, 25.3, 21.5, 12.1. HRMS(m/z)(ESI): calcd for C₁₆H₂₃N₂O₅S₂⁺ [M+H]⁺ 387.1043, found 387.1042.

methyl(7-butyl-5,5-dioxido-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3f). white solid (73%). m.p. 91.7-92.1 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.80 (s, 1H), 7.47-7.45 (m, 1H), 7.01-6.99 (m, 1H), 4.21-4.17 (m, 1H), 4.02-4.00 (m, 1H), 3.98 (s, 3H), 3.95-3.94 (m, 1H), 3.71-3.36 (m, 1H), 3.31-3.22 (m, 1H), 2.88-2.81 (m, 1H), 2.71-2.67 (m, 2H), 2.34-2.25 (m, 1H), 1.64-1.60 (m, 2H), 1.38-1.33 (m, 2H), 0.95-0.91 (m, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.4, 142.8, 133.6, 132.1, 124.4, 121.8, 115.0, 56.6, 50.4, 48.1, 40.4, 35.1, 33.1, 25.4, 22.2, 13.9. HRMS(m/z)(ESI): calcd for C₁₆H₂₂NaN₂O₅S₂⁺ [M+Na]⁺ 409.0864, found 409.0868.

methyl(7-cyclohexyl-5,5-dioxido-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3g). white solid (65%). m.p. 94.0-94.3 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.83 (m, 1H), 7.51-7.48 (m, 1H), 7.02-7.00 (m, 1H), 4.18-4.15 (m, 1H), 4.06-3.99 (m, 1H), 3.97 (s, 3H), 3.95-3.89 (m, 1H), 3.73-3.64 (m, 1H), 3.30-3.24 (m, 1H), 2.87-2.80 (m, 1H), 2.59-2.57 (m, 1H), 2.33-2.22 (m, 1H), 1.86-1.74 (m, 5H), 1.43-1.38 (m, 3H), 1.28-1.25 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.5, 147.8, 132.2, 123.5, 122.8, 121.8, 115.1, 56.6, 50.4, 48.1, 44.1, 40.4, 34.1, 26.8, 25.9, 25.4. HRMS(m/z)(ESI): calcd for C₁₈H₂₄NaN₂O₅S₂⁺ [M+Na]⁺ 435.1019, found 435.1025.

methyl(5,5-dioxido-2,3-dihydro-1*H***-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazin-3-yl)methanesulfonate (3h).** white solid (70%). m.p. 87.9-88.3 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.89-7.87 (m, 1H), 7.65-6.21 (m, 1H), 7.45-7.41 (m, 1H), 7.08-7.06 (m, 1H), 4.20-4.15 (m, 1H), 4.03-3.98 (m, 1H), 3.97-3.93 (m, 3H), 3.92-3.83 (m, 1H), 3.70-3.62 (m, 1H), 3.31-3.24 (m, 1H), 2.81-2.78 (m, 1H), 2.29-2.23 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 161.0, 134.3, 133.3, 127.1, 125.0, 121.8, 115.3, 56.7, 50.4,

48.2, 40.4, 25.3. **HRMS**(m/z)(ESI): calcd for $C_{12}H_{14}NaN_2O_5S_2^+$ [M+Na]⁺ 353.0242, found 353.0237.

methyl(7-fluoro-5,5-dioxido-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3i). white solid (66%). m.p. 86.4-87.3 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.57-7.54 (m, 1H), 7.40-7.34 (m, 1H), 7.12-7.08 (m, 1H), 4.22-4.16 (m, 1H), 4.06-4.02 (m, 1H), 3.99 (s, 3H), 3.97-3.93 (m, 1H), 3.81-3.66 (m, 1H), 3.33-3.22 (m, 1H), 2.87-2.80 (m, 1H), 2.32-2.27 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 161.2, 160.0 (d, J = 252.5 Hz), 130.9, 122.8 (d, J = 10.1 Hz), 121.1 (d, J = 20.2 Hz), 117.9 (d, J = 10.1 Hz), 111.3, (d, J = 20.2 Hz), 56.6, 50.4, 48.5, 40.4, 25.1. ¹⁹F NMR (376 MHz, Chloroform-d) δ -110.98. HRMS(m/z)(ESI): calcd for C₁₂H₁₃NaFN₂O₅S₂⁺ [M+Na]⁺ 371.0143, found 371.0145.

methyl(7-chloro-5,5-dioxido-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3j). white solid (65%). m.p. 90.8-92.1 °C. ¹H NMR (500 MHz, Chloroform-d) δ 7.93-7.92 (m, 1H), 7.62-7.60 (m, 1H), 7.05-7.03 (m, 1H), 4.21-4.17 (m, 1H), 4.043-4.01 (m, 1H), 3.99 (s, 3H), 3.96 (m, 1H), 3.94-3.93 (m, 1H), 3.34-3.27 (m, 1H), 2.90-2.84 (m, 1H), 2.34-2.29 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 161.1, 133.5, 132.8, 132.4, 125.0, 122.9, 116.8, 56.6, 50.4, 48.3, 40.4, 25.2. HRMS(m/z)(ESI): calcd for C₁₂H₁₃ClNaN₂O₅S₂⁺ [M+Na]⁺ 386.9847, found 386.9850.

methyl(7-bromo-5,5-dioxido-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3k). white solid (66%). m.p. 91.1-92.6 °C. ¹H NMR (400 MHz, Chloroform-d) δ 8.05 (m, 1H), 7.76-7.74 (m, 1H), 6.98-6.96 (m, 1H), 4.21-4.15 (m, 1H), 4.04-4.00 (m, 1H), 3.98 (s, 3H), 3.96-3.90 (m, 1H), 3.70-3.66 (m, 1H), 3.33-3.27 (m, 1H), 2.88-2.84 (m, 1H), 2.34-2.28 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 161.0, 136.3, 128.0, 123.1, 119.7, 116.9, 56.7, 50.3, 48.3, 40.4, 25.3. HRMS(m/z)(ESI): calcd for C₁₂H₁₃BrN₂O₅S₂Na⁺ [M+Na]⁺ 430.9347, found

430.9347.

methyl(6,8-dimethyl-5,5-dioxido-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate (3l). white solid (77%). m.p. 94.3-94.5 °C. ¹H NMR (400 MHz, Chloroform-d/Tetrahydrofuran-d) δ 7.16 (s, 1H), 7.10 (s, 1H), 4.27-4.22 (m, 1H), 4.06-3.97 (m, 1H), 3.96 (s, 3H), 3.79-3.69 (m, 3H), 2.62 (s, 3H), 2.60-2.56 (m, 1H), 2.42 (s, 3H), 2.29-2.23 (m, 1H). ¹³C NMR (101 MHz, Chloroformd/Tetrahydrofuran-d) δ 160.3, 143.2, 136.4, 135.2, 130.0, 118.7, 114.6, 57.1, 49.6, 48.9, 21.1, 19.4. HRMS(m/z)(ESI): calcd for C₁₄H₁₈N₂O₅S₂Na⁺ [M+Na]⁺ 381.0550, found 381.0552.

a:methyl(8-methyl-5,5-dioxido-2,3-dihydro-1*H*-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazin-3-yl)methanesulfonate,β:methyl(6-methyl-5,5-dioxido-2,3dihydro-1H-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazin-3-yl)methanesulfonate (3m). white solid (75%). m.p. 90.3-91.1 °C. Major isomer (α):¹H NMR (400 MHz, Chloroform-d) δ 7.84-7.82 (m, 1H), 7.28-7.27 (m, 1H), 6.87 (m, 1H), 6.87 (s, 1H), 4.20-4.16(m, 1H), 4.11-4.07 (m, 1H), 3.98 (s, 3H), 3.95-3.93 (m, 1H), 3.70-3.65 (m, 1H), 3.31-3.25 (m, 1H), 2.84-2.77 (m, 1H), 2.47 (s, 3H), 2.30-2.27 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 159.1, 138.2, 134.3, 132.5, 129.9, 125.1, 120.9, 115.2, 53.5, 50.4, 48.0, 40.4, 25.3, 20.0. Minor isomer (β): ¹H NMR (400 MHz, Chloroform-d) 7.53-7.49 (m, 1H), 7.26-7.24 (m, 1H), 6.93-6.91 (m, 1H), 4.20-4.16(m, 1H), 4.11-4.07 (m, 1H), 3.99 (s, 3H), 3.95-3.93 (m, 1H), 3.70-3.65 (m, 1H), 3.31-3.25 (m, 1H), 2.84-2.77 (m, 1H), 2.75 (s, 3H), 2.30-2.27 (m, 1H). ¹³C NMR (101 MHz, Chloroform-d) δ 160.8, 144.5, 134.6, 132.5, 128.1, 120.9, 115.2, 56.6, 50.4, 48.5, 40.4, 25.4, 22.0. HRMS(m/z)(ESI): calcd for $C_{12}H_{17}N_2O_5S_2^+$ [M+H]⁺ 345.0574, found 345.0575.

$$\label{eq:alpha} \begin{split} &\alpha: methyl(7,8-dimethyl-5,5-dioxido-2,3-dihydro-1\ensuremath{H}\xspace{-1.5} benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazin-3-yl) methanesulfonate, \\ &\beta: methyl(6,7-dimethyl-5,5-dioxido-2,3-dihydro-1\ensuremath{H}\xspace{-1.5} benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazin-3-yl) methanesulfonate (3n). \end{split}$$

white solid (74%). m.p. 92.3-94.0 °C. Major isomer (α):¹**H** NMR (400 MHz, Chloroform-d) δ 7.64 (m, 1H), 6.83 (m, 1H), 4.15-4.13 (m, 1H), 4.00-3.98 (m, 1H), 3.94 (s, 3H), 3.89-3.87 (m, 1H), 3.68-3.59 (m, 1H), 3.29-3.22 (m, 1H), 2.80-2.75 (m, 1H), 2.32 (s, 3H), 2.30 (s, 3H), 2.27-2.21 (m, 1H). ¹³**C** NMR (101 MHz, Chloroform-d) δ 158.7, 137.0, 135.9, 132.7, 125.0, 119.3, 112.9, 53.5, 50.4, 48.0, 40.2, 25.2, 20.3, 16.4. Minor isomer (β): ¹**H** NMR (400 MHz, Chloroform-d) δ 7.37-7.35 (m, 1H), 6.82-6.80 (m, 1H), 4.15-4.13 (m, 1H), 4.00-3.98 (m, 1H), 3.95 (s, 3H), 3.89-3.87 (m, 1H), 3.68-3.59 (m, 1H), 3.29-3.22 (m, 1H), 2.80-2.75 (m, 1H), 2.60 (s, 3H), 2.34 (s, 3H), 2.27-2.21 (m, 1H). ¹³**C** NMR (101 MHz, Chloroform-d) δ 160.5, 143.3, 136.5, 134.0, 132.3, 125.0, 119.3, 115.8, 56.6, 50.4, 48.4, 40.3, 25.3, 20.5, 19.5. HRMS(m/z)(ESI): calcd for C₁₄H₁₈N₂O₅S₂Na⁺ [M+Na]⁺ 381.0550, found 381.0557.

methyl 5-methoxy-2-phenylpent-2-ene-1-sulfonate (6c). colourless liquid (28%,).¹H NMR (400 MHz, Chloroform-d) δ 7.41-7.33 (m, 4H), 7.30-7.26 (m, 1H), 6.20-6.17 (m, 1H), 4.37 (s, 2H), 3.65 (s, 3H), 3.56-3.52 (m, 2H), 3.36 (s, 3H), 2.66-2.61 (m, 2H). ¹³C NMR (101 MHz, Chloroform-d) δ 140.7, 135.2, 128.9, 128.6, 127.7, 126.5, 71.5, 58.8, 56.1, 51.5, 30.1. HRMS(m/z)(ESI): calcd for $C_{13}H_{18}O_4SNa^+$ [M+Na]⁺ 293.0818, found 293.0820.

3,7-dimethyl-2,3-dihydro-1*H***-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine 5,5-dioxide** (4a). white solid (76%). m.p. 100.1-102.6 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.79 (m, 1H), 7.42-7.39 (m, 1H), 6.96-6.94 (m, 1H), 4.10-4.05 (m, 1H), 3.95-3.89 (m, 1H), 3.19-3.13 (m, 1H), 2.55-2.50 (m, 1H), 2.42 (s, 3H), 1.94-1.98 (m, 1H), 1.40 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.0, 136.9, 133.9, 132.5, 125.0, 121.6, 114.8, 47.8, 39.8, 27.3, 21.0, 16.6. HRMS(m/z)(ESI): calcd for C₁₂H₁₅N₂O₂S⁺ [M+H]⁺ 251.0849, found 251.0852.

7-ethyl-3-methyl-2,3-dihydro-1*H***-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine5,5dioxide (4b).** white solid (68%). m.p. 101.1-101.6 °C. ¹H NMR (400 MHz, Chloroform-d)

δ 7.85-7.84 m, 1H), 7.46-7.43 (m, 1H), 6.99-6.97 (m, 1H), 4.10-4.06 (m, 1H), 3.94-3.89 (m, 1H), 3.21-3.14 (m, 1H), 2.73 (q, *J* = 7.6 Hz, 2H), 2.57-2.49 (m, 1H), 1.95-1.89 (m, 1H), 1.42 (d, *J* = 7.0 Hz, 3H), 1.27 (t, *J* = 2.6 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.0, 143.2, 132.8, 132.7, 123.9, 121.7, 114.8, 47.7, 39.8, 28.4, 27.3, 16.6, 15.1. HRMS(m/z)(ESI): calcd for C₁₃H₁₇N₂O₂S⁺ [M+H]⁺ 265.1006, found 265.1010.

7-isopropyl-3-methyl-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazine5,5-dioxide (4c). white solid (70%). m.p. 100.9-101.1 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.80 (m, 1H), 7.43-7.40 (m, 1H), 6.93-6.91 (m, 1H), 4.04 -3.99 (m, 1H), 3.89-3.82 (m, 1H), 3.13-3.07 (m, 1H), 2.96-2.89 (m, 1H), 2.48-2.43 (m, 1H), 1.88-1.82 (m, 1H), 1.35 (d, J = 7.0 Hz, 3H), 1.20 (d, J = 6.9 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.0, 147.9, 132.8, 131.5, 122.6, 121.7, 114.8, 47.7, 39.8, 33.9, 27.3, 23.7, 16.6. HRMS(m/z)(ESI): calcd for C₁₄H₁₉N₂O₂S⁺ [M+H]⁺ 279.1162, found 279.1166.

7-(tert-butyl)-3-methyl-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazine5,5-dioxide (4d). white solid (76%). m.p. 101.2-101.5 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.99 (m, 1H), 7.66-7.63 (m, 1H), 7.01-6.99 (m, 1H), 4.11-4.06 (m, 1H), 3.95-3.89 (m, 1H), 3.20-3.13 (m, 1H), 2.55-2.50 (m, 1H), 1.94-1.89 (m, 1H), 1.41 (d, J = 7.0 Hz, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.1, 150.3, 132.5, 130.6, 121.4, 114.6, 47.7, 39.8, 35.1, 31.1, 27.3, 16.6. HRMS(m/z)(ESI): calcd for C₁₅H₂₁N₂O₂S₊ [M+H]⁺ 293.1124, found 293.1121.

7-fluoro-3-methyl-2,3-dihydro-1*H*-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine5,5dioxide (4e). white solid (59%). m.p. 100.4-100.5 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.69-7.66 (m, 1H), 7.37-7.32 (m, 1H), 7.09-7.06 (m, 1H), 4.13-4.07 (m, 1H), 3.99-3.92 (m, 1H), 3.22-3.16 (m, 1H), 2.57-2.52 (m, 1H), 1.96 -1.91 (m, 1H), 1.42 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (151 MHz, Chloroform-d) δ 165.3, 159.9 (d, *J* = 241.6 Hz), 131.3, 123.1 (d, *J* = 15.1 Hz), 120.8 (d, *J* = 30.2 Hz), 117.1 (d, *J* = 15.1 Hz), 111.9, (d, *J* = 30.2 Hz), 48.0, 39.8, 27.1, 16.5. ¹⁹**F NMR** (376 MHz, Chloroform-d) δ - 111.79. **HRMS**(m/z)(ESI): calcd for C₁₁H₁₁NaFN₂O₂S⁺ [M+Na]⁺ 277.0418, found 3277.0420.

3-methyl-2,3-dihydro-1*H***-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine 5,5-dioxide (4f).** white solid (56%). m.p. 103.2-103.5 °C. ¹H NMR (400 MHz, Chloroform-d) δ 8.02-8.00 (m, 1H), 7.63-7.61 (m, 1H), 7.47-7.45 (m, 1H), 7.07-7.05 (m, 1H), 4.13-4.08 (m, 1H), 3.98-3.91 (m, 1H), 3.22-3.14(m, 1H), 2.59-2.51 (m, 1H), 1.99-1.89 (m, 1H), 1.43 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.3, 134.8, 133.0, 126.5, 125.3, 121.9, 114.7, 47.8, 39.9, 27.3, 16.5. HRMS(m/z)(ESI): calcd for C₁₁H₁₃N₂O₂S⁺ [M+H]⁺ 237.0693, found 237.0695.

7-butoxy-3-methyl-2,3-dihydro-1*H***-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine5,5-dioxide (4g).** white solid (72%). m.p. 100.0-100.5 °C. ¹H NMR (400 MHz, Chloroform-d) δ 7.42 (m, 1H), 7.17-7.14 (m, 1H), 7.01-6.99 (m, 1H), 4.11-4.05 (m, 1H), 4.04-4.00 (m, 2H), 3.96-3.90 (m, 1H), 3.20-3.14 (m, 1H), 2.57-2.49 (m, 1H), 1.93-1.88 (m, 1H), 1.82-1.74 (m, 2H), 1.52-1.46 (m, 2H), 1.41 (d, *J* = 7.0 Hz, 3H), 0.98 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 164.6, 157.4, 128.2, 122.5, 121.8, 116.6, 107.4, 68.6, 47.9, 39.7, 31.0, 27.2, 19.1, 16.6, 13.8. HRMS(m/z)(ESI): calcd for C₁₅H₂₁N₂O₃S⁺ [M+H]⁺ 309.1268, found 309.1266.

3,6,8-trimethyl-2,3-dihydro-1*H***-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine5,5dioxide (4h).** white solid (72%). m.p. 101.2-101.3 °C. ¹H NMR (400 MHz, Chloroform-d)

δ 7.00 (m, 1H), 6.67 (m, 1H), 4.08-4.02 (m, 1H), 3.93-3.87 (m, 1H), 3.16-3.12 (m, 1H), 2.71 (s, 3H), 2.54-2.46 (m, 1H), 2.37 (s, 3H), 1.90-1.84 (m, 1H), 1.39 (d, *J* = 7.0 Hz,

3H). ¹³C **NMR** (101 MHz, Chloroform-d) δ 163.5, 142.9, 137.8, 135.1, 130.2, 118.2, 113.1, 48.1, 39.7, 27.2, 21.7, 19.9, 16.5. **HRMS**(m/z)(ESI): calcd for C₁₃H₁₇N₂O₂S⁺ [M+H]⁺ 265.1006, found 265.1010.

a:3,8-dimethyl-2,3-dihydro-1*H*-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine5,5-dioxide,β:3,6-dimethyl-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazine5,5-dioxide (4i). white solid (78%). m.p. 101.3-101.6 °C. Major isomer (α):¹H NMR (400 MHz, Chloroform-d) δ 7.85-7.83 (m, 1H), 6.89-6.87 (m, 1H), 6.84 (m, 1H), 4.10-4.05 (m, 1H), 3.96-3.88 (m, 1H), 3.20-3.13 (m, 1H), 2.56-2.46 (m, 1H), 2.45 (s, 3H), 1.93 -1.87 (m, 1H), 1.40 (d, J = 3.7 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 163.6, 138.1, 134.8, 129.3, 125.1, 119.2, 112.8, 47.7, 39.8, 27.2, 20.0, 16.5. Minor isomer (β): ¹H NMR (400 MHz, Chloroform-d) δ 7.48-7.44 (m, 1H), 7.24-7.19 (m, 2H), 4.10-4.05 (m, 1H), 3.96-3.88 (m, 1H), 3.20-3.13 (m, 1H), 2.76 (s, 3H), 2.56-2.46 (m, 1H), 1.93 -1.87 (m, 1H), 1.41 (d, J = 3.8 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 165.2, 144.0, 135.1, 132.2, 127.4, 119.2, 115.0, 48.2, 39.8, 27.3, 22.0, 16.5. HRMS(m/z)(ESI): calcd for C₁₂H₁₇N₂O₅S₂⁺ [M+H]⁺ 345.0574, found 345.0575.

α:8-ethyl-3-methyl-2,3-dihydro-1*H*-benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine5,5-dioxide,β:6-ethyl-3-methyl-2,3-dihydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazine 5,5-dioxide (4j). white solid (67%). m.p. 102.3-102.6 °C. Major isomer (α):¹H NMR (400 MHz, Chloroform-d) δ 7.92-7.91 (m, 1H), 6.89-6.87 (m, 1H), 6.85 (m, 1H), 4.10-4.07 (m, 1H), 3.95-3.91 (m, 1H), 3.18-3.14 (m, 2H), 2.77 -2.71 (m, 1H), 2.26-2.19 (m, 1H), 1.95-1.87 (m, 1H), 1.42 (d, J = 7.0 Hz, 3H), 1.27 (t, J = 8.0 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 163.6, 138.1, 134.8, 129.3, 125.1, 119.2, 112.8, 47.7, 39.8, 27.2, 20.0, 16.5. Minor isomer (β): ¹H NMR (400 MHz, Chloroform-d) δ 7.54-7.50 (m, 1H), 7.30-7.29 (m, 1H), 6.89-6.87 (m, 1H), 4.10-4.07 (m, 1H), 3.95-3.91 (m, 1H), 3.25-3.20 (m, 2H), 2.77 -2.71 (m, 1H), 2.26-2.19 (m, 1H), 1.95-1.87 (m, 1H), 1.42 (d, J = 7.0 Hz, 3H), 1.36 (t, J = 8.0 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 165.2, 144.0, 135.1, 132.2, 127.4, 119.2, 115.0, 48.2, 39.8, 27.3, 22.0, 16.5. HRMS(m/z)(ESI): calcd for C₁₃H₁₇N₂O₂S⁺ [M+H]⁺ 265.1006, found 265.1008.

benzo[e]pyrrolo[2,1-c][1,2,4]thiadiazine 5,5-dioxide (4j). white solid (68%). m.p. 101.2-101.9 °C. Major isomer (α):¹**H NMR** (400 MHz, Chloroform-d) δ 7.93-7.91 (m, 1H), 7.33-7.31 (m, 1H), 6.86 (m, 1H), 4.14-4.09 (m, 1H), 3.99-3.92 (m, 1H), 3.18-3.16 (m, 1H), 3.01-2.98 (m, 1H), 2.28-2.19 (m, 1H), 1.95-1.89 (m, 1H), 1.42 (d, J = 7.0 Hz, 3H), 1.34 (d, J = 6.3 Hz, 1H), 1.28 (d, J = 6.9 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-d) δ 165.2, 154.8, 134.9, 125.3, 125.0, 119.5, 112.5, 47.7, 39.8, 34.6, 27.3, 23.7, 16.6. **HRMS**(m/z)(ESI): calcd for C₁₄H₁₉N₂O₂S⁺ [M+H]⁺ 279.1162, found 279.1160.

3a-ethyl-3,7-dimethyl-2,3,3a,4-tetrahydro-1*H*-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazine 5,5-dioxide (7d). colorless liquid (68%). ¹H NMR (400 MHz, Chloroform-d) δ 7.68-7.67 (m, 1H), 7.43-7.40 (m, 1H), 6.57-6.55 (m, 1H), 3.43-3.40 (m, 1H), 2.55-2.51 (m, 1H), 2.40-2.27 (m, 2H), 1.75-1.70 (m, 1H), 1.29 (s, 9H), 1.25-1.22 (m, 2H), 1.07 (d, J = 7.1 Hz, 3H), 1.03-0.98 (m, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 139.8, 138.8, 131.2, 121.0, 120.0, 114.3, 81.8, 45.1, 38.7, 34.1, 31.2, 29.4, 27.7, 14.9, 9.0 . HRMS(m/z)(ESI): calcd for C₁₇H₂₆N₂NaO₂S⁺ [M+Na]⁺ 345.1608, found 345.1613.

3a-ethyl-3,6,8-trimethyl-2,3,3a,4-tetrahydro-1H-benzo[e]pyrrolo[2,1-

c][1,2,4]thiadiazine 5,5-dioxide (8h). white solid (72%). ¹H NMR (500 MHz, Chloroform-d) δ 6.45 (s, 1H), 6.26 (s, 1H), 4.66-4.62 (m, 1H), 4.28-4.25 (m, 1H), 3.50-3.45 (m, 1H), 3.43-3.39 (m, 1H), 2.64 (s, 3H), 2.30 (s, 3H), 2.18-2.12 (m, 1H), 1.76-1.69 (m, 1H), 1.29 (d, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 143.3, 142.4, 137.3, 120.9, 117.7, 111.0, 75.4, 45.5, 40.4, 29.7, 21.8, 20.3, 15.6. HRMS(m/z)(ESI): calcd for C₁₃H₁₉N₂O₂S⁺ [M+H]⁺ 267.1162, found 267.1165.

10. Copies of the NMR spectra

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$\begin{array}{c} 7.7 \\ 7.4 \\ 7.4 \\ 7.4 \\ 7.4 \\ 6.9 \\ 8.9 \\ 3.3 \\$

--110.98

7.121 7.

-7.71 -7.735 -7.735 -7.735 -6.81 -7.82 -7.32 -7.331 -7.341 -7.2551 -7.7551 -7.7551 -7.7551 -7.7551 -7.5551 -7.7551 -7.

11. References

[1] D. Chen, M. Ji, C. Zhu, Chem. Commun., 2019, 55, 7796-7799.
[2] Z. Li, L. Jiao, Y. Sun, Z. He, Z. Wei, W. W. Liao, Angew. Chem. Int. Ed., 2020, 59,

7266-7270.

[3] Y. H. Sun, C. J. Li, J. M. Xi, Z. L. Wei, W. W. Liao, Org. Chem. Front., 2023, 10, 705-711.

[4] Y. Peng, M. Cai, Z. Zhang, S. Shu, X. Shi, J. T. Brosnahan, C. Liu, Y. Zhang, P.

Godbold, X. Zhang, F. Dong, G. Jiang, S. Zhang, ACS Catal., 2019, 9, 10803-10811.