

Supporting Information

A platform efficiently produces aliphatic, aromatic, and heterocyclic primary diamines from alcohols

Zhizhen He^a, Yeting Han^a, Wei Song^{a,b}, Cong Gao^b, Xinmiao Liu^a, Wanqing Wei^{*b} and Jing Wu^{*a,b}

^a School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China;

^b School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.

* Corresponding author: Jing Wu; Wanqing Wei

E-mail: wujing@jiangnan.edu.cn; wanqwei@163.com.

1 Content

2	Materials and Methods	1
3	General.....	1
4	Strains and plasmids	1
5	Construction of recombinant <i>E. coli</i> cells	1
6	Enzyme expression and preparation of whole-cell catalysts	2
7	Enzyme purification and kinetic assay	3
8	<i>In vitro</i> reaction	3
9	Converting 1a by whole-cell catalysts	4
10	Converting a~p by whole-cell catalysts.....	4
11	Mutagenesis experiments	5
12	HPLC analysis	6
13	MS analysis	6
14	Initial structure preparation	7
15	Molecular docking	8
16	Molecular dynamic simulations.	8
17	Supplementary Tables.....	10
18	Table S1. Comparison of the production performance of primary diamines by this 19 study with those in relevant literatures.	10
20	Table S2. Substrate and product pricesa	12
21	Table S3. Comparison of cost-effectiveness of our method with reported processes. 22	13
23	Table S4. Candidate ADHs.	14
24	Table S5. Plasmids and strains.....	15
25	Table S6. Primer sequences.	17
26	Table S7. Mutant library of <i>EcADH</i> M1 variants.....	18
27	Table S8. Mutant library of <i>EcADH</i> M6 variants.....	19
28	Table S9. Mutant library of <i>EcADH</i> M7 variants.....	20
29	Table S10. Mutant library of <i>EcPaTA</i> variants.	21
30	Supplementary Figures	22
31	Figure S1. SDS-PAGE of eight candidate ADHs.	22
32	Figure S2. SDS-PAGE of <i>E. coli</i> A01 and <i>E. coli</i> B01.....	23
33	Figure S3. The single mutants of <i>EcADH</i>	24
34	Figure S4. Mutants of <i>EcADH</i> (M1-M5).	25

35	Figure S5. Mutants of <i>EcADH</i> (M1-M7).....	26
36	Figure S6. Kinetic parameters of <i>EcADH</i> wild-type (WT) and its mutant M7.....	27
37	Figure S7. Sequence alignment of transaminases. ²¹	28
38	Figure S8. Mutants of <i>EcPaTA</i> ^{F91Y}	29
39	Figure S9. SDS-PAGE of the recombinant strain <i>E. coli</i> C01-C07.	30
40	Figure S10. LC-MS spectra of OPA-3a to OPA-3g.	31
41	Figure S11. LC-MS spectra of 3h.	32
42	Figure S12. LC-MS spectra of 3i.	33
43	Figure S13. LC-MS spectra of 3j.	34
44	Figure S14. LC-MS spectra of 3k.	35
45	Figure S15. LC-MS spectra of 3l.	36
46	Figure S16. LC-MS spectra of 3m.	37
47	Figure S17. LC-MS spectra of 3n.	38
48	Figure S18. LC-MS spectra of 3o.	39
49	Figure S19. LC-MS spectra of 3p.	40
50	Figure S20. Root-mean-square deviation (RMSD) of backbone heavy atoms relative 51 to the first snapshot during 100 ns MD simulation of <i>EcADH</i> and <i>EcADH</i> ^{M7}	41
52		
53		

54 **Materials and Methods**

55 **General**

56 Commercial reagents, standards, and solvents were purchased from
57 Sigma-Aldrich (Shanghai, China), Meryer Chemicals (Shanghai, China),
58 Aladdin Reagents (Shanghai, China), Macklin Reagent (Shanghai, China), and
59 Bide Chemicals (Shanghai, China) used without further purification.

60 **Strains and plasmids**

61 *E. coli* DH5 α and *E. coli* BL21 (DE3) were used as hosts for gene cloning
62 and protein expression, respectively. The genes encoding the candidate
63 alcohol dehydrogenases (ADHs) were chemically synthesized and ligated to
64 plasmid pET-28a(+) by Talen-bio (Shanghai, China). The genes encoding
65 glutamate dehydrogenase from *Saccharomyces cerevisiae* (ScGluDH, UniProt
66 ID: P07262) and single mutant (F91Y) of transaminase from *Escherichia coli*
67 (*EcPaTA*^{F91Y}, UniProt ID: P42588) were reserved by our Lab. Details of strains
68 and plasmids used in this study were summarized in [Table S5](#).

69 **Construction of recombinant *E. coli* cells**

70 DNA fragments of enzyme genes and the linear plasmid backbone were
71 amplified by PCR using primers with 15 to 20 bp homologous arms that enabled
72 the subsequent recombination. Full length of enzyme genes was assembled
73 via overlap PCR and cloned into linear vector in the presence of 5 \times CE II Buffer
74 and Exnase II (Vazyme Biotech Co., Ltd., Nanjing, China) to generate 15 bp or

75 20 bp sticky ends to promote recombination efficiency. Reaction mixtures were
76 10 μ L containing linear vector, enzyme genes, 5 \times CE II Buffer and Exnase II,
77 incubated in 37 °C for 30 min, followed by addition of 100 μ L competent cells
78 (*E. coli* DH5 α) for transformation and plating on LB agar containing appropriate
79 antibiotics. Resulting transformants were picked and DNA sequenced for
80 confirmation. Plasmids containing targeted enzyme genes were transformed
81 into *E. coli* BL21 cells for protein expression and whole-cell biocatalyst
82 preparation. The detailed information of the strain and plasmids, primers and
83 synthetic gene sequences were listed in [Tables S5-S6](#).

84 **Enzyme expression and preparation of whole-cell catalysts**

85 Constructed *E. coli* cells were inoculated into 5 mL LB medium containing
86 appropriate antibiotics (50 μ g mL $^{-1}$ kanamycin, 100 μ g mL $^{-1}$ ampicillin, 33 μ g
87 mL $^{-1}$ chloramphenicol, 50 μ g mL $^{-1}$ streptomycin), and cultured at 37 °C, 220
88 rpm for 8 h. Precultures (3 mL) were transferred into 150 mL TB medium with
89 appropriate antibiotics in 500 mL shaking flasks and cultured at 37 °C, 220 rpm
90 for 2~3 h until the OD₆₀₀ reached 0.8~1.0, then IPTG was added to give a final
91 concentration of 0.4 mM. The temperature was shifted to 25 °C for 14h for
92 protein expression (*EcADH* protein, the induction temperature was 16 °C for
93 18h). The cells were harvested by centrifugation at 8000 \times g, 4 °C for 10 min,
94 washed with 50 mM 4-(2-Hydroxyethyl) piperazine-1-ethanesulfonic acid buffer
95 (HEPES, pH 8.0), then Centrifuge at 8000 \times g for 10 minutes at 4 °C.
96 Subsequently, collect the sedimented cells, which will either be used to obtain

97 purified enzymes or act as whole-cell biocatalysts in the following reactions.

98 **Enzyme purification and kinetic assay**

99 The cells were lysed using a high-pressure homogenizer. The resulting
100 crude lysate was centrifuged at 10,000 × g at 4 °C for 30 min. The supernatant
101 was collected, and the protein containing the His-tag was captured using a Ni-
102 NTA Superflow resin for 30 min and then released using an elution buffer (20
103 mM Tris-HCl at pH 8.0, 0.3 M NaCl, and 0.5 M imidazole). Protein concentration
104 was determined using a bicinchoninic acid protein assay kit (Solarbio, China),
105 and purity was determined using sodium dodecyl-sulfate polyacrylamide gel
106 electrophoresis.

107 The kinetic parameters of ADHs were monitored by following UV
108 absorption at a wavelength of 340 nm using a microplate reader (Synergy HT,
109 BioTek, VT, USA). The assay mixture, which contained 1~200 mM **1a** or **2a**,
110 0.1 mM Zn²⁺, and 2 mM NADP⁺ in 50 mM HEPES buffer (pH 9.0), was
111 incubated at 40 °C for 20 min. Then, 2 µM ADHs were added, and the change
112 in the absorbance at 340 nm was immediately recorded. The concentrations of
113 NADPH were quantified by continuously recording the changing of the
114 absorbance at 340 nm ($\epsilon = 6.22 \text{ mM}^{-1} \text{ cm}^{-1}$). One unit of enzyme activity is the
115 amount of enzyme required to convert 1 µM of NADP⁺ into NADPH in 1 min.

116 ***In vitro* reaction**

117 Mixture preparation: purified *EcADH*, *ScGluDH*, and *EcPaTA*^{F91Y} enzymes

118 were mixed at equimolar concentrations (20 μ M) and incubated with 5 g/L of
119 substrate **1a**, 20 mM L-Glu, 50 mM HEPES, 100 mM ammonium formate, 0.5
120 mM PLP, 1 mM NADP $^{+}$, and 0.5 mM Zn $^{2+}$ at pH 9.0. A 5 mL reaction mixture
121 was placed in a 20 mL brown, light-protected vial. The vial was shaken at 220
122 rpm and incubated at 37 °C for 6 h. After completion, 1 mL of the reaction
123 solution was transferred to a 2 mL Eppendorf tube. The reaction was terminated
124 by heating the sample in boiling water for 10 min, then centrifuged at 12,000 \times
125 g for 10 min, and the supernatant was collected for HPLC analysis. All
126 experiments were performed in triplicate.

127 **Converting **1a** by whole-cell catalysts**

128 Mixture preparation: constructed *E. coli* cells expressing enzymes of
129 *EcADH* (wild type or mutant), *ScGluDH* and *EcPaTA*^{F91Y} (wild type or mutant)
130 were reacted with 10~30 g/L **1a**, 20 mM L-Glu, 100 mM HEPES, 200~500 mM
131 ammonium formate, 0.5 mM PLP, 2 mM NADP $^{+}$, and 0.5 mM Co $^{2+}$ at pH 9.0,
132 final cell density was 12 g CDW/L. A 5 mL reaction mixture was placed in a 20
133 mL light-protected vial. The vial was shaken at 220 rpm and incubated at 40 °C
134 for 24 h. Then, samples were prepared for HPLC analysis to determine the titers
135 of **2a** and **2c**. All experiments were performed in triplicate.

136 **Converting **a~p** by whole-cell catalysts.**

137 Mixture preparation: *E. coli* C03 expressing enzymes of *EcADH*^{M7},
138 *ScGluDH* and *EcPaTA*^{W4} was reacted with 50 mM **a~p**, 20 mM L-Glu, 100 mM

139 HEPES, 200 mM ammonium formate, 0.5 mM PLP, 1 mM NADP⁺, and 0.5 mM
140 Co²⁺ at pH 9.0, final cell density was 12 g CDW/L. A 5 mL reaction mixture was
141 placed in a 20 mL light-protected vial. The vial was shaken at 220 rpm and
142 incubated at 40 °C for 24 h. Then, samples were prepared for HPLC analysis
143 to determine the titers of **3a~3p**. All experiments were performed in triplicate.

144 **Mutagenesis experiments**

145 The experiments about protein engineering were performed using the
146 whole-plasmid PCR with KOD-Plus-Neo. The whole plasmid PCR system (50
147 μL) was composed of KOD DNA polymerase (1 μL), 10 × KOD PCR Buffer (5
148 μL), 2 mM dNTP mix (5 μL), 25 mM MgSO₄ (3 μL), template (50–200 ng),
149 corresponding primers (10 μM with 1 μL), and sterilized water. The PCR
150 product was digested with the DpnI quick-cutting enzyme at 37 °C for 30–45
151 min. The PCR products were transformed into *E. coli* BL21 (DE3) cells for the
152 following screening or DNA sequencing (GENEWIZ, China). The mutant
153 libraries of *EcADH* were shown in [Tables S5-S7](#). Mutant library of *EcPaTA* was
154 shown in [Table S8](#). The screening of mutants was carried out through whole-
155 cell transformation experiments with **1a** as the substrate. The titer of **2c** was
156 detected by HPLC to determine the mutants. The relative activity of a mutant
157 was calculated as the titer of **2c** of the mutant divided by the titer of **2c** of the
158 template strain.

159 **HPLC analysis**

160 The samples were filtered through a 0.22 μ m organic membrane, and then
161 the titer of product amines were determined via HPLC using a Dionex UltiMate
162 3000 VWD detector (Thermo Fischer Scientific, Germany), an Agilent Zorbax
163 SB-Aq column (4.6 \times 150 mm; Agilent Technologies, USA), and an UV detector
164 (Thermo Fischer Scientific, Germany) under the following conditions: detection
165 wavelength: 264 nm, automatic precolumn derivatization with o-phthalaldehyde
166 (OPA), sample injection volume of 8 μ L, sample mixed with 4 μ L of OPA, a flow
167 rate of 1 mL/min, and phase A consisted of a 10 mM K_2HPO_4 buffer, with the
168 pH adjusted to 7.3 using formic acid. Mobile phase B consisting of phase A,
169 methanol, and acetonitrile at 1:3:5 (v/v/v). The ratios between the phase A and
170 phase B are 0 min (60:40), 2 min (45:55), 15 min (10:90), 19 min (10:90), 22
171 min (60:40) and 25 min (60:40). The statistical analysis software is Chromeleon
172 7.2, and the graphing software is OriginPro 2022.

173 **MS analysis**

174 Amines were determined by MS. The analytical conditions of MS were as
175 follows: ionic mode is ESI⁺, capillary voltage: 3.5 kV, cone voltage: 30 V, source
176 block temperature: 100 °C, desolvation temperature: 400 °C, desolvation gas
177 flow: 700 lit/h, cone gas flow: 50 lit/h, collision energy: 6/20 V, mass range: 20–
178 1000 m/z, detector voltage: 1800 V. We used WATERS MALDI SYNAPT Q-
179 TOF MS to complete the detection. The statistical analysis and graphing
180 software are MassLynx V4.1.

181 **Initial structure preparation**

182 The *EcADH* structure was obtained from the RCSB Protein Data Bank
183 (PDB ID: 7BU3), and the ligands ASP, GOL, and PEG were removed, chain B
184 was selected as the single-chain structure. Due to the fact that the first amino
185 acid residue of the B-chain of 7BU3 is Met 3, the sequence numbers of all amino
186 acid residues were decreased by 2 to be consistent with the residue sequence
187 numbers of *EcADH*. The *EcADH*^{M7} structure was obtained from the prediction
188 of alphafold2. The protonation states of charged residues were determined at
189 constant pH 9.0 based on pKa calculations via the H++
190 (<http://biophysics.cs.vt.edu/H++>) tool and the consideration of the local
191 hydrogen bonding network. Residues H40, H162, H180 and H257 were
192 assigned as HID, and H61, H96, H163, H187, H321 was assigned as HIE. All
193 lysine and arginine residues were protonated, glutamic acid and aspartic acid
194 residues were deprotonated. Residues C39 and C150 are coordinated with the
195 catalytic Zn, so they are assigned as CYM. Similarly, C94, C97, C100 and C107
196 are coordinated with the binding Zn and are also assigned as CYM.

197 The prepared protein was neutralized by adding counterions and solvated
198 into a truncated octahedron TIP3P¹ water box with a 10 Å buffer distance on
199 each side. After equilibrated with a series of minimizations interspersed by short
200 MD simulations during which restraints on the protein backbone heavy atoms
201 were gradually released (with force constant of 10, 2, 0.1 and 0 kcal/(mol·Å²)),
202 the system was gradually heated up to 313K in 50 ps in which harmonic

203 potentials were used to positionally restrain the protein backbone heavy atoms
204 (with force constant of 10 kcal/(mol·Å²)), and finally the standard unrestrained
205 MD simulation with periodic boundary condition at 313K and 1 atm was carried
206 out for up to 100 ns.

207 **Molecular docking**

208 In the equilibrium trajectories of *EcADH* and *EcADH*^{M7} models, 2000
209 snapshots were selected and divided into 10 groups using a hierarchical
210 agglomerative (bottom-up) approach². Then, the structure of **2a** was fully
211 optimized at the B3LYP/6-31G(d) level using the Gaussian 16 package³.
212 Molecular docking was conducted using the Lamarckian genetic algorithm local
213 search method implemented in AutoDock 4.2 and AutoDockTools-1.5.6⁴. The
214 docking procedure was performed with a rigid-receptor conformation. A total of
215 100 independent docking runs were performed. Finally, appropriate
216 conformations were selected as the binding conformations for the *EcADH-2a*
217 MD simulations.

218 **Molecular dynamic simulations.**

219 All MD simulations were performed using AMBER 18⁵. The partial charges
220 of **2a** were fitted with HF/6-31G(d) calculations, and the restrained electrostatic
221 potential⁶ protocol was implemented by the Antechamber module in the Amber
222 18 package. The force field parameter for **2a** were adapted from that of the
223 standard general amber force field 2.0 (gaff2)⁷, whereas the standard

224 Amber14SB force field was applied to describe the protein. Each system was
225 initially neutralized with counterions and solvated with explicit TIP3P¹ water in
226 a truncated octahedron box with a 10 Å buffer distance on each side. Each
227 system was then equilibrated with a series of minimizations interspersed by
228 short MD simulations during which restraints on the protein backbone heavy
229 atoms were gradually released [with force constants of 10, 2, 0.1, and 0
230 kcal/(mol·Å²)] and heated slowly from 0 to 313 K for 50 ps during which we
231 applied a 10 kcal/(mol·Å²) restraint on the protein backbone heavy atoms.
232 Finally, the standard unrestrained 100 ns MD simulations was performed at
233 constant temperature and pressure. Pressure was maintained at 1 atm and
234 coupled with isotropic position scaling. The temperature was controlled at 313
235 K via the Berendsen thermostat method. Long-range electrostatic interactions
236 were treated with the particle mesh Ewald⁸ method and 12 Å cutoff was applied
237 to both particle mesh Ewald and van der Waals interactions. A time step of 2 fs
238 was employed along with the SHAKE algorithm for hydrogen atoms, and a
239 periodic boundary condition was used. Atomic positions were stored every 2 ps
240 for further analysis. Each system was checked for stability (structure, energy,
241 and temperature fluctuations) and convergence (root-mean-square deviations,
242 RMSD of structures).

243 **Supplementary Tables**244 **Table S1. Comparison of the production performance of primary diamines by this study with those in relevant literatures.**

Target product		Substrate	Catalytic approach	Titer (g/L)	Conversion (%)	Productivity (g/(L·h))	Reaction time (h)	Catalyst dosage (g _{CDW} /L)	Ref
Aliphatic primary diamines	1,3-Diaminopropane	1,3-Propanediol	Whole-cell	0.15	4	0.006	24	12	This study
		Glucose	Microbial fermentation	13	NA	0.19	69	NA	Lee et al. ⁹ (2015)
	1,4-Diaminobutane	1,4-Butanediol	Whole-cell	2.7	62	0.11	24	12	This study
		Glucose	Microbial fermentation	42	52 ^c	1.3	34	NA	Lee et al. ¹⁰ (2017)
	1,5-Diaminopentane	1,5-Pentanediol	Whole-cell	3.6	71	0.15	24	12	This study
		Glucose	Microbial fermentation	104	53 ^c	1.47	65	NA	Joo et al. ¹¹ (2018)
	1,6-Diaminohexane	1,6-Hexanediol	Whole-cell	5.2	90	0.22	24	12	This study
		L-lysine	Microbial fermentation	0.21	65	0.006	36	NA	Wang et al. ¹² (2024)
		Cyclohexanol	Whole-cell	0.49	42	NA	NA	69	Yun et al. ¹³ (2022)
		Cyclohexanol	Whole-cell	1.7	73	0.07	24	24	Li et al. ¹⁴ (2023)
1,7-Diaminoheptane	1,7-Heptanediol	Whole-cell	5.5	84	0.23	24	12	This study	
	Cycloheptanol	Whole-cell	0.46	35	NA	NA	69	Yun et al. ¹³ (2022)	
	Cycloheptanol	Whole-cell	1.6	81	0.066	24	24	Li et al. ¹⁴ (2023)	

246 Table S1 (Continued) Comparison of the production performance of primary diamines in this study with relevant literature.

Target product	Substrate	Catalytic approach	Titer (g/L)	Conversion (%)	Productivity (g/(L·h))	Reaction time (h)	Catalyst dosage	Ref	
							(g _{CDW} /L)		
Aliphatic primary diamines	1,8-Diaminoctane	1,8-Octanediol	Whole-cell	6.3	87	0.26	24	12	This study
		Cyclooctanol	Whole-cell	0.32	22	NA	NA	69	Yun et al. ¹³ (2022)
		Cyclooctanol	Whole-cell	1.7	79	0.071	24	24	Li et al. ¹⁴ (2023)
		n-Octane	Whole-cell	0.50	35	0.008	48	NA	Yun et al. ¹⁵ (2024)
1,9-Diaminononane	1,9-Nonanediol	1,9-Nonanediol	Whole-cell	6.2	78	0.26	24	12	This study
		1,9-Nonanediol	Whole-cell	1.3	81	0.21	6	10.8	Park et al. ¹⁶ (2024)
1,4-Bis(aminomethyl)cyclohexane	1,4-Cyclohexanedimethanol	Whole-cell	23	77	0.95	24	12	This study	
Aromatic primary diamines	p-Xylylenediamine	p-Phenylenedimethanol	Whole-Cell	4.3	63	0.18	24	12	This study
		Terephthalic acid	Purified enzyme	1.3	39	0.054	24	NA	Kunjapur et al. ¹⁷ (2023)
m-Xylylenediamine	m-Phenylenedimethanol	Whole-Cell	3.5	51	0.147	24	12	This study	
Heterocyclic primary diamines	2,5-Bis(aminomethyl)furan	2,5-Furandimethanol	Whole-Cell	1.1	17	0.044	24	12	This study
		5-Hydroxymethylfurfural	Purified enzyme	10.7	85	0.36	30	NA	Yun et al. ¹⁸ (2024)

247 c : Calculated based on the yield g/g glucose. NA means no available data.

248

249 Table S2. Substrate and product pricesa

Brand	Count	1,6-Hexanedi	1,4-Dicyanobutan	L-lysine	Cyclohexan	1,6-Diamino hexane	p-Phenylene dimethanol	Terephthalonitrile	Terephthalic acid	p-Xylylene diamine	2,5-Furandimethanol	5-hydroxymethylfurfural	2,5-Bis(aminomethyl)furan
	ry	ol (£/kg)	ol (£/kg)	(£/kg)	(£/kg)	(£/kg)	(£/kg)	(£/kg)	(£/kg)	(£/kg)	(£/kg)	(£/kg)	(£/kg)
Thermo Fisher Scientific	United States	45.9	68.3	NA	35.4	102.8	NA	NA	44.1	NA	NA	NA	NA
Accel Scientific	Spain	10.1	NA	27	9.3	NA	57.1	35.3	5.4	NA	919	NA	NA
Aurum Pharmatech	United States	16.9	64	61.7	40.9	115	74.2	65.7	9.6	829	1227	NA	7319
Adamas Energy Chemical	China	6.74	19.2	26.7	6.6	17.1	59.9	22.5	6.0	1872	924	104	9150
Meryer Aladdin Macklin	China	NA	13	24.2	6.5	20.8	NA	21.8	5.2	828	993	151	8603
	China	13.9	23.5	NA	5	41.2	77.8	22.9	6.7	1846	1006	414	NA
	China	19.3	22.3	29.2	4.2	18.4	78.8	29.8	6.7	2184	1085	162	NA
	China	13.9	23.8	30.6	5.4	41.1	67.0	22.9	6.7	1070	982	171	12480
Average price		18.1	33.4	33.2	14.2	50.9	69.1	31.6	11.3	1438	1019	200	9388

250 a: The price was obtained from Scifinder and ChemSpider. NA means no available data.

251

252 Table S3. Comparison of cost-effectiveness of our method with reported processes.

Target product and its price.	Substrate	substrate cost* £/(kg product)	Reaction conditions (temperature, pressure).	Solvent	Titer g/L	Conversion %	Ref
Aliphatic primary diamines :	1,6-Hexanediol	18.4	40 °C 0.1 Mpa	Water	5.5	90	This study
1,6-Diaminohexane 50.9 £/kg	1,4-Dicyanobutane	31.1	100 °C 5 Mpa	Ethanol	NA	85	Liang et al. ¹⁹ (2024)
	L-lysine	41.8	37 °C 0.1 Mpa	Water	0.21	65	Wang et al. ¹² (2024)
	Cyclohexanol	12.2	25 °C 0.1 Mpa	Water	1.68	73	Li et al. ⁶ (2023)
Aromatic primary diamines :	<i>p</i> -Phenylenedimethanol	70.2	40 °C 0.1 Mpa	Water	4.3	63	This study
<i>p</i> -Xylylenediamine 1438 £/kg	Terephthalonitrile	29.7	70 °C 5 Mpa	Toluene	NA	97~99	Patent ²⁰
	Terephthalic acid	13.8	30 °C 0.1 Mpa	Water with 5% (v/v) DMSO	1.3	39	Kunjapur et al. ¹⁷ (2023)
Heterocyclic primary diamines:	2,5-Furandimethanol	1035.6	40 °C 0.1 Mpa	water	1.05	17	This study
2,5- Bis(aminomethyl)furan 9388 £/kg	5-hydroxymethylfurfural	200.4	20~37 °C 0.1 Mpa	Water with 10% (v/v) DMSO	10.7	85	Yun et al. ¹⁸ (2024)

253 *: Calculate the substrate cost per kilogram of product based on 100% conversion yield. NA means no available data.

255 Table S4. Candidate ADHs.

Enzyme	Sources	Uniprot ID	1a			2a		
			K_m [mM]	k_{cat} [min $^{-1}$]	k_{cat}/K_m [min $^{-1} \cdot \text{mM}^{-1}$]	K_m [mM]	k_{cat} [min $^{-1}$]	k_{cat}/K_m [min $^{-1} \cdot \text{mM}^{-1}$]
<i>EcADH</i>	<i>Escherichia coli</i> .	P27250(*)	7.3±0.5	262.0±4.2	36.2	14.3±2.6	42.2±0.1	3.0
<i>SynADH</i>	<i>Synechocystis</i> sp. PCC 6803	P74721	7.3±2.2	89.4±7.8	12.6	11.2±2.7	8.1±0.1	0.7
<i>GtADH</i>	<i>Geobacillus thermodenitrificans</i>	A4ISB9	6.3±0.4	60.6±4.8	9.6	7.4±0.3	18.6±0.1	2.9
<i>PpADH</i>	<i>Pelophylax perezi</i> .	O57380	6.6±0.7	44.2±1.2	6.6	3.9±0.8	3.3±0.1	0.8
<i>AciADH</i>	<i>Acinetobacter</i> sp. NCIMB9871	Q9F7D8	19.3±4.7	6.8±0.4	0.4		n.d.	
<i>AaADH</i>	<i>Aedes aegypti</i> .	D2WKD9		n.d.			n.d.	
<i>HeADH</i>	<i>Halomonas elongata</i> .	E1V3M3		n.d.			n.d.	
<i>AcADH</i>	<i>Acinetobacter calcoaceticus</i>	Q59096		n.d.			n.d.	

256 P27250(*)^(*): The amino acid sequence of *EcADH* is obtained by truncating the Met1 and Ser2 residues at the N-terminus of the sequence based on P27250. Data
 257 represent the mean ± SD from three replicates. n.d. means not detected.

258 **Table S5. Plasmids and strains.**

Plasmid	Description	Source
pET-28a(+)	single T7 promoters, pBR322 ori, Kan ^R	Novagen
pRSFDuet-1	Double T7 promoters, RSF ori, Kan ^R	Novagen
pETDuet-1	Double T7 promoters, pBR322 ori, Amp ^R	Novagen
pCDFDuet-1	Double T7 promoters, CDF13 ori, Str ^R	Novagen
pACYCDuet-1	Double T7 promoters, p15A ori, Cm ^R	Novagen

259

Strain	Description	source
<i>E. coli</i> BL21 (DE3)	<i>F</i> – <i>ompT</i> <i>gal</i> <i>dcm</i> <i>lon</i> <i>hsdSB</i> (<i>rB</i> – <i>mB</i> –) λ (<i>DE3</i> [<i>lacI</i> <i>lacUV5</i> – <i>T7</i> gene 1 <i>ind1</i> <i>sam7</i> <i>nin5</i>])	Invitrogen
<i>E. coli</i> A01	pACYCDuet-1 carrying <i>ScGluDH</i> and <i>EcADH</i>	This study
<i>E. coli</i> A02	pACYCDuet-1 carrying <i>ScGluDH</i> and <i>EcADHM7</i>	This study
<i>E. coli</i> B01	pET-28a(+) carrying <i>EcPaTAF91Y</i>	This study
<i>E. coli</i> B02	pET-28a(+) carrying <i>EcPaTAW4</i>	This study
<i>E. coli</i> C01	pACYCDuet-1 carrying <i>ScGluDH</i> and <i>EcADHM7</i> , pET-28a(+) carrying <i>EcPaTA^{W4}</i>	This study
<i>E. coli</i> C02	pRSFDuet-1 carrying <i>EcPaTA^{W4}(MCS-1)</i> and <i>EcADHM7(MCS-2)</i> , pACYCDuet-1 carrying <i>ScGluDH</i>	This study
<i>E. coli</i> C03	pRSFDuet-1 carrying <i>EcPaTA^{W4}(MCS-2)</i> and <i>EcADHM7(MCS-1)</i> , pACYCDuet-1 carrying <i>ScGluDH</i>	This study
<i>E. coli</i> C04	pETDuet-1 carrying <i>EcPaTA^{W4}(MCS-1)</i> and <i>EcADHM7(MCS-2)</i> , pACYCDuet-1 carrying <i>ScGluDH</i>	This study
<i>E. coli</i> C05	pETDuet-1 carrying <i>EcPaTA^{W4}(MCS-2)</i> and <i>EcADHM7(MCS-1)</i> , pACYCDuet-1 carrying <i>ScGluDH</i>	This study
<i>E. coli</i> C06	pCDFDuet-1 carrying <i>EcPaTA^{W4}(MCS-1)</i> and <i>EcADHM7(MCS-2)</i> , pACYCDuet-1 carrying <i>ScGluDH</i>	This study
<i>E. coli</i> C07	pCDFDuet-1 carrying <i>EcPaTA^{W4}(MCS-2)</i> and <i>EcADHM7(MCS-2)</i> , pACYCDuet-1 carrying <i>ScGluDH</i>	This study

261 **Table S6. Primer sequences.**

Name	Function	Sequence (5'→3')
MCS1-F	Inverse PCR to amplify the linearized vector pRSFDuet-1, pETDuet-1, pCDFDuet-1, and pACYCDuet-1 with the Multiple Cloning Site 1 (MCS1) removed.	GCATAATGCTTAAGTCG
MCS1-R		ATTGGGATCCTGGCTGTG
MCS2-F	Inverse PCR to amplify the linearized vector pRSFDuet-1, pETDuet-1, pCDFDuet-1, and pACYCDuet-1 with the Multiple Cloning Site 2 (MCS2) removed.	CAGCTTAATTAACCTAGG
MCS2-R		C
MCS1-GluDH-F	The <i>Sc</i> GluDH with homologous arms of MCS1 can be amplified.	<u>ACAGCCAGGATCCGAATA</u>
MCS1-GluDH-R		TGTCAGAGCCTGAG
MCS1-ADH-F	The <i>Ec</i> ADH with homologous arms of MCS1 can be amplified.	<u>CGACTTAAGCATTATGCTT</u>
MCS1-ADH-R		AGAAAACATCACCTTGG
MCS2-ADH-F	The <i>Ec</i> ADH with homologous arms of MCS2 can be amplified.	<u>ACAGCCAGGATCCGAATA</u>
MCS2-ADH-R		TGATTAATCCTATGC
MCS1-TA-F	The <i>Ec</i> PaTA with homologous arms of MCS1 can be amplified.	<u>CGACTTAAGCATTATGCTT</u>
MCS1-TA-R		AATAATCAGCTTAAAGAAC
MCS2-TA-F	The <i>Ec</i> PaTA with homologous arms of MCS2 can be amplified.	<u>G</u>
MCS2-TA-R		ATTAGTTAAGTATAAGAAC
MCS1-TA-F	The <i>Ec</i> PaTA with homologous arms of MCS1 can be amplified.	<u>GAGATATAATGATTAAATC</u>
MCS1-TA-R		CTATGC
MCS2-TA-F	The <i>Ec</i> PaTA with homologous arms of MCS2 can be amplified.	<u>TAGGTTAATTAAGCTGTTA</u>
MCS2-TA-R		ATAATCAGCTTAAAGAAC
MCS1-TA-F	The <i>Ec</i> PaTA with homologous arms of MCS1 can be amplified.	<u>G</u>
MCS1-TA-R		AGCTTCTTCTACAG
MCS2-TA-F	The <i>Ec</i> PaTA with homologous arms of MCS2 can be amplified.	<u>ATTAGTTAAGTATAAGAAC</u>
MCS2-TA-R		<u>GAGATATAATGAACCGTC</u>
		TGCC
		<u>TAGGTTAATTAAGCTGTTA</u>
		AGCTTCTTCTACAG

263 **Table S7. Mutant library of EcADH M1 variants.**

Region	Mutant
Loop 1	E49S, E49T, E49R, E49K, E49H, E49D, E49N, E49Q, E49G, E49V, E49M, E49C
	W50F, W50C
	G51S, G51D, G51K
	F52D, F52E, F52N, F52Q, F52W, F52L, F52S, F52T, F52K, F52R, F52H
Loop 2	Q105E
	I106D, I106E, I106N, I106Q , I106K, I106H, I106A, I106L, I106S, I106T
	A112L, A112I , A112P, A112T, A112N, A112Q, A112D
	P114L, P114I, P114G, P114A
Loop N	S198T
	N238C, N238S, N238D
	T258L, T258S, T258E, T258Q, T258R
	A261L, A261H, A261D, A261Q, A261R
	V262P
	L263D, L263E
	T264I, T264E, T264V, T264D
	S267E, S267K, S267R
	S283D, S283N, S283T
	A284L, A284S, A284G
	T285I, T285V, T285H

264 Note: Beneficial mutants are highlighted in red.

265

266 **Table S8. Mutant library of *EcADH M6* variants.**

Template Region	Mutant
	S53T, S53C, S53M, S53P
M5	Loop 1 Q54F, Q54T , Q54S, Q54P, Q54K, Q54M, Q54G, Q54A, Q54C Y55F , Y55V, Y55L, Y55S, Y55T, Y55C, Y55H, Y55D, Y55M, Y55Q

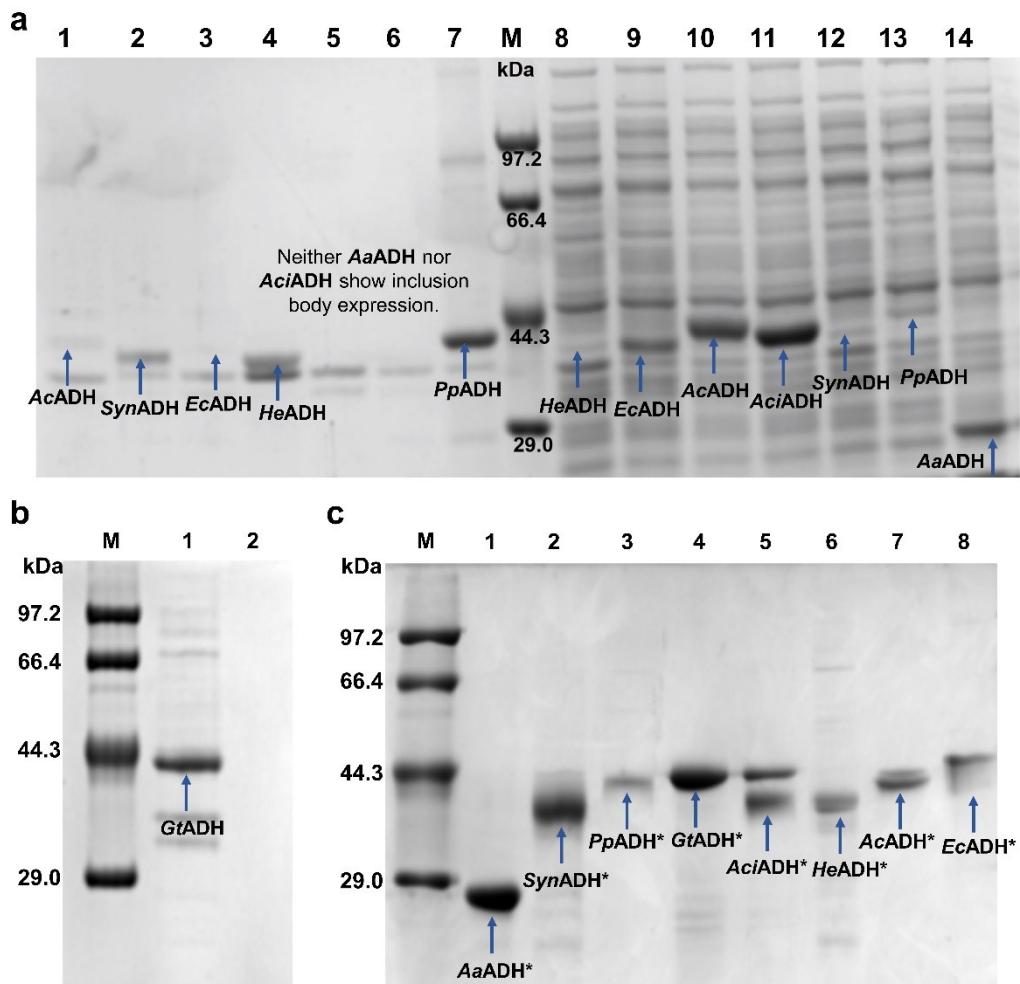
267 Note: Beneficial mutants are highlighted in red.

268

269 **Table S9. Mutant library of *EcADH* M7 variants.**

Template	Region	Mutant
		G88V, G88A, G88C
M6	Loop 3	W89C, W89Y, W89T
		T90S, T90D, T90E, T90N , T90F, T90A, T90V, T90L, A91G, A91V, A91I

270 Note: Beneficial mutants are highlighted in red.

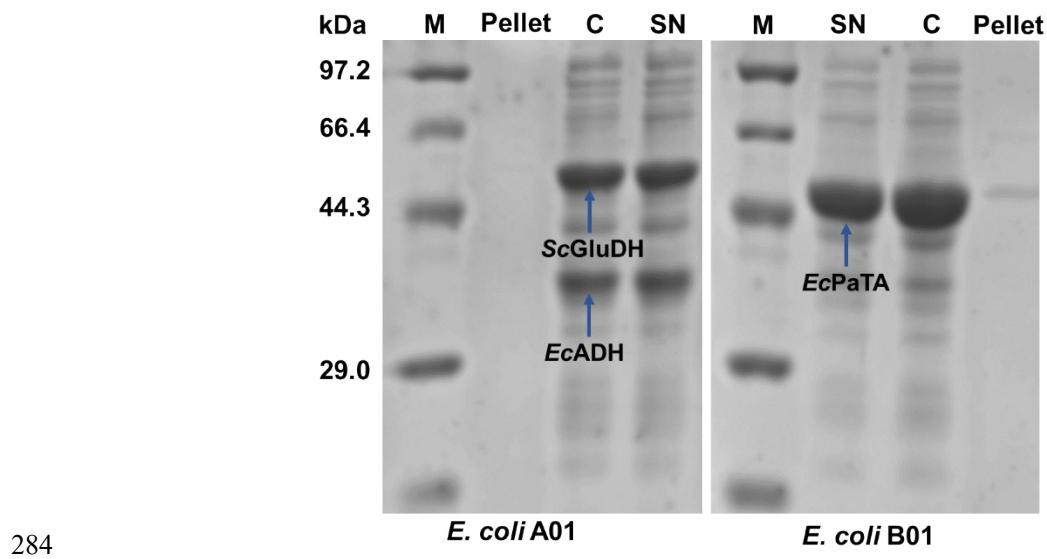

271

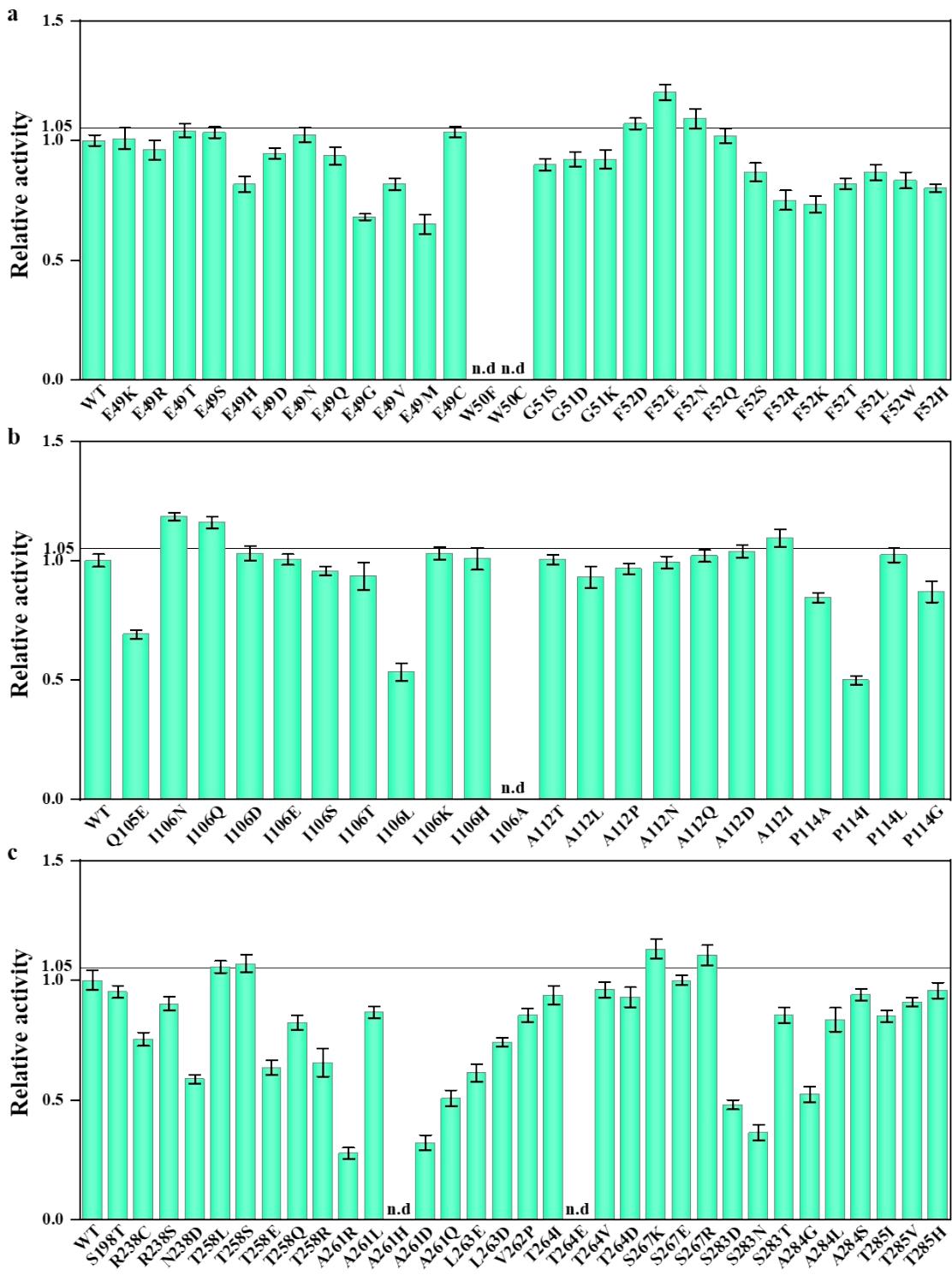
272 **Table S10. Mutant library of EcPaTA variants.**

Mutant	
Round 1	W1/F84Y, W1/S149T, W1/S153A, W1/F180Y, W1/S184T, W1/N214D, W1/L351E, W1/F370L, W1/A384V, W1/A416L, W1/T424V, W1/L433I , W1/F84Y/S184T(W3)
Round 2	W3/Q119N, W3/N148Q, W3/T151S, W3/V154A, W3/V154L, W3/H181K, W3/H181R, W3/V273A, W3/V273L, W3/T275S, W3/A299V, W3/A299G, W3/L419V, W3/L419I(W4), W3/R426K

273 Note: Beneficial mutants are highlighted in red.

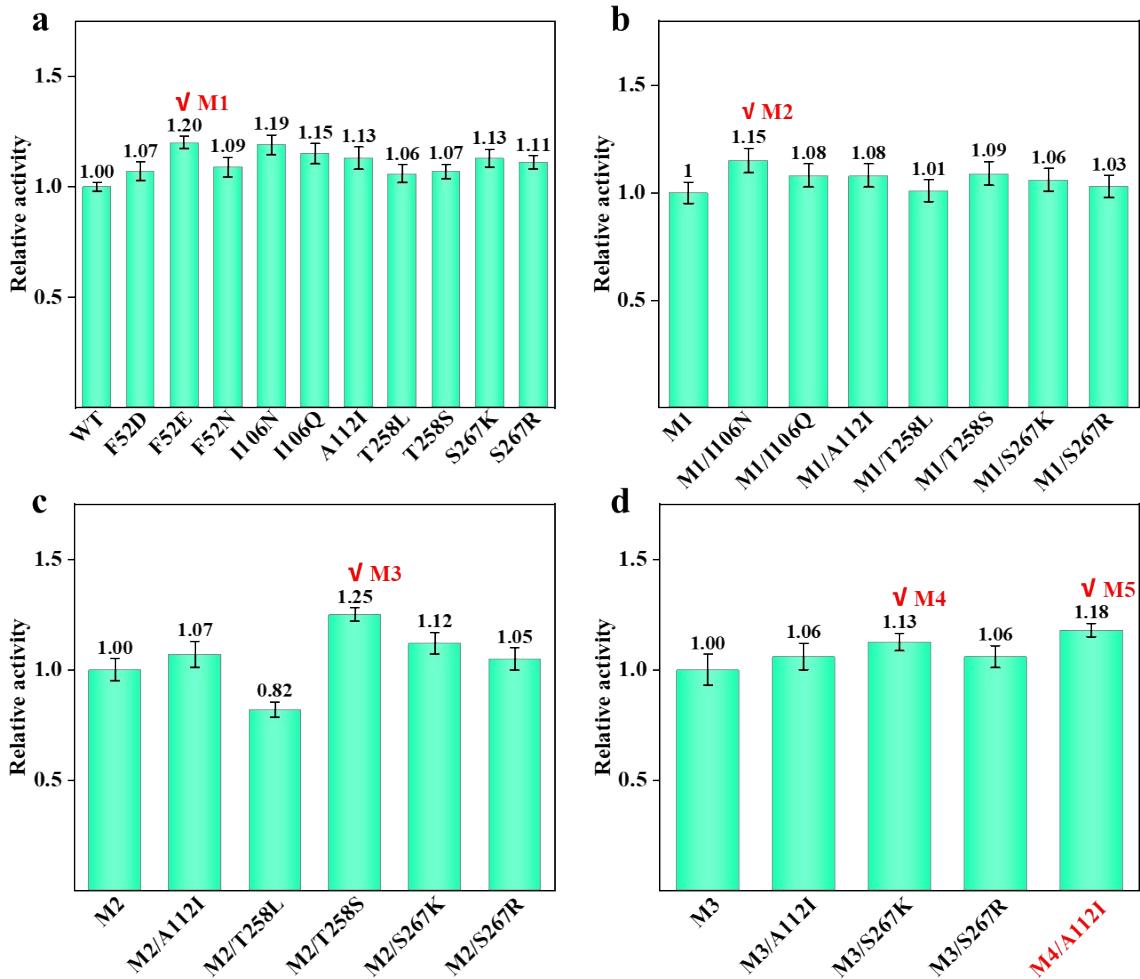
274 **Supplementary Figures**




275

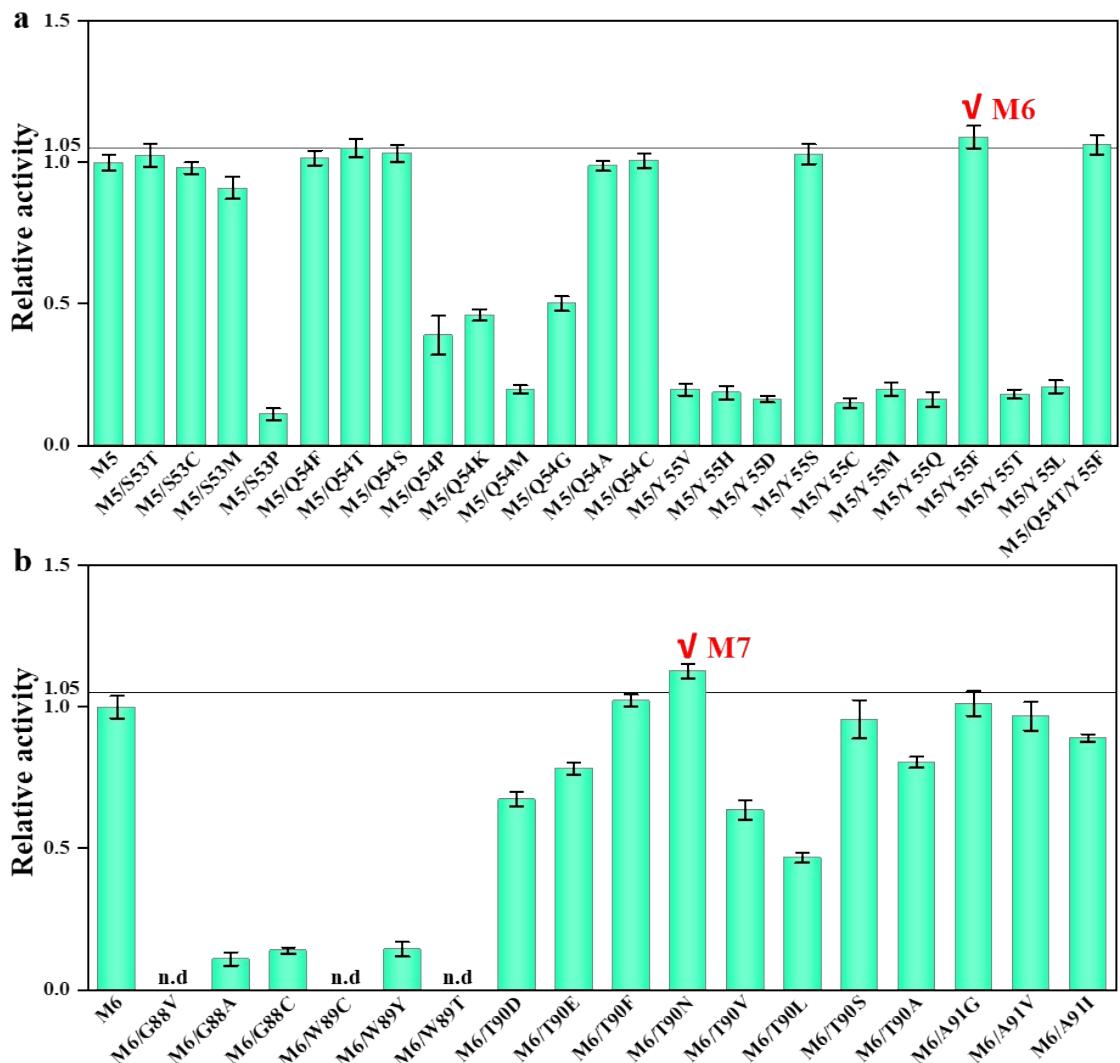
276 **Figure S1. SDS-PAGE of eight candidate ADHs.**

277 (a) The lanes for protein pellets are arranged as follows: *AcADH*, *SynADH*, *EcADH*, *HeADH*,
 278 *AaADH*, *AciADH*, *PpADH*. The lanes for protein supernatants are arranged as follows: *HeADH*,
 279 *EcADH*, *AcADH*, *AciADH*, *SynADH*, *PpADH*, *AaADH*. Lane M represents the protein marker; (b)
 280 Lane 1: *GtADH* supernatant; lane 2: *GtADH* pellet; (c) SDS-PAGE of the purified enzymes. Lane
 281 1: *AaADH*, lane 2: *SynADH*, lane 3: *PpADH*, lane 4: *GtADH*, lane 5: *AciADH*, lane 6: *HeADH*, lane
 282 7: *AcADH*, lane 8: *EcADH*. The asterisk (*) indicates enzymes carrying an N-terminal 6×His tag.


283

290 **Figure S3. The single mutants of *EcADH*.**

291 Conversion conditions: 10 g/L **1a**, 100 mM HEPES, 20 mM L-Glu, 200 mM ammonium formate, 0.5
292 mM PLP, 2 mM NADP⁺, and 0.5 mM Co²⁺. Reactions were carried out with 6 g/L CDW of *E. coli*
293 A01 expressing ADH mutants and 6 g/L CDW of *E. coli* B01 at pH 9.0 and 40°C for 24 h. *n.d.*
294 indicates **2c** product was not detected. Error bars indicate standard deviation of three independent
295 replicates. Data represent the mean \pm SD from three replicates.

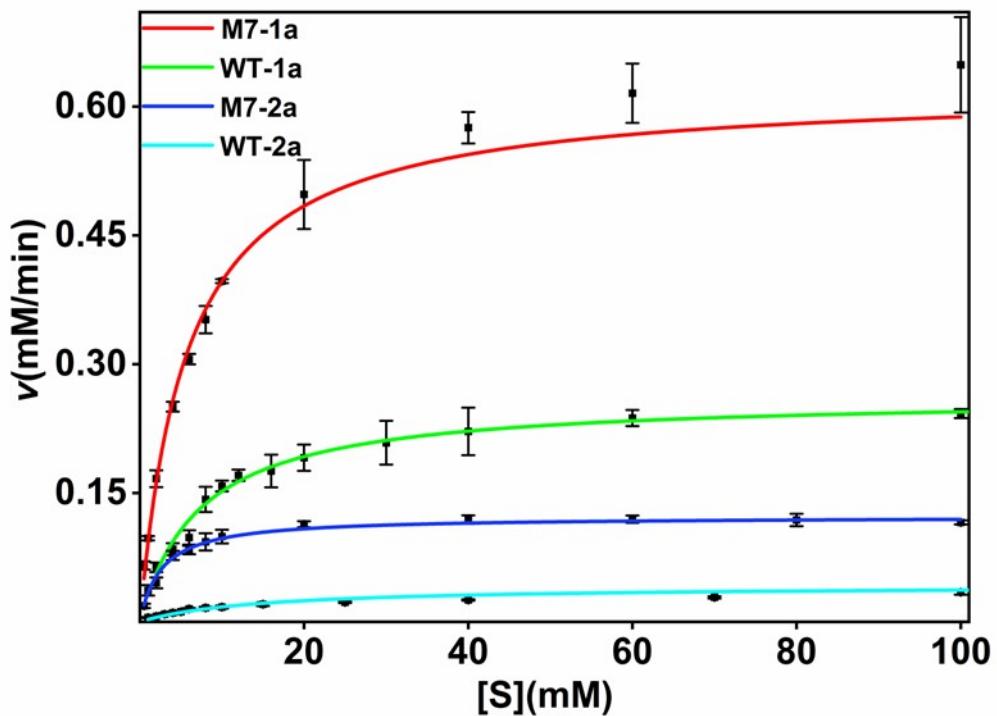


296

297 **Figure S4. Mutants of EcADH(M1-M5).**

298 (a) Beneficial single mutants with 10 g/L **1a** and 200 mM ammonium formate. (b) Beneficial double
 299 mutants with 10 g/L **1a** and 200 mM ammonium formate. (c) Beneficial triple mutants with 20 g/L
 300 **1a** and 400 mM ammonium formate. (d) Beneficial quadruple mutants with 30 g/L **1a** and 500 mM
 301 ammonium formate. Conversion conditions: 10-30 g/L **1a**, 50 mM HEPES, 20 mM L-Glu, 200–500
 302 mM ammonium formate, 0.5 mM PLP, 2 mM NADP⁺, and 0.5 mM Co²⁺. Reactions were conducted
 303 with 6 g/L CDW of *E. coli* A01 or *EcADH* mutants and 6 g/L CDW of *E. coli* B01 at pH 9.0 and 40°C
 304 for 24 h. Error bars indicate standard deviation of three independent replicates. Data represent the
 305 mean ± SD from three replicates.

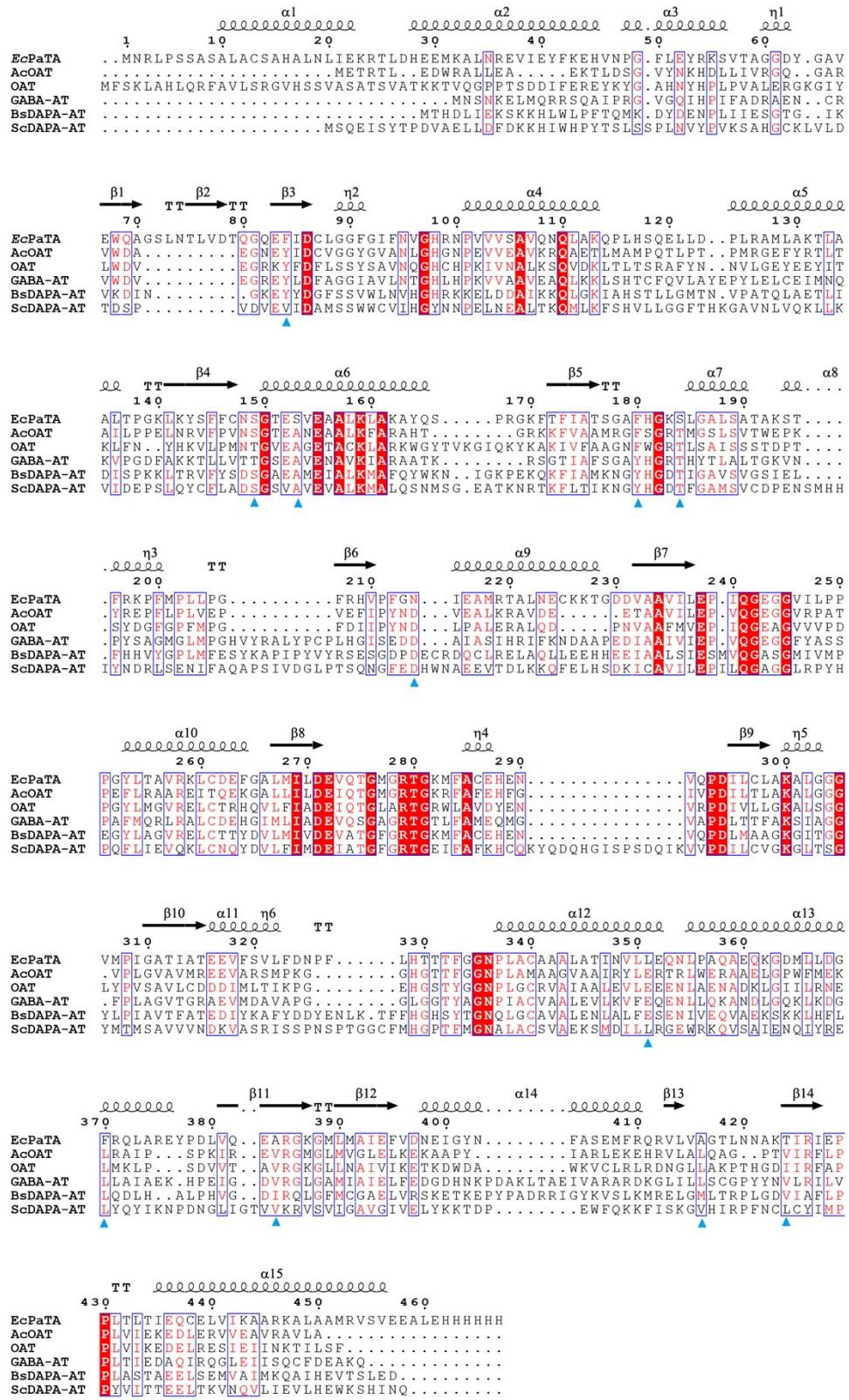
306



307

308 **Figure S5. Mutants of *EcADH*(M1-M7).**

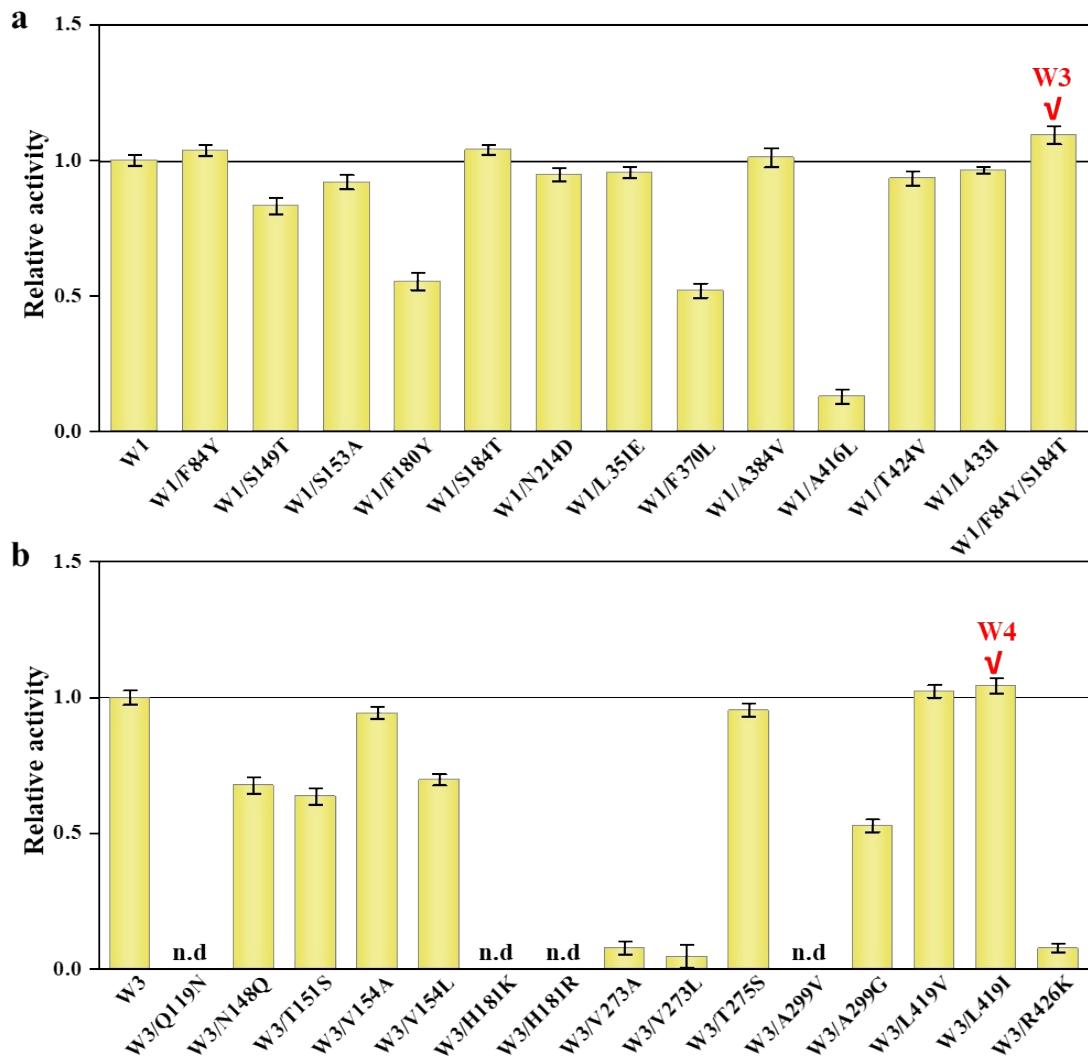
309 (a) M6 mutants of *EcADH*. (b) M7 mutants of *EcADH*. Conversion conditions: 30 g/L **1a**, 50 mM
 310 HEPES, 20 mM L-Glu, 500 mM ammonium formate, 0.5 mM PLP, 2 mM NADP⁺, and 0.5 mM Co²⁺.
 311 Reactions were conducted with 6 g/L CDW of *E. coli* A01 or *EcADH* mutants and 6 g/L CDW of *E.*
 312 *coli* B01 at pH 9.0 and 40°C for 24 h. n.d. indicates **2c** product was not detected. Error bars indicate
 313 standard deviation of three independent replicates. Data represent the mean ± SD from three
 314 replicates.


315

Model	MichaelisMenten			
Equation	$y = V_{max} * x / (K_m + x)$			
Plot	WT-1a	M7-1a	WT-2a	M7-2a
Vmax	0.26232 ± 0.00441	0.62118 ± 0.01777	0.04223 ± 0.00269	0.12242 ± 0.00173
Km	7.26147 ± 0.4694	5.65627 ± 0.38967	14.31014 ± 2.58217	2.60334 ± 0.21575
Reduced Chi-Sqr	0.97038	2.83727	14.5881	0.78751
R ² (COD)	0.98849	0.99747	0.93315	0.99351
Adj.-R ²	0.98753	0.99719	0.92837	0.99286

318 **Figure S6. Kinetic parameters of *EcADH* wild-type (WT) and its mutant M7.**319 Error bars indicate standard deviation of three independent replicates. Data represent the mean \pm

320 SD from three replicates.

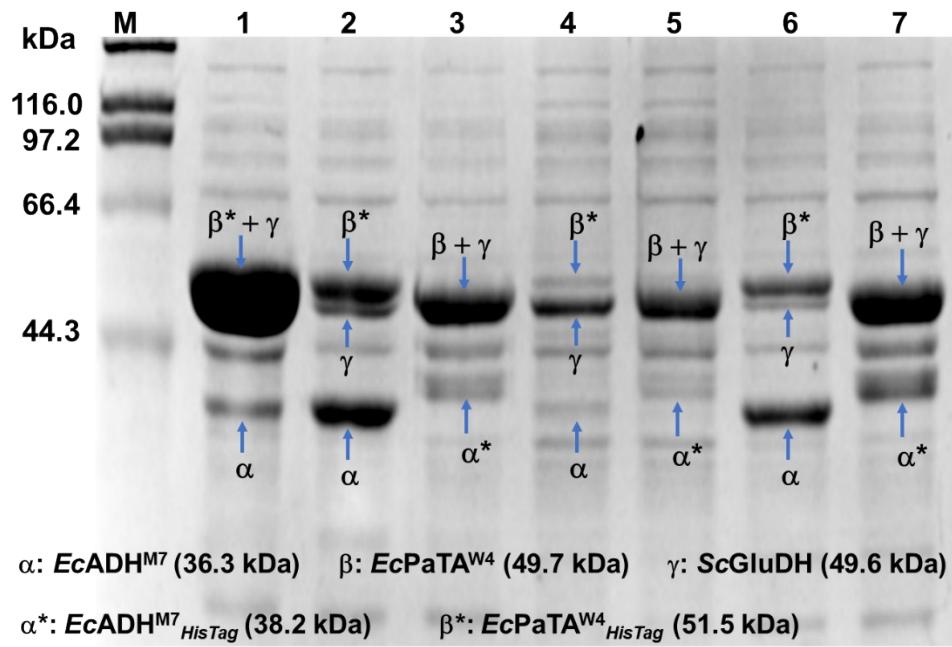


321

322 Figure S7. Sequence alignment of transaminases.²¹

323 EcPaTA (PDB: 4UOX), AcOAT (PDB: 1VEF), OAT (PDB: 2OAT), GABA-AT (PDB: 1SFF),

324 BsDAPA-AT (PDB: 1SFF), ScDAPA-AT (Uniprot: P50277).

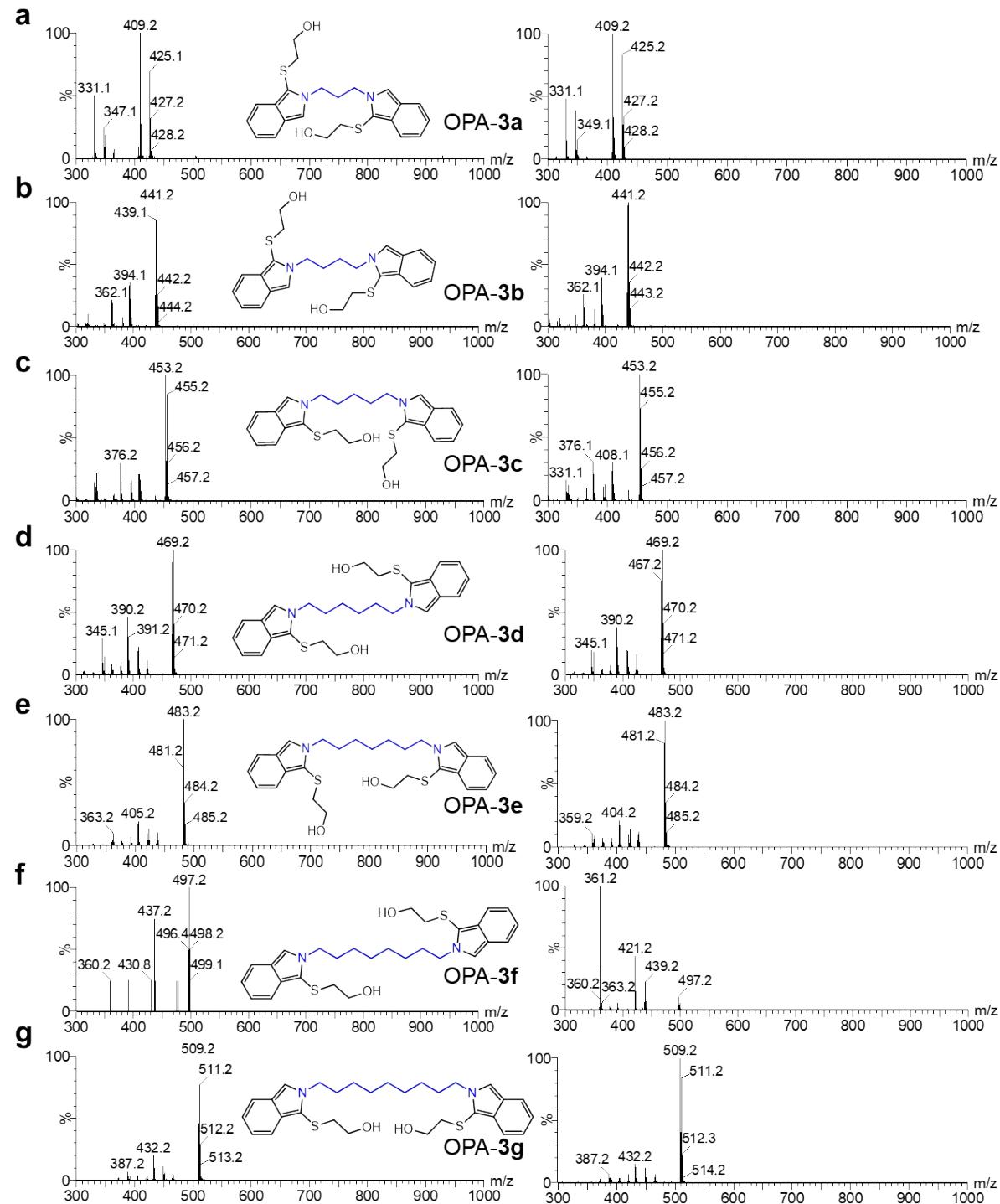


325

326 **Figure S8. Mutants of EcPaTA^{F91Y}.**

327 (a) The first-round mutants. (b) The second-round mutants. Conversion conditions: 30 g/L **1a**, 50
 328 mM HEPES, 20 mM L-Glu, 500 mM ammonium formate, 0.5 mM PLP, 2 mM NADP⁺, and 0.5 mM
 329 Co²⁺. Reactions were conducted with 6 g/L CDW of *E. coli* A02 and 30 g/L CDW of *E. coli* B01 or
 330 expressing transaminase mutants at pH 9.0 and 40°C for 24 h. n.d. indicates **2c** product was not
 331 detected. Error bars indicate standard deviation of three independent replicates. Data represent
 332 the mean ± SD from three replicates.

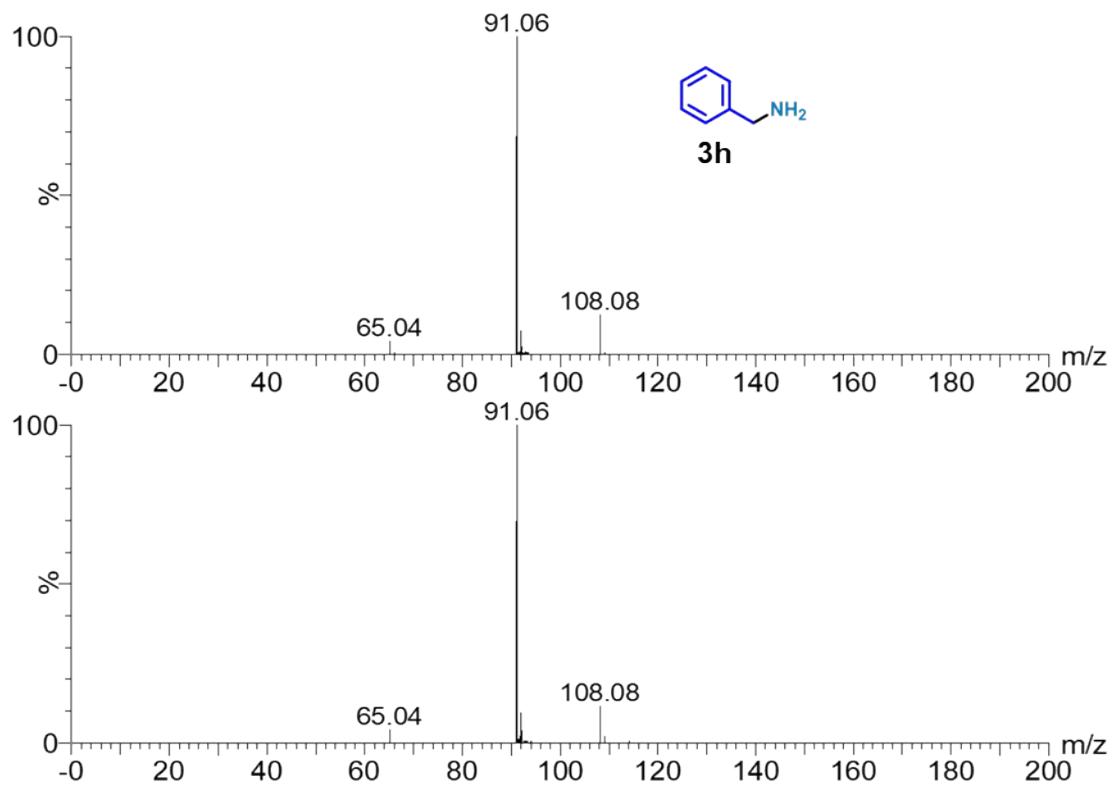
333



334

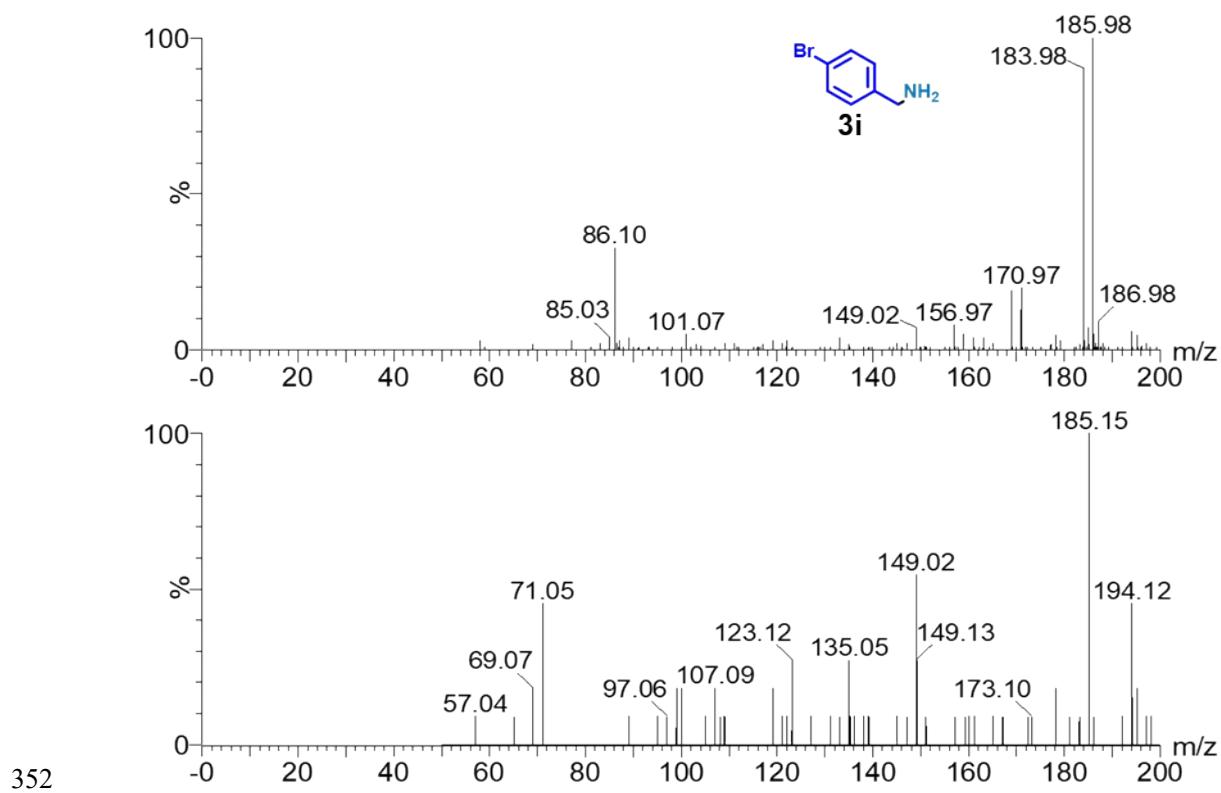
335 **Figure S9. SDS-PAGE of the recombinant strain *E. coli* C01-C07.**

336 Lane M represents protein marker, lanes 1-7 correspond to the cell lysate supernatants of *E. coli*
 337 C01-C07, respectively. α : *EcADH*^{M7} (36.3 kDa); β : *EcPaTA*^{W4} (49.7 kDa); γ : *ScGluDH* (49.6 kDa);
 338 α^* : *EcADH*^{M7}_{HisTag} (38.2 kDa); β^* : *EcPaTA*^{W4}_{HisTag} (51.5 kDa). The asterisk (*) indicates enzymes
 339 carrying an N-terminal 6xHis tag.


340

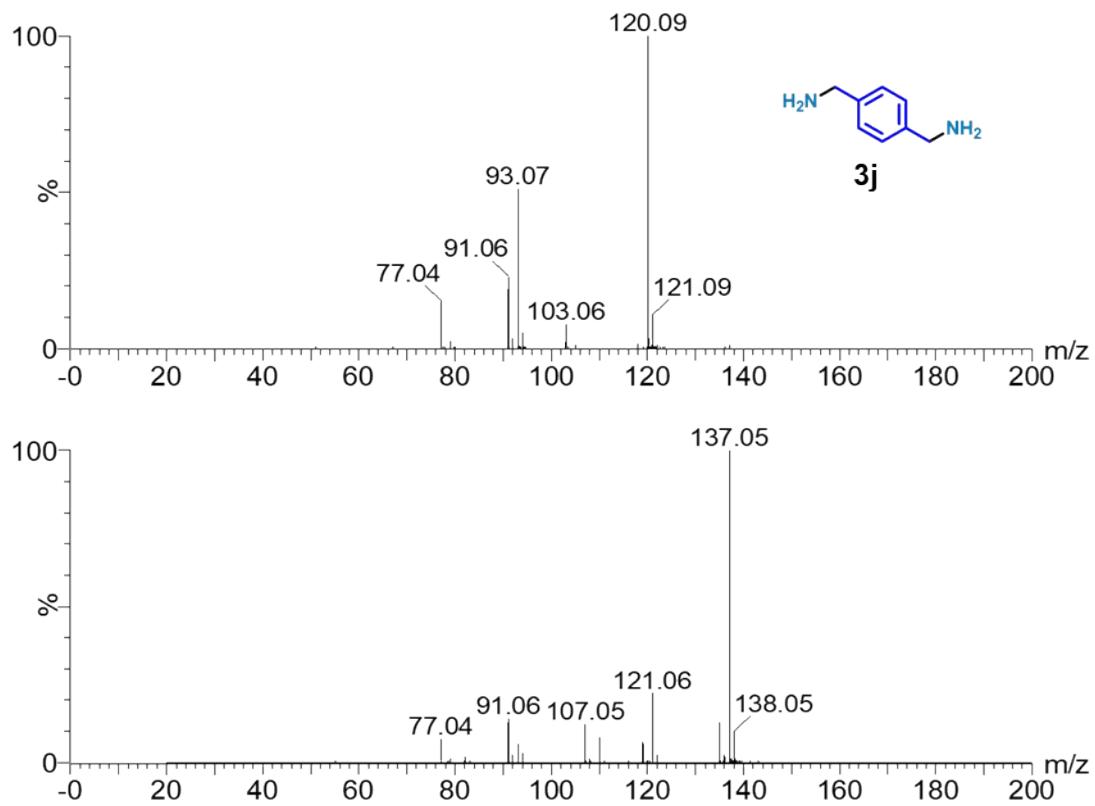
341

342 **Figure S10. LC-MS spectra of OPA-3a to OPA-3g.**


343 The spectrum on the left represents the standard sample, while the one on the right represents the
 344 reaction sample. (a) OPA-3a, $[M+H]^+=427.14$. (b) OPA-3b, $[M+H]^+=441.16$. (c) OPA-3c,
 345 $[M+H]^+=455.17$. (d) OPA-3d, $[M+H]^+=469.19$. (e) OPA-3e, $[M+H]^+=483.21$. (f) OPA-3f,
 346 $[M+H]^+=497.22$. (g) OPA-3g, $[M+H]^+=511.24$.

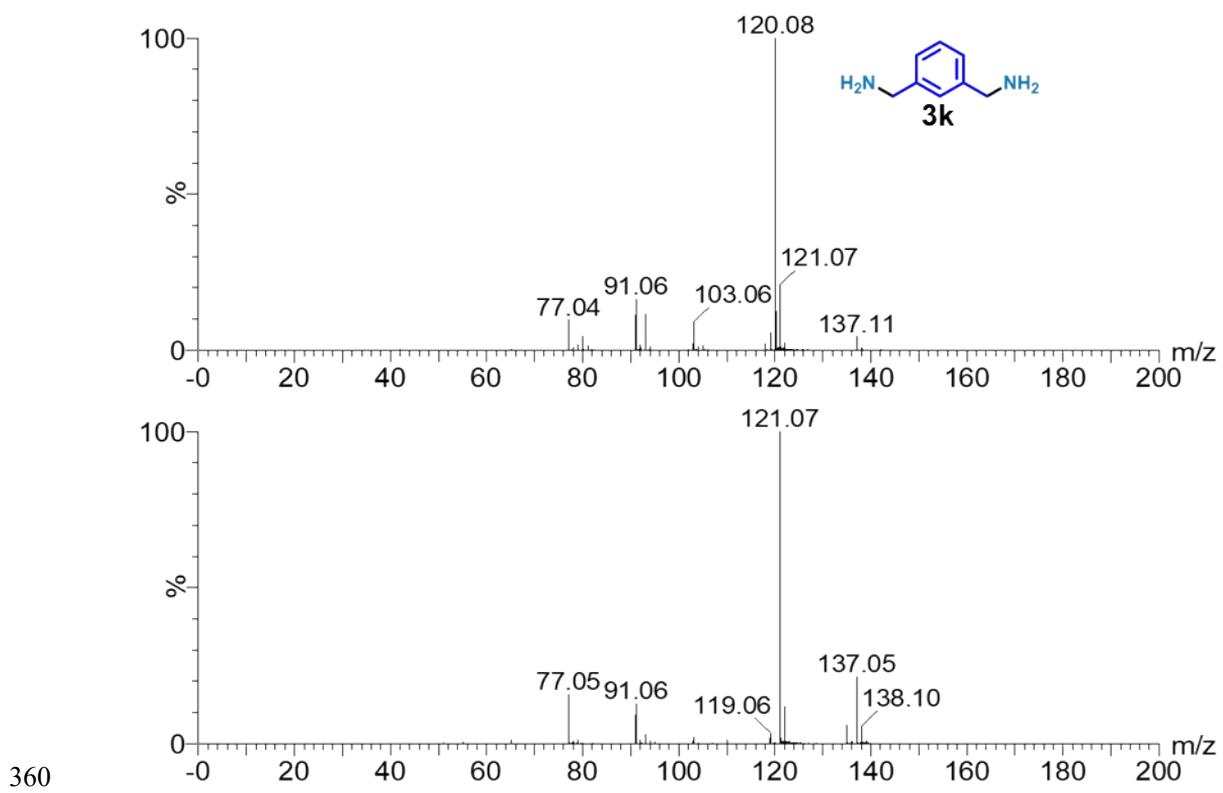
349 **Figure S11. LC-MS spectra of 3h.**

350 The spectrum above represents the standard sample, while the one below represents the


351 reaction sample. $[M+H]^+=108.07$.

353 **Figure S12. LC-MS spectra of 3i.**

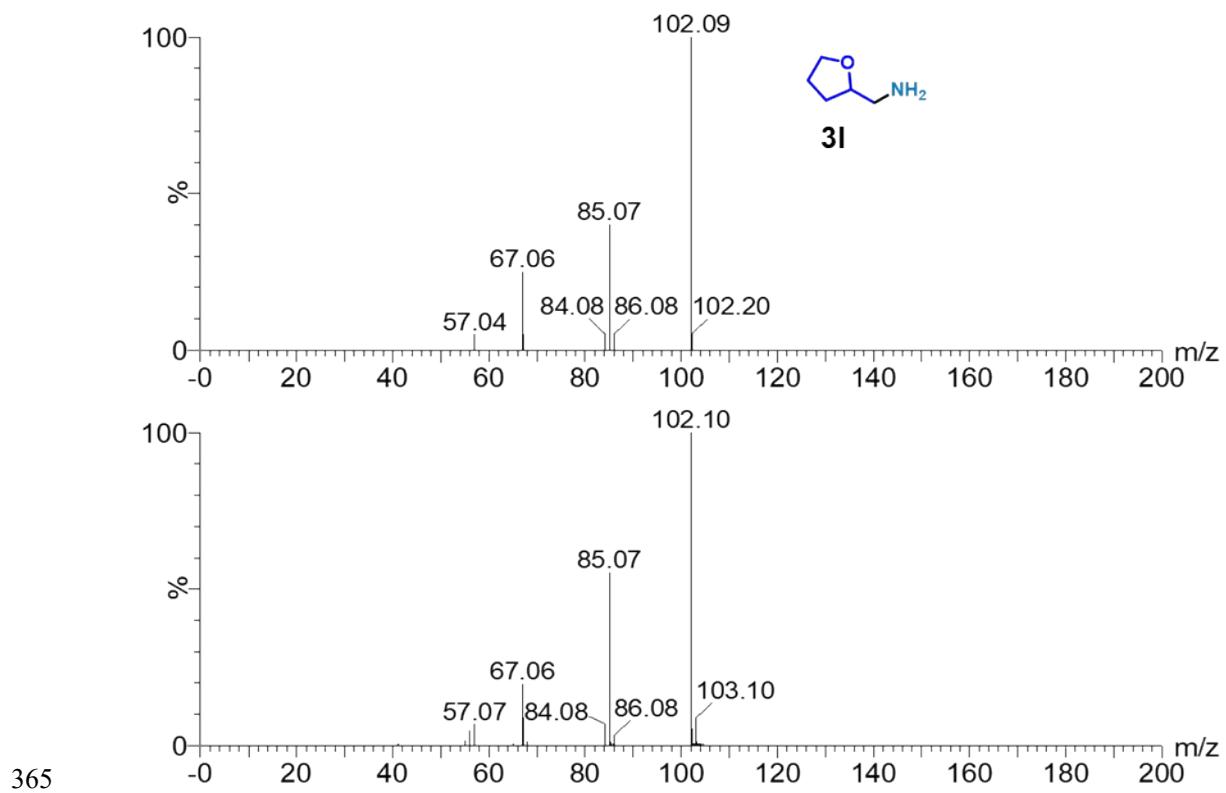
354 The spectrum above represents the standard sample, while the one below represents the


355 reaction sample. $[M+H]^+=185.98$.

357 **Figure S13. LC-MS spectra of 3j.**

358 The spectrum above represents the standard sample, while the one below represents the

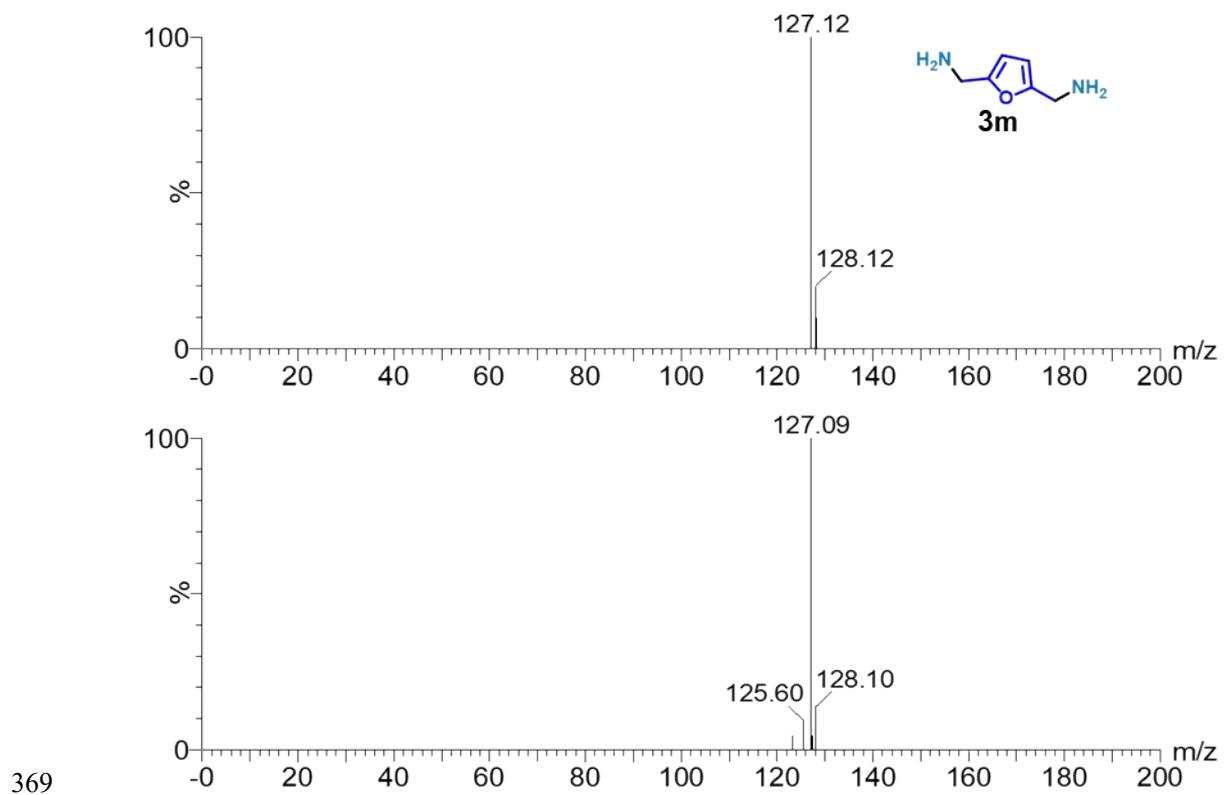
359 reaction sample. $[M+H]^+ = 137.10$.



361 **Figure S14. LC-MS spectra of 3k.**

362 The spectrum above represents the standard sample, while the one below represents the

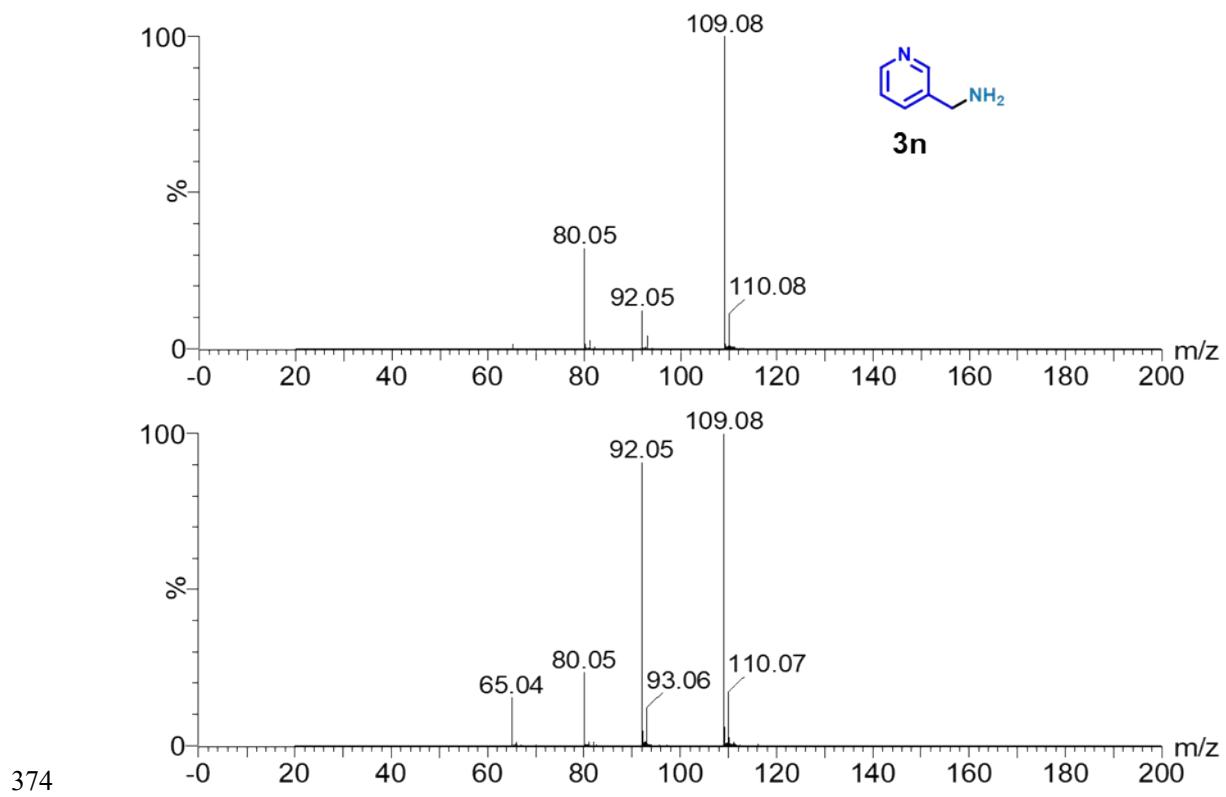
363 reaction sample. $[M+H]^+=137.10$.


364

366 **Figure S15. LC-MS spectra of 3I.**

367 The spectrum above represents the standard sample, while the one below represents the

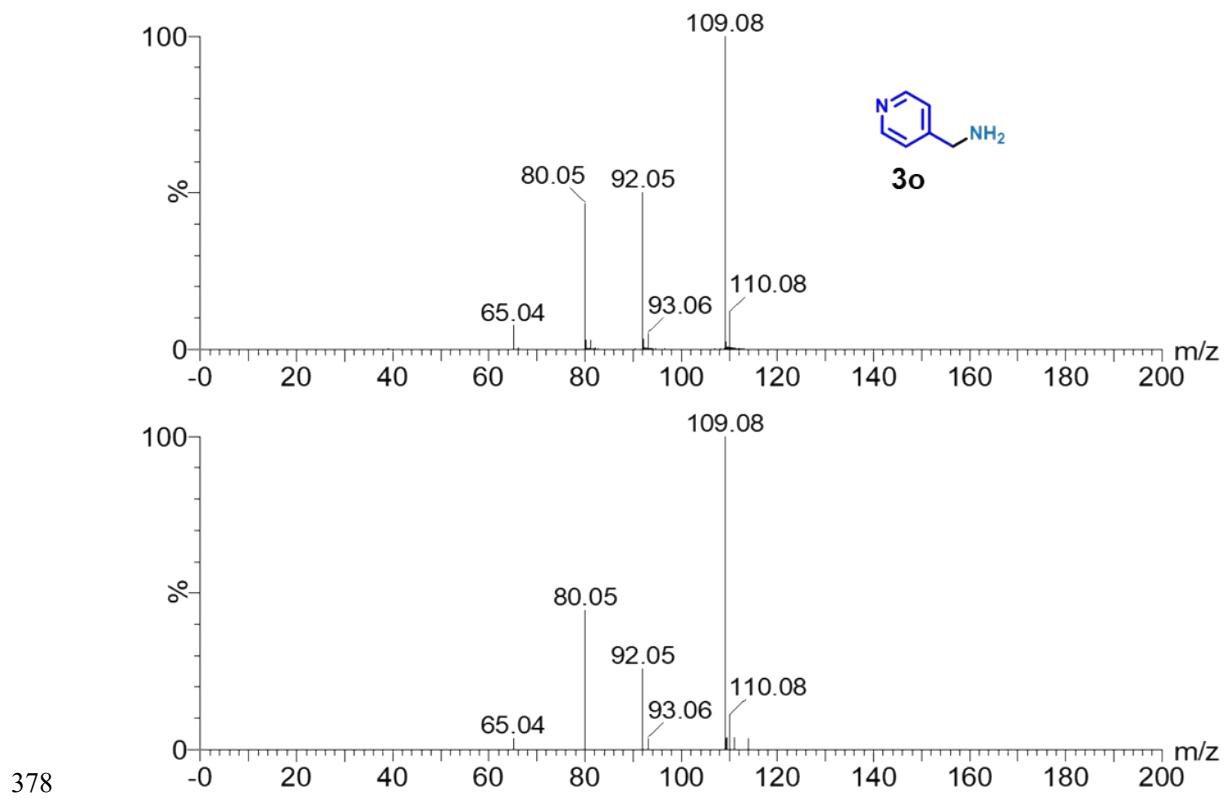
368 reaction sample. $[M+H]^+=102.08$.



370 **Figure S16. LC-MS spectra of 3m.**

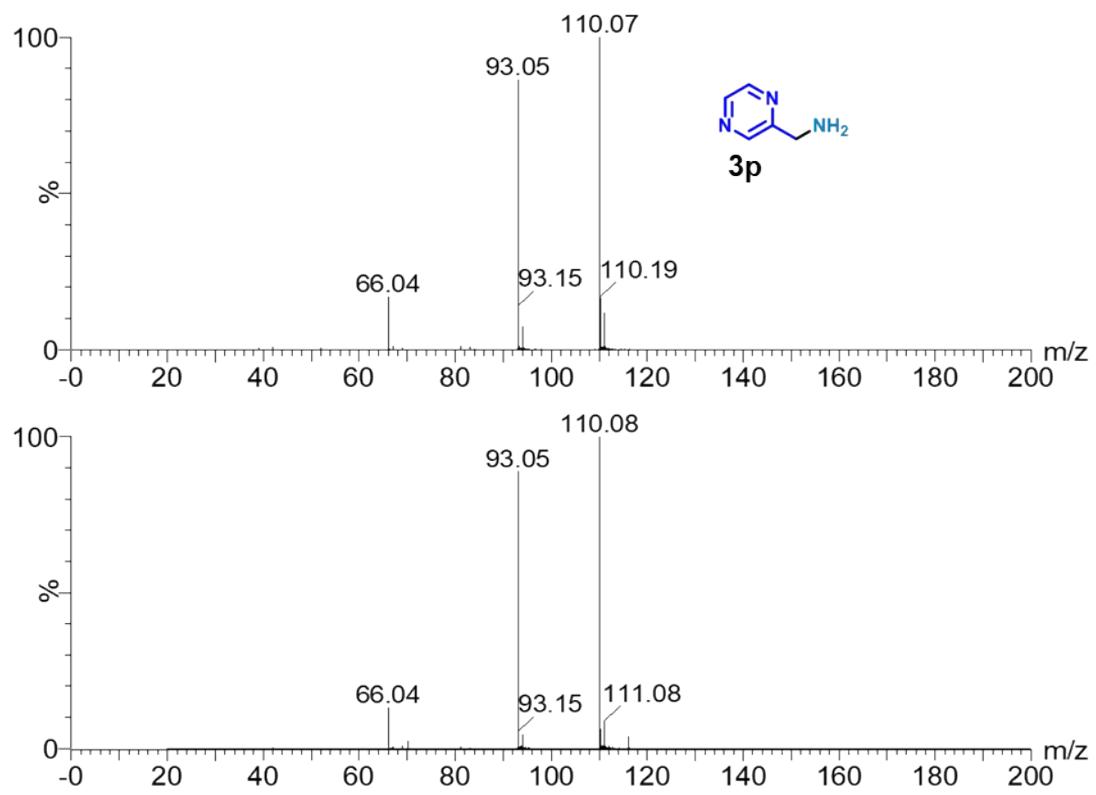
371 The spectrum above represents the standard sample, while the one below represents the

372 reaction sample. $[M+H]^+ = 127.08$.


373

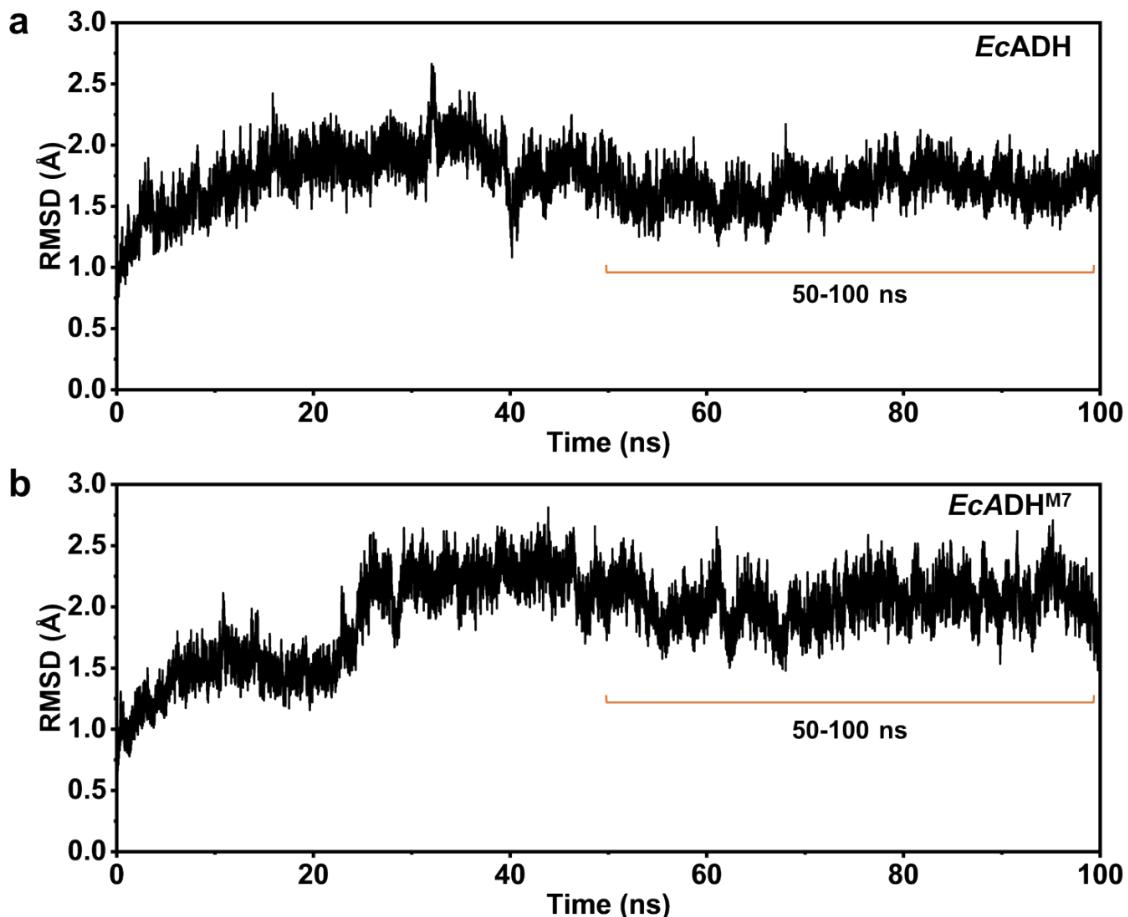
375 **Figure S17. LC-MS spectra of 3n.**

376 The spectrum above represents the standard sample, while the one below represents the


377 reaction sample. $[M+H]^+=109.08$.

379 Figure S18. LC-MS spectra of 3o.

380 The spectrum above represents the standard sample, while the one below represents the


381 reaction sample. $[M+H]^+ = 109.07$.

383 **Figure S19. LC-MS spectra of 3p.**

384 The spectrum above represents the standard sample, while the one below represents the

385 reaction sample. $[M+H]^+=110.06$.

386

387 **Figure S20. Root-mean-square deviation (RMSD) of backbone heavy atoms relative to the**
 388 **first snapshot during 100 ns MD simulation of *EcADH* and *EcADH^{M7}*.**

389 (a) *EcADH-NADP⁺-2a* ternary complex and (b) *EcADH^{M7}-NADP⁺-2a* ternary complex. During the
 390 50-100 ns period, the system remains in a stable phase.

391

392 **Reference**

393 1. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L..
394 Comparison of simple potential functions for simulating liquid water. *J. Chem.*
395 *Phys.* **1983**, 79, 926-935.

396 2. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A.,
397 Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., et al.
398 *Gaussian 16 Rev. C.01. 2016*

399 3. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and
400 Olson, A.J., Automated docking using a Lamarckian genetic algorithm and an
401 empirical binding free energy function. *J. Comput. Chem.* **1998**, 19: 1639-1662.

402 4. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D.
403 S., & Olson, A. J.. AutoDock4 and AutoDockTools4: Automated docking with
404 selective receptor flexibility. *J. Comput. Chem.* **2009**, 30(16), 2785–2791.

405 5. Case, D., Ben-Shalom, I., Brozell, S.R., Cerutti, D.S., Cheatham, T., Cruzeiro,
406 V.W.D., Darden, T., Duke, R., Ghoreishi, D., Gilson, M., et al. *Amber 2018*. **2018**

407 6. Jakalian, A., Jack, D. B., & Bayly, C. I., Fast, efficient generation of high-quality
408 atomic charges. AM1-BCC model: II. Parameterization and validation. *J. Comput.*
409 *Chem.* **2002**, 23(16), 1623–1641.

410 7. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A., Development
411 and testing of a general amber force field. *J. Comput. Chem.* **2004**, 25(9), 1157–
412 1174.

413 8. Darden, T., York, D., and Pedersen, L., Particle mesh Ewald: An N·log(N) method
414 for Ewald sums in large systems. *J. Chem. Phys.* **1993**, 98, 10089-10092.

415 9. Chae, T. U.; Kim, W. J.; Choi, S.; Park, S. J.; Lee, S. Y., Metabolic engineering of
416 *Escherichia coli* for the production of 1,3-diaminopropane, a three carbon diamine.
417 *Sci. Rep.* **2015**, 5 (1), 13040.

418 10. Noh, M.; Yoo, S. M.; Kim, W. J.; Lee, S. Y., Gene expression knockdown by
419 modulating synthetic small rna expression in *Escherichia coli*. *Cell Syst.* **2017**, 5
420 (4), 418-426.e4.

421 11. Kim, H. T.; Baritugo, K.-A.; Oh, Y. H.; Hyun, S. M.; Khang, T. U.; Kang, K. H.;
422 Jung, S. H.; Song, B. K.; Park, K.; Kim, I.-K.; Lee, M. O.; Kam, Y.; Hwang, Y. T.;
423 Park, S. J.; Joo, J. C., Metabolic engineering of *Corynebacterium glutamicum* for
424 the high-Level production of cadaverine that can be used for the synthesis of
425 biopolyamide 510. *ACS Sustainable Chem. Eng.* **2018**, 6 (4), 5296-5305.

426 12. Xiao, K.; Wang, D.; Liu, X.; Kang, Y.; Luo, R.; Hu, L.; Peng, Z., Novel
427 bioproduction of 1,6-hexamethylenediamine from L-lysine based on an artificial
428 one-carbon elongation cycle. *ACS Omega* **2024**, 9 (39), 40970-40979.

429 13. Sarak, S.; Pagar, A. D.; Khobragade, T. P.; Jeon, H.; Giri, P.; Lim, S.; Patil, M. D.;
430 Kim, Y.; Kim, B. G.; Yun, H., A multienzyme biocatalytic cascade as a route
431 towards the synthesis of α,ω -diamines from corresponding cycloalkanols. *Green*
432 *Chem.* **2023**, 25 (2), 543-549.

433 14. Zhang, Z. W.; Fang, L.; Wang, F.; Deng, Y.; Jiang, Z. B.; Li, A. T., Transforming
434 inert cycloalkanes into α,ω -diamines by designed enzymatic cascade catalysis.
435 *Angew. Chem. Int. Ed.* **2023**, 62 (16), 10.

436 15. Kim, Y. C.; Yoo, H.-W.; Park, B. G.; Sarak, S.; Hahn, J.-S.; Kim, B.-G.; Yun, H.,
437 One-Pot Biocatalytic Route from Alkanes to α,ω -Diamines by Whole-Cell
438 Consortia of Engineered *Yarrowia lipolytica* and *Escherichia coli*. *ACS Synth. Biol*
439 **2024**, 13 (7), 2188-2198.

440 16. Hwang, S.-Y.; Woo, J.-M.; Choi, G. E.; Oh, D.-K.; Seo, J.-H.; Park, J.-B., Biological
441 Reaction Engineering for the Preparation of C9 Chemicals from Oleic Acid: 9-
442 Aminononanoic Acid, 1,9-Nonanediol, 9-Amino-1-nonanol, and 1,9-
443 Diaminononane. *ACS Catal.* **2024**, 14 (6), 4130-4138.

444 17. Gopal, M. R.; Dickey, R. M.; Butler, N. D.; Talley, M. R.; Nakamura, D. T.;
445 Mohapatra, A.; Watson, M. P.; Chen, W.; Kunjapur, A. M., Reductive enzyme
446 cascades for valorization of polyethylene terephthalate deconstruction products.
447 *ACS Catal.* **2023**, 13 (7), 4778-4789.

448 18. Giri, P.; Lim, S.; Khobragade, T. P.; Pagar, A. D.; Patil, M. D.; Sarak, S.; Jeon, H.;
449 Joo, S.; Goh, Y.; Jung, S.; Jang, Y. J.; Choi, S. B.; Kim, Y. C.; Kang, T. J.; Heo,

450 Y. S.; Yun, H., Biocatalysis enables the scalable conversion of biobased furans
451 into various furfurylamines. *Nat. Commun.* **2024**, *15* (1), 6371.

452 19. Yang, W.; Liu, H.; Li, S.; Luo, J.; Liang, C., Selective Hydrogenation of Adiponitrile
453 to Hexamethylenediamine by Supported Co Catalyst under Alkali-Free
454 Conditions. *Industrial & Engineering Chemistry Research* **2024**, *63* (26), 11374-
455 11383.

456 20. Wu, R.; Wang, H.; Li, H.; Tian, X. Catalyst containing skeleton Ni for preparation
457 of 1,4-diaminomethyl benzene and preparation method thereof. CN102179259,
458 **2011**.

459 21. Robert, X., & Gouet, P. Deciphering key features in protein structures with the
460 new ENDscript server. *NucleicAcids Res.* **2014**, *42*, W320–W324.