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Materials and Methods

General

Commercial reagents, standards, and solvents were purchased from
Sigma-Aldrich (Shanghai, China), Meryer Chemicals (Shanghai, China),
Aladdin Reagents (Shanghai, China), Macklin Reagent (Shanghai, China), and

Bide Chemicals (Shanghai, China) used without further purification.

Strains and plasmids

E. coli DH5a and E. coli BL21 (DE3) were used as hosts for gene cloning
and protein expression, respectively. The genes encoding the candidate
alcohol dehydrogenases (ADHs) were chemically synthesized and ligated to
plasmid pET-28a(+) by Talen-bio (Shanghai, China). The genes encoding
glutamate dehydrogenase from Saccharomyces cerevisiae (ScGluDH, UniProt
ID: P07262) and single mutant (F91Y) of transaminase from Escherichia coli
(EcPaTAR"Y, UniProt ID: P42588) were reserved by our Lab. Details of strains

and plasmids used in this study were summarized in Table S5.

Construction of recombinant E. coli cells

DNA fragments of enzyme genes and the linear plasmid backbone were
amplified by PCR using primers with 15 to 20 bp homologous arms that enabled
the subsequent recombination. Full length of enzyme genes was assembled
via overlap PCR and cloned into linear vector in the presence of 5 x CE |l Buffer

and Exnase Il (Vazyme Biotech Co., Ltd., Nanjing, China) to generate 15 bp or
1
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20 bp sticky ends to promote recombination efficiency. Reaction mixtures were
10 pL containing linear vector, enzyme genes, 5 x CE |l Buffer and Exnase II,
incubated in 37 °C for 30 min, followed by addition of 100 uL competent cells
(E. coli DH5a) for transformation and plating on LB agar containing appropriate
antibiotics. Resulting transformants were picked and DNA sequenced for
confirmation. Plasmids containing targeted enzyme genes were transformed
into E. coli BL21 cells for protein expression and whole-cell biocatalyst
preparation. The detailed information of the strain and plasmids, primers and

synthetic gene sequences were listed in Tables S5-S6.

Enzyme expression and preparation of whole-cell catalysts

Constructed E. coli cells were inoculated into 5 mL LB medium containing
appropriate antibiotics (50 ug mL=' kanamycin, 100 ug mL~" ampicillin, 33 ug
mL~" chloramphenicol, 50 uyg mL~" streptomycin), and cultured at 37 °C, 220
rpm for 8 h. Precultures (3 mL) were transferred into 150 mL TB medium with
appropriate antibiotics in 500 mL shaking flasks and cultured at 37 °C, 220 rpm
for 2~3 h until the ODgg reached 0.8~1.0, then IPTG was added to give a final
concentration of 0.4 mM. The temperature was shifted to 25 °C for 14h for
protein expression (EcADH protein, the induction temperature was 16 °C for
18h). The cells were harvested by centrifugation at 8000 x g, 4 °C for 10 min,
washed with 50 mM 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid buffer
(HEPES, pH 8.0), then Centrifuge at 8000 x g for 10 minutes at 4 °C.

Subsequently, collect the sedimented cells, which will either be used to obtain
2
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purified enzymes or act as whole-cell biocatalysts in the following reactions.

Enzyme purification and kinetic assay

The cells were lysed using a high-pressure homogenizer. The resulting
crude lysate was centrifuged at 10,000 x g at 4 °C for 30 min. The supernatant
was collected, and the protein containing the His-tag was captured using a Ni-
NTA Superflow resin for 30 min and then released using an elution buffer (20
mM Tris-HCl at pH 8.0, 0.3 M NaCl, and 0.5 M imidazole). Protein concentration
was determined using a bicinchoninic acid protein assay kit (Solarbio, China),
and purity was determined using sodium dodecyl-sulfate polyacrylamide gel
electrophoresis.

The kinetic parameters of ADHs were monitored by following UV
absorption at a wavelength of 340 nm using a microplate reader (Synergy HT,
BioTek, VT, USA). The assay mixture, which contained 1~200 mM 1a or 2a,
0.1 mM Zn?*, and 2 mM NADP* in 50 mM HEPES buffer (pH 9.0), was
incubated at 40 °C for 20 min. Then, 2 yM ADHs were added, and the change
in the absorbance at 340 nm was immediately recorded. The concentrations of
NADPH were quantified by continuously recording the changing of the
absorbance at 340 nm (¢ = 6.22 mM~' cm™"). One unit of enzyme activity is the

amount of enzyme required to convert 1 yM of NADP* into NADPH in 1 min.

In vitro reaction

Mixture preparation: purified ECADH, ScGluDH, and EcPaTAF'Y enzymes
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were mixed at equimolar concentrations (20 uM) and incubated with 5 g/L of
substrate 1a, 20 mM L-Glu, 50 mM HEPES, 100 mM ammonium formate, 0.5
mM PLP, 1 mM NADP+, and 0.5 mM Zn?* at pH 9.0. A 5 mL reaction mixture
was placed in a 20 mL brown, light-protected vial. The vial was shaken at 220
rom and incubated at 37 °C for 6 h. After completion, 1 mL of the reaction
solution was transferred to a 2 mL Eppendorf tube. The reaction was terminated
by heating the sample in boiling water for 10 min, then centrifuged at 12,000 x
g for 10 min, and the supernatant was collected for HPLC analysis. All

experiments were performed in triplicate.

Converting 1a by whole-cell catalysts

Mixture preparation: constructed E. coli cells expressing enzymes of
EcADH (wild type or mutant), ScGluDH and EcPaTAF"Y (wild type or mutant)
were reacted with 10~30 g/L 1a, 20 mM L-Glu, 100 mM HEPES, 200~500 mM
ammonium formate, 0.5 mM PLP, 2 mM NADP*, and 0.5 mM Co?* at pH 9.0,
final cell density was 12 g CDWI/L. A 5 mL reaction mixture was placed in a 20
mL light-protected vial. The vial was shaken at 220 rpm and incubated at 40 °C
for 24 h. Then, samples were prepared for HPLC analysis to determine the titers

of 2a and 2c. All experiments were performed in triplicate.

Converting a~p by whole-cell catalysts.

Mixture preparation: E. coli C03 expressing enzymes of EcADHM

ScGIluDH and EcPaTAY4 was reacted with 50 mM a~p, 20 mM L-Glu, 100 mM
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HEPES, 200 mM ammonium formate, 0.5 mM PLP, 1 mM NADP*, and 0.5 mM
Co?" at pH 9.0, final cell density was 12 g CDW/L. A 5 mL reaction mixture was
placed in a 20 mL light-protected vial. The vial was shaken at 220 rpm and
incubated at 40 °C for 24 h. Then, samples were prepared for HPLC analysis

to determine the titers of 3a~3p. All experiments were performed in triplicate.

Mutagenesis experiments

The experiments about protein engineering were performed using the
whole-plasmid PCR with KOD-Plus-Neo. The whole plasmid PCR system (50
pL) was composed of KOD DNA polymerase (1 yL), 10 x KOD PCR Buffer (5
pL), 2 mM dNTP mix (5 pL), 256 mM MgSO4 (3 uL), template (50-200 ng),
corresponding primers (10 yM with 1 pL), and sterilized water. The PCR
product was digested with the Dpnl quick-cutting enzyme at 37 °C for 30-45
min. The PCR products were transformed into E. coli BL21 (DE3) cells for the
following screening or DNA sequencing (GENEWIZ, China). The mutant
libraries of ECADH were shown in Tables S5-S7. Mutant library of EcPaTA was
shown in Table S8. The screening of mutants was carried out through whole-
cell transformation experiments with 1a as the substrate. The titer of 2¢c was
detected by HPLC to determine the mutants. The relative activity of a mutant
was calculated as the titer of 2c of the mutant divided by the titer of 2c of the

template strain.
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HPLC analysis

The samples were filtered through a 0.22 um organic membrane, and then
the titer of product amines were determined via HPLC using a Dionex UltiMate
3000 VWD detector (Thermo Fischer Scientific, Germany), an Agilent Zorbax
SB-Aq column (4.6 x 150 mm; Agilent Technologies, USA), and an UV detector
(Thermo Fischer Scientific, Germany) under the following conditions: detection
wavelength: 264 nm, automatic precolumn derivatization with o-phthalaldehyde
(OPA), sample injection volume of 8 uL, sample mixed with 4 uL of OPA, a flow
rate of 1 mL/min, and phase A consisted of a 10 mM K,HPO, buffer, with the
pH adjusted to 7.3 using formic acid. Mobile phase B consisting of phase A,
methanol, and acetonitrile at 1:3:5 (v/v/v). The ratios between the phase A and
phase B are 0 min (60:40), 2 min (45:55), 15 min (10:90), 19 min (10:90), 22
min (60:40) and 25 min (60:40). The statistical analysis software is Chromeleon

7.2, and the graphing software is OriginPro 2022.

MS analysis
Amines were determined by MS. The analytical conditions of MS were as
follows: ionic mode is ESI*, capillary voltage: 3.5 kV, cone voltage: 30 V, source

block temperature: 100 °C, desolvation temperature: 400 °C, desolvation gas
flow: 700 lit/h, cone gas flow: 50 lit/h, collision energy: 6/20 V, mass range: 20—
1000 m/z, detector voltage: 1800 V. We used WATERS MALDI SYNAPT Q-
TOF MS to complete the detection. The statistical analysis and graphing

software are MassLynx V4.1.
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Initial structure preparation

The EcADH structure was obtained from the RCSB Protein Data Bank
(PDB ID: 7BU3), and the ligands ASP, GOL, and PEG were removed, chain B
was selected as the single-chain structure. Due to the fact that the first amino
acid residue of the B-chain of 7BU3 is Met 3, the sequence numbers of all amino
acid residues were decreased by 2 to be consistent with the residue sequence
numbers of EcCADH. The EcCADHM’ structure was obtained from the prediction
of alphafold2. The protonation states of charged residues were determined at
constant pH 9.0 based on pKa calculations via the H++
(http://biophysics.cs.vt.edu/H++) tool and the consideration of the local
hydrogen bonding network. Residues H40, H162, H180 and H257 were
assigned as HID, and H61, H96, H163, H187, H321 was assigned as HIE. All
lysine and arginine residues were protonated, glutamic acid and aspartic acid
residues were deprotonated. Residues C39 and C150 are coordinated with the
catalytic Zn, so they are assigned as CYM. Similarly, C94, C97, C100 and C107
are coordinated with the binding Zn and are also assigned as CYM.

The prepared protein was neutralized by adding counterions and solvated
into a truncated octahedron TIP3P' water box with a 10 A buffer distance on
each side. After equilibrated with a series of minimizations interspersed by short
MD simulations during which restrains on the protein backbone heavy atoms
were gradually released (with force constant of 10, 2, 0.1 and 0 kcal/(mol-A2)),

the system was gradually heated up to 313K in 50 ps in which harmonic

7
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potentials were used to positionally restrain the protein backbone heavy atoms
(with force constant of 10 kcal/(mol-A2)), and finally the standard unrestrained
MD simulation with periodic boundary condition at 313K and 1 atm was carried

out for up to 100 ns.

Molecular docking

In the equilibrium trajectories of EcCADH and EcADHM” models, 2000
snapshots were selected and divided into 10 groups using a hierarchical
agglomerative (bottom-up) approach?. Then, the structure of 2a was fully
optimized at the B3LYP/6-31G(d) level using the Gaussian 16 packages.
Molecular docking was conducted using the Lamarckian genetic algorithm local
search method implemented in AutoDock 4.2 and AutoDockTools-1.5.64. The
docking procedure was performed with a rigid-receptor conformation. A total of
100 independent docking runs were performed. Finally, appropriate
conformations were selected as the binding conformations for the EcADH-2a

MD simulations.

Molecular dynamic simulations.

All MD simulations were performed using AMBER 185. The partial charges
of 2a were fitted with HF/6-31G(d) calculations, and the restrained electrostatic
potential® protocol was implemented by the Antechamber module in the Amber
18 package. The force field parameter for 2a were adapted from that of the

standard general amber force field 2.0 (gaff2)’, whereas the standard
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Amber14SB force field was applied to describe the protein. Each system was
initially neutralized with counterions and solvated with explicit TIP3P! water in
a truncated octahedron box with a 10 A buffer distance on each side. Each
system was then equilibrated with a series of minimizations interspersed by
short MD simulations during which restraints on the protein backbone heavy
atoms were gradually released [with force constants of 10, 2, 0.1, and 0
kcal/(mol-A2)] and heated slowly from 0 to 313 K for 50 ps during which we
applied a 10 kcal/(mol-A2) restraint on the protein backbone heavy atoms.
Finally, the standard unrestrained 100 ns MD simulations was performed at
constant temperature and pressure. Pressure was maintained at 1 atm and
coupled with isotropic position scaling. The temperature was controlled at 313
K via the Berendsen thermostat method. Long-range electrostatic interactions
were treated with the particle mesh Ewald® method and 12 A cutoff was applied
to both particle mesh Ewald and van der Waals interactions. A time step of 2 fs
was employed along with the SHAKE algorithm for hydrogen atoms, and a
periodic boundary condition was used. Atomic positions were stored every 2 ps
for further analysis. Each system was checked for stability (structure, energy,
and temperature fluctuations) and convergence (root-mean-square deviations,

RMSD of structures).



243 Supplementary Tables

244 Table S1. Comparison of the production performance of primary diamines by this study with those in relevant literatures.

Target product Substrate Catalytic Titer Conversion Productivity Reaction Catalyst Ref
approach (g/L) (%) (g/(L-h)) time dosage
(h) (9cowl/L)
Aliphatic 1,3-Diaminopropane 1,3-Propanediol Whole-cell 0.15 4 0.006 24 12 This study
primary Glucose Microbial 13 NA 0.19 69 NA Leeetal. ®
diamines fermentation (2015)
1,4-Diaminobutane 1,4-Butanediol Whole-cell 2.7 62 0.11 24 12 This study
Glucose Microbial 42 52¢ 1.3 34 NA Lee etal. 10
fermentation (2017)
1,5-Diaminopentane 1,5-Pentanediol Whole-cell 3.6 71 0.15 24 12 This study
Glucose Microbial 104 53¢ 1.47 65 NA Joo et al. "
fermentation (2018)
1,6-Diaminohexane 1,6-Hexanediol Whole-cell 5.2 90 0.22 24 12 This study
L-lysine Microbial 0.21 65 0.006 36 NA Wang et al. 2
fermentation (2024)
Cyclohexanol Whole-cell 0.49 42 NA NA 69 Yun et al. 3
(2022)
Cyclohexanol Whole-cell 1.7 73 0.07 24 24 Lietal ™
(2023)
1,7-Diaminoheptane 1,7-Heptanediol Whole-cell 5.5 84 0.23 24 12 This study
Cycloheptanol Whole-cell 0.46 35 NA NA 69 Yun et al. 13
(2022)
Cycloheptanol Whole-cell 1.6 81 0.066 24 24 Lietal. '
(2023)

245

10



246 Table S1 (Continued) Comparison of the production performance of primary diamines in this study with relevant literature.

Target product Substrate Catalytic Titer  Conversion Productivity Reaction Catalyst Ref
approach  (g/L) (%) (g/(L-h)) time dosage
(h) (gcowlL)
Aliphatic 1,8-Diaminooctane 1,8-Octanediol Whole-cell 6.3 87 0.26 24 12 This study
primary Cyclooctanol Whole-cell 0.32 22 NA NA 69 Yun etal. 13
diamines (2022)
Cyclooctanol Whole-cell 1.7 79 0.071 24 24 Lietal. 14
(2023)
n-Octane Whole-cell 0.50 35 0.008 48 NA Yun et al. 1%
(2024)
1,9-Diaminononane 1,9-Nonanediol Whole-cell 6.2 78 0.26 24 12 This study
1,9-Nonanediol Whole-cell 1.3 81 0.21 6 10.8 Park et al. 16
(2024)
1,4- 1,4- Whole-cell 23 77 0.95 24 12 This study
Bis(aminomethyl)cyclohex Cyclohexanedimethanol
ane
Aromatic p-Xylylenediamine p-Phenylenedimethanol  Whole-Cell 4.3 63 0.18 24 12 This study
primary Terephthalic acid Purified 1.3 39 0.054 24 NA Kunjapur et
diamines enzyme al. 7 (2023)
m-Xylylenediamine m-Phenylenedimethanol  Whole-Cell 3.5 51 0.147 24 12 This study
Heterocycli  2,5-Bis(aminomethyl)furan 2,5-Furandimethanol Whole-Cell 1.1 17 0.044 24 12 This study
c primary 5-Hydroxymethylfurfural ~ Purified 10.7 85 0.36 30 NA Yun et al. 18
diamines enzyme (2024)

247 c : Calculated based on the yield g/g glucose. NA means no available data.
248

11



249 Table S2. Substrate and product pricesa

Brand Count 1,6- 1,4- L- Cyclo 1,6- p- Terepht Terepht p- 2,5- 5- 2,5-
ry Hexanedi Dicyan Ilysine hexan Diamino Phenylene halonitr halic Xylylene Furandi hydroxym Bis(aminom
ol obutan (£/kg) ol hexane dimethano ile acid diamine methano ethylfurfur ethyl)furan
(E/kg) e (E/kg) (£/kg) | (£/kg) (E/kg) (£/kg) | al (E/kg)
(£/kg) (E/kg) (E/kg) (E/kg)
Thermo United 45.9 68.3 NA 35.4 102.8 NA NA 44 1 NA NA NA NA
Fisher States
Scientific
Accel Spain  10.1 NA 27 9.3 NA 571 35.3 54 NA 919 NA NA
Scientific
Aurum United 16.9 64 61.7 40.9 115 74.2 65.7 9.6 829 1227 NA 7319
Pharmatec States
h
Adamas China 6.74 19.2 26.7 6.6 17.1 59.9 22.5 6.0 1872 924 104 9150
Energy China NA 13 24.2 6.5 20.8 NA 21.8 5.2 828 993 151 8603
Chemical
Meryer China 13.9 23.5 NA 5 41.2 77.8 22.9 6.7 1846 1006 414 NA
Aladdin China 19.3 22.3 29.2 4.2 18.4 78.8 29.8 6.7 2184 1085 162 NA
Macklin China 13.9 23.8 30.6 5.4 411 67.0 22.9 6.7 1070 982 171 12480
Average price 18.1 33.4 33.2 14.2 50.9 69.1 31.6 11.3 1438 1019 200 9388

250 a: The price was obtained from Scifinder and ChemSpider. NA means no available data.

251
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252 Table S3. Comparison of cost-effectiveness of our method with reported processes.

253
254

Target product and Substrate substrate cost* Reaction conditions Solvent Titer Conversion Ref
its price. £/(kg product) (temperature, g/L %
pressure).
Aliphatic primary 1,6-Hexanediol 18.4 40 °C Water 5.5 90 This study
diamines : 0.1 Mpa
1,6-Diaminohexane 1,4-Dicyanobutane 31.1 100 °C Ethanol NA 85 Liang et al '°
50.9 £/kg 5 Mpa (2024)
L-lysine 41.8 37°C Water 021 65 Wang et al. 2
0.1 Mpa (2024)
Cyclohexanol 12.2 25°C Water 1.68 73 Li et al. © (2023)
0.1 Mpa
Aromatic primary p- 70.2 40 °C Water 4.3 63 This study
diamines : Phenylenedimethanol 0.1 Mpa
p-Xylylenediamine Terephthalonitrile 29.7 70 °C Toluene NA 97~99 Patent 20
1438 £/kg 5 Mpa
Terephthalic acid 13.8 30°C Water with 1.3 39 Kunjapur et al. 17
0.1 Mpa 5% (vIv) (2023)
DMSO
Heterocyclic primary 2,5-Furandimethanol  1035.6 40 °C water 1.05 17 This study
diamines: 0.1 Mpa
2,5- 5- 200.4 20~37 °C Water with 10.7 85 Yunetal. 18
Bis(aminomethyl)furan  hydroxymethylfurfural 0.1 Mpa 10% (viv) (2024)
9388 £/kg DMSO

13

*: Calculate the substrate cost per kilogram of product based on 100% conversion yield. NA means no available data.



255 Table S4. Candidate ADHs.

1a 2a
Uniprot
Enzyme Sources o K k. k_ /K. K_ k. k_IK_
[mM] [min-] [min-"-mM-1] [mM] [min-] [min-"-mM-1]
EcADH Escherichia coli. P27250(*) 7.310.5  262.0t4.2 36.2 14.312.6 42.240.1 3.0
SynADH Synechocystis sp. PCC 6803 P74721 7.312.2 89.417.8 12.6 11.2+2.7 8.1£0.1 0.7
GtADH Geobacillus thermodenitrificans A41SB9 6.3+0.4 60.6+4.8 9.6 7.4+0.3 18.610.1 29
PpADH Pelophylax perezi. 057380 6.6£0.7 44.2+1.2 6.6 3.9+0.8 3.31£0.1 0.8
AciADH Acinetobacter sp. NCIMB9871 Q9F7D8 19.3+4.7 6.8+0.4 0.4 n.d.
AaADH Aedes aegypti. D2WKD9 n.d. n.d.
HeADH Halomonas elongata. E1V3M3 n.d. n.d.
AcADH Acinetobacter calcoaceticus Q59096 n.d. n.d.

256 P27250™): The amino acid sequence of ECADH is obtained by truncating the Met1 and Ser2 residues at the N-terminus of the sequence based on P27250. Data

257 represent the mean £ SD from three replicates. n.d. means not detected.

14
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259

Table S5. Plasmids and strains.

Plasmid Description Source
pET-28a(+) single T7 promoters, pBR322 ori, KanR Novagen
pRSFDuet-1 Double T7 promoters, RSF ori, KanR Novagen
pETDuet-1 Double T7 promoters, pBR322 ori, AmpR Novagen
pCDFDuet-1 Double T7 promoters, CDF13 ori, StrR Novagen
pACYCDuet-1 Double T7 promoters, p15A ori, CmR Novagen
Strain Description source
E. coliBL21 F—ompT gal dcm lon hsdSB (rB— mB-) A(DES3 [lacl lacUV5-
Invitrogen
(DE3) T7 gene 1 ind1 sam7 nin5])
E. coli AO1 pACYCDuet-1 carrying ScGluDH and EcADH This study
E. coli AO2 pACYCDuet-1 carrying ScGluDH and EcCADHM7 This study
E. coli BO1 pET-28a(+) carrying EcPaTAF91Y This study
E. coli B02 pET-28a(+) carrying EcPaTAW4 This study
pACYCDuet-1 carrying ScGIuDH and EcADHM? pET-
E. coli CO1 This study
28a(+) carrying EcPaTAW4
pRSFDuet-1 carrying EcPaTAW4(MCS-1) and
E. coli C02 This study
EcADHM7(MCS-2), pACYCDuet-1 carrying ScGluDH
pRSFDuet-1 carrying EcPaTAW4(MCS-2) and
E. coli C03 This study
EcADHM7(MCS-1), pACYCDuet-1 carrying ScGluDH
pETDuet-1 carrying EcPaTAW4(MCS-1) and
E. coli C04 This study
EcADHM7(MCS-2), pACYCDuet-1 carrying ScGluDH
pETDuet-1 carrying EcPaTAW4(MCS-2) and
E. coli C05 This study
EcADHM7(MCS-1), pACYCDuet-1 carrying ScGluDH
pCDFDuet-1 carrying EcPaTAW4(MCS-1) and
E. coli C06 This study
EcADHM7(MCS-2), pACYCDuet-1 carrying ScGluDH
E. coliC07  pCDFDuet-1 carrying EcPaTAW4(MCS-2) and This study
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EcADHM7(MCS-1), pACYCDuet-1 carrying ScGluDH

260

16



261 Table S6. Primer sequences.

262

Name Function Sequence (5’—3’)
Inverse PCR to amplify the linearized vector
MCS1-F GCATAATGCTTAAGTCG
pRSFDuet-1, pETDuet-1, pCDFDuet-1, and
pACYCDuet-1 with the Multiple Cloning Site  ATTCGGATCCTGGCTGTG
MCS1-R
1 (MCS1) removed. G
MCS2-F Inverse PCR to amplify the linearized vector CAGCTTAATTAACCTAGG
pRSFDuet-1, pETDuet-1, pCDFDuet-1,and C
MCS2.R pACYCDuet-1 with the Multiple Cloning Site  CTTATACTTAACTAATATA
" 2(MCS2) removed. c
MCS1- ACAGCCAGGATCCGAATA
GluDH-F  The ScGIluDH with homologous arms of TGTCAGAGCCTGAG
MCS1- MCS1 can be amplified. CGACTTAAGCATTATGCTT
GluDH-R AGAAAACATCACCTTGG
MCS1- ACAGCCAGGATCCGAATA
ADH-F TGATTAAATCCTATGC
The EcADH with homologous arms of
. CGACTTAAGCATTATGCTT
MCS1- MCS1 can be amplified.
AATAATCAGCTTTAAGAAC
ADH-R
G
MCS2 ATTAGTTAAGTATAAGAAG
GAGATATAATGATTAAATC
ADH-F
The EcADH with homologous arms of CTATGC
MCS2 MCS2 can be amplified. TAGGTTAATTAAGCTGTTA
ATAATCAGCTTTAAGAAC
ADH-R
G
MCS1- ACAGCCAGGATCCGAATA
TA-F The EcPaTA with homologous arms of TGAACCGTCTGCCGTC
MCS1- MCS1 can be amplified. CGACTTAAGCATTATGCTT
TA-R AAGCTTCTTCTACAG
MCS2 ATTAGTTAAGTATAAGAAG
GAGATATAATGAACCGTC
TA-F The EcPaTA with homologous arms of
TGCC
MCS2 can be amplified.
MCS2- TAGGTTAATTAAGCTGTTA
TA-R AGCTTCTTCTACAG

17



263 Table S7. Mutant library of ECADH M1 variants.

Region | Mutant
E49S, E49T, E49R, E49K, E49H, E49D, E49N, E49Q, E49G, E49V, E49M,
E49C
Loop 1 | W50F, W50C
G51S, G51D, G51K
F52D, F52E, F52N, F52Q, F52W, F52L, F52S, F52T, F52K, F52R, F52H
Q105E
106D, I106E, 106N, 1106Q, 106K, 1106H, 1106A, 1106L, [106S, 1106 T
roop 2 A112L, A1121, A112P, A112T, A112N, A112Q, A112D
P114L, P114l, P114G, P114A
S198T
N238C, N238S, N238D
T258L, T258S, T258E, T258Q, T258R
A261L, A261H, A261D, A261Q, A261R
V262P
Loop N | L263D, L263E

T2641, T264E, T264V, T264D
S267E, S267K, S267R
S283D, S283N, S283T
A284L, A284S, A284G

T285l, T285V, T285H

264 Note: Beneficial mutants are highlighted in red.

265
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266 Table S8. Mutant library of ECADH M6 variants.

Template Region Mutant

S53T, S53C, S53M, S53P
M5 Loop 1 Q54F, Q54T, Q54S, Q54P, Q54K, Q54M, Q54G, Q54A, Q54C

Y55F, Y55V, Y55L, Y55S, Y55T, Y55C, Y55H, Y55D, Y55M, Y55Q

267 Note: Beneficial mutants are highlighted in red.

268
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269 Table S9. Mutant library of ECADH M7 variants.

Template Region Mutant

G88V, G88A, G88C
M6 Loop 3 W89C, W89Y, W89T

T90S, T90D, T90E, TOON, TOOF, T90A, TO0V, TI0L, A91G, A91V, A1l

270 Note: Beneficial mutants are highlighted in red.

271
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272 Table $10. Mutant library of EcPaTA variants.

Mutant

Round 1 W1/F84Y, W1/S149T, W1/S153A, W1/F180Y, W1/S184T, W1/N214D,
WA1/L351E, W1/F370L, W1/A384V, W1/A416L, W1/T424V, W1/L433I -
W1/F84Y/S184T(W3)

Round2  W3/Q119N, W3/N148Q, W3/T151S, W3/V154A, W3/V154L, W3/H181K,
W3/H181R, W3/V273A, W3/V273L, W3/T275S, W3/A299V, W3/A299G,

W3/L419V, W3/L4191(W4), W3/R426K

273 Note: Beneficial mutants are highlighted in red.
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Supplementary Figures
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AciADH show inclusion
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Figure S1. SDS-PAGE of eight candidate ADHs.

(a) The lanes for protein pellets are arranged as follows: AcADH, SynADH, EcADH, HeADH,
AaADH, AciADH, PpADH. The lanes for protein supernatants are arranged as follows: HeADH,
EcADH, AcADH, AciADH, SynADH, PpADH, AaADH. Lane M represents the protein marker; (b)
Lane 1: GtADH supernatant; lane 2: GfADH pellet; (c) SDS-PAGE of the purified enzymes. Lane
1: AaADH, lane 2: SynADH, lane 3: PpADH, lane 4: GtADH, lane 5: AciADH, lane 6: HeADH, lane

7: AcADH, lane 8: EcCADH. The asterisk (*) indicates enzymes carrying an N-terminal 6xHis tag.
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Figure S2. SDS-PAGE of E. coli A01 and E. coli BO1.

Lane M represents protein marker, lane C represents whole cells, lane SN represents the

supernatant, and lane Pellet represents pellet.
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Figure S3. The single mutants of EcADH.

Conversion conditions: 10 g/L 1a, 100 mM HEPES, 20 mM L-Glu, 200 mM ammonium formate, 0.5
mM PLP, 2 mM NADP*, and 0.5 mM Co?*. Reactions were carried out with 6 g/L CDW of E. coli
AO1 expressing ADH mutants and 6 g/L CDW of E. coli BO1 at pH 9.0 and 40°C for 24 h. n.d.
indicates 2¢ product was not detected. Error bars indicate standard deviation of three independent

replicates. Data represent the mean £ SD from three replicates.
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Figure S4. Mutants of ECADH(M1-M5).

(a) Beneficial single mutants with 10 g/L 1a and 200 mM ammonium formate. (b) Beneficial double
mutants with 10 g/L 1a and 200 mM ammonium formate. (c) Beneficial triple mutants with 20 g/L
1a and 400 mM ammonium formate. (d) Beneficial quadruple mutants with 30 g/L 1a and 500 mM
ammonium formate. Conversion conditions: 10-30 g/L 1a, 50 mM HEPES, 20 mM L-Glu, 200-500
mM ammonium formate, 0.5 mM PLP, 2 mM NADP*, and 0.5 mM Co?*. Reactions were conducted
with 6 g/L CDW of E. coli AO1or ECADH mutants and 6 g/L CDW of E. coli BO1 at pH 9.0 and 40°C

for 24 h. Error bars indicate standard deviation of three independent replicates. Data represent the

mean = SD from three replicates.
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Figure S5. Mutants of ECADH(M1-M7).

(a) M6 mutants of ECADH. (b) M7 mutants of EcADH. Conversion conditions: 30 g/L 1a, 50 mM
HEPES, 20 mM L-Glu, 500 mM ammonium formate, 0.5 mM PLP, 2 mM NADP*, and 0.5 mM Co?2*.
Reactions were conducted with 6 g/L CDW of E. coli AO1 or ECADH mutants and 6 g/L CDW of E.
coliB01 at pH 9.0 and 40°C for 24 h. n.d. indicates 2¢ product was not detected. Error bars indicate
standard deviation of three independent replicates. Data represent the mean = SD from three

replicates.
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316

— M7-1a
WT-1a
0.60 +——m7-2a i I

v(mM/min)

317

¥
80 100
[S1(mM)
Model MichaelisMenten
Equation y=Vmax *x/(Km + x)
Plot WT-1a M7-1a WT-2a M7-2a
Vmax 026232+ | 062118+ | 004223+ | 0.12242+
0.00441 0.01777 0.00269 0.00173
K 726147+ | 565627+ | 1431014+ | 2.60334 +
0.4694 0.38967 2.58217 0.21575
Red“g‘;f Chi- | 0.97038 2.83727 14.5881 0.78751
R2(COD) 0.98849 0.99747 0.93315 0.99351
Adj.-R2 0.98753 0.99719 0.92837 0.99286

318 Figure S6. Kinetic parameters of ECADH wild-type (WT) and its mutant M7.

319 Error bars indicate standard deviation of three independent replicates. Data represent the mean +

320 SD from three replicates.
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322 Figure S7. Sequence alignment of transaminases.?!
323 EcPaTA (PDB: 4UOX), AcOAT (PDB: 1VEF), OAT (PDB: 20AT), GABA-AT (PDB: 1SFF),

324 BsDAPA-AT (PDB: 1SFF), ScDAPA-AT (Uniprot: P50277).
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Figure S8. Mutants of EcPaTAF°1Y,

(a) The first-round mutants. (b) The second-round mutants. Conversion conditions: 30 g/L 1a, 50
mM HEPES, 20 mM L-Glu, 500 mM ammonium formate, 0.5 mM PLP, 2 mM NADP*, and 0.5 mM
Co?*. Reactions were conducted with 6 g/L CDW of E. coli A02 and 30 g/L CDW of E. coli BO1 or
expressing transaminase mutants at pH 9.0 and 40°C for 24 h. n.d. indicates 2¢ product was not
detected. Error bars indicate standard deviation of three independent replicates. Data represent

the mean x SD from three replicates.
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Figure S9. SDS-PAGE of the recombinant strain E. coli C01-C07.

Lane M represents protein marker, lanes 1-7 correspond to the cell lysate supernatants of E. coli
C01-CO07, respectively. a: ECADHM7 (36.3 kDa); B: EcPaTAW4 (49.7 kDa); y: ScGIuDH (49.6 kDa);
a*: ECADHMY isag (38.2 kDa); B*: EcPaTAW4 57,9 (51.5 kDa). The asterisk (*) indicates enzymes

carrying an N-terminal 6xHis tag.
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Figure S10. LC-MS spectra of OPA-3a to OPA-3g.

The spectrum on the left represents the standard sample, while the one on the right represents the

reaction sample. (a) OPA-3a, [M+H]'=427.14. (b) OPA-3b, [M+H]*=441.16. (c) OPA-3c,

[M+H]*=455.17. (d) OPA-3d,

[M+H]*=469.19.

[M+H]*=497.22. (g) OPA-3g, [M+H]*=511.24.
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Figure S11. LC-MS spectra of 3h.

The spectrum above represents the standard sample, while the one below represents the

reaction sample. [M+H]*=108.07.
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Figure S12. LC-MS spectra of 3i.

354 The spectrum above represents the standard sample, while the one below represents the

355

reaction sample. [M+H]*=185.98.
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Figure S13. LC-MS spectra of 3j.

The spectrum above represents the standard sample, while the one below represents the

reaction sample. [M+H]*=137.10.
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361 Figure S14. LC-MS spectra of 3k.

362 The spectrum above represents the standard sample, while the one below represents the
363 reaction sample. [M+H]*=137.10.
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Figure S15. LC-MS spectra of 3I.

The spectrum above represents the standard sample, while the one below represents the

reaction sample. [M+H]*=102.08.
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Figure $16. LC-MS spectra of 3m.

The spectrum above represents the standard sample, while the one below represents the

reaction sample. [M+H]*=127.08.
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Figure S$17. LC-MS spectra of 3n.

The spectrum above represents the standard sample, while the one below represents the

reaction sample. [M+H]*=109.08.
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Figure S$18. LC-MS spectra of 3o.

The spectrum above represents the standard sample, while the one below represents the

reaction sample. [M+H]*=109.07.
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Figure S19. LC-MS spectra of 3p.

384 The spectrum above represents the standard sample, while the one below represents the

385

reaction sample. [M+H]*=110.06.
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387 Figure S20. Root-mean-square deviation (RMSD) of backbone heavy atoms relative to the

388 first snapshot during 100 ns MD simulation of ECADH and EcADHM’,

389 (a) EcCADH-NADP*-2a ternary complex and (b) EcCADHY-NADP*-2a ternary complex. During the
390 50-100 ns period, the system remains in a stable phase.
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