# Electrochemical vicinal amidoselenation of unactivated olefins via tandem Ritter reaction

Wei Xu,<sup>a</sup><sup>+</sup> Nana Zhang,<sup>a</sup><sup>+</sup> Chenyu Li,<sup>a</sup> Haodong Ma,<sup>a</sup> Bin Wang,<sup>a</sup> Ziren Chen,<sup>a</sup> Yu Xia,<sup>a</sup> Shaofeng Wu,<sup>a</sup> Weiwei Jin, <sup>\*b</sup> Penji Yan,<sup>\*c</sup> Chenjiang Liu<sup>\*a</sup> and Yonghong Zhang<sup>\*a</sup>

<sup>a</sup>Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China.

<sup>b</sup>College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China.

<sup>c</sup>College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, Hexi University, Zhangye, 734000, P.R. China.

Email: pxylcj@126.com, zhzhzyh@126.com.

# **Table of Contents**

| 1. General information                                                   |
|--------------------------------------------------------------------------|
| 2. Experimental procedures                                               |
| 2.1 Optimization of the amidoselenation reaction for the inactivation of |
| alkenes5                                                                 |
| 2.2 Substrate synthesis method15                                         |
| 2.3 Scale-up reaction15                                                  |
| 3. Calculation of Green Chemistry Metrics17                              |
| 4. Mechanistic studies                                                   |
| 4.1 Radical trapping experiments18                                       |
| 4.2 The hydrogen detection experiment20                                  |
| 4.3 DFT calculations on the plausible mechanism                          |
| 4.4 The cyclic voltammetry of olefins within the reaction system43       |
| 4.5 The atomic dipole corrected Hirshfeld (ADCH)45                       |
| 5. Analytical data45                                                     |
| 6. References                                                            |
| 7. NMR spectra of the products                                           |

#### **1.** General information

#### General.

Unless otherwise noted, all reagents and solvents were purchased from commercial sources (Adamas-beta, Energy Chemical) and used without further purification.

#### NMR spectrum

<sup>1</sup>H and <sup>13</sup>C NMR spectra were collected on 400 or 600 MHz NMR spectrometers (Varian Inova-400 or Bruker Avance NEO 600). Chemical shifts for protons were reported in parts per million (ppm) downfield from tetramethylsilane and were referenced to residual protium in the NMR solvents (CDCl<sub>3</sub> =  $\delta$  7.26). The following abbreviations are used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd=doublet of doublets, dt=doublet of triplet, td= triplet of doublet, qd= quartet of doublets, coupling constants *J* were reported in hertz unit (Hz).

#### HRMS

High-resolution mass spectra (HRMS) were recorded on Thermo Fisher Scientific QExactive.

#### **Melting point**

Melting point (M.P.) was recorded on BÜCHI (M-560).

#### UV light

Visualization of TLC was achieved by the use of UV light (254 nm).

#### Materials.

All the chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. Diselenides<sup>[1]</sup> are known compounds and are synthesized according to the reported method.

#### The Electrochemical Reaction Instrument.

Electrochemical reactions were performed on IKA ElectraSyn 2.0 pro.

Cyclic voltammetry (CV) was carried out on a CHI660E electrochemical workstation (CH Instruments, Ins).



# 2. Experimental procedures

#### 2.1 Optimization of the amidoselenation reaction for the inactivation of alkenes

#### 2.1.1 Table S1 screening of solvents<sup>a</sup>



<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), VBImBr (0.2 mmol), MeCN/Solvent (4 mL v:v = 1:1), TsOH (0.2mmol), C anode (immersed surface area  $8 \times 5 \text{ mm}^2$ ), C cathode (immersed surface area  $8 \times 5 \text{ mm}^2$ ), the distance between the electrodes (5 mm), constant current = 5 mA, 5 h, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields. n.r. = no reaction. NMP = 1-methyl-2-pyrrolidinone.

### 2.1.2 Table S2 screening of constant currents<sup>a</sup>

| n In            | + Se Se Se 2n | C(+) C(-), Constant current<br>5 h, VBImBr, TsOH<br>MeCN, r.t.<br>undivided cell | Se<br>NH<br>O<br>3n                              |
|-----------------|---------------|----------------------------------------------------------------------------------|--------------------------------------------------|
|                 |               |                                                                                  |                                                  |
| Entry           | Co            | nstant current (mA)                                                              | Yield (%) <sup>b</sup>                           |
| Entry<br>1      | Со            | nstant current (mA)<br>3                                                         | Yield (%) <sup>b</sup> trace                     |
| Entry<br>1<br>2 | Со            | nstant current (mA)<br>3<br>5                                                    | <b>Yield (%)</b> <sup>b</sup><br>trace<br>7      |
| Entry 1 2 3     | Co            | nstant current (mA)<br>3<br>5<br>7                                               | <b>Yield (%)</b> <sup>b</sup><br>trace<br>7<br>5 |

<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), VBImBr (0.2 mmol), MeCN (4 mL), TsOH (0.2 mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), the distance between the electrodes (5 mm), Constant current = x mA, 5 h, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields.

#### 2.1.3 Table S3 screening of electrolytes<sup>a</sup>

|    | se Se | C(+) C(-), 5 mA, 5 h<br><b>Electrolyte</b> , TsOH | Se   |
|----|-------|---------------------------------------------------|------|
|    | Se Se | MeCN, r.t.<br>undivided cell                      | O NH |
| 1n | 2n    |                                                   | 3n   |

| Entry | Electrolyte         | Yield (%) <sup>b</sup> |
|-------|---------------------|------------------------|
| 1     | TBAB                | n.r.                   |
| 2     | TBAI                | n.r.                   |
| 3     | TBAC                | n.r.                   |
| 4     | TBABF <sub>4</sub>  | 28                     |
| 5     | EMIMPF <sub>6</sub> | 46                     |
| 6     | Bu <sub>4</sub> NOH | trace                  |
| 7     | Me <sub>4</sub> NF  | 11                     |
| 8     | TBAOAc              | n.r.                   |
| 9     | TBAHSO <sub>4</sub> | 21                     |
| 10    | TBAClO <sub>4</sub> | 39                     |
| 11    | TBANO <sub>2</sub>  | n.r.                   |
| 12    | KPF <sub>6</sub>    | 39                     |
| 13    | $TBAPF_6$           | 82                     |

<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), Electrolyte (0.2 mmol), MeCN (4 mL), TsOH (0.2 mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), the distance between the electrodes (5 mm), constant current = 5 mA, 5 h, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields. n.r. = no reaction.

# 2.1.4 Table S4 screening of electrodes<sup>a</sup>

3

| +<br>1n | Se S | Electrode, 5 mA, 5 h<br>TBAPF <sub>6</sub> , TsOH<br>MeCN, r.t.<br>undivided cell | NH<br>O<br>3n          |
|---------|------------------------------------------|-----------------------------------------------------------------------------------|------------------------|
| Entry   | E                                        | Electrode                                                                         | Yield (%) <sup>b</sup> |
| 1       |                                          | C-C                                                                               | 82                     |
| 2       |                                          | C-Ni                                                                              | 80                     |

<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), TBAPF<sub>6</sub> (0.2 mmol), MeCN (4 mL), TsOH (0.2 mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), the distance between the electrodes (5 mm), constant current = 5 mA, 5 h, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields.

C-Cu

63

#### 2.1.5 Table S5 screening of acids<sup>a</sup>

|       | ≏ Se        | C(+) C(-), 5 mA, 5 h<br>TBAPF <sub>6</sub> , <mark>Acid</mark> | Se                     |
|-------|-------------|----------------------------------------------------------------|------------------------|
|       | Sé          | MeCN, r.t.<br>undivided cell                                   | 0 NH                   |
| 1n    | 2n          |                                                                | 3n                     |
| Entry |             | Acid                                                           | Yield (%) <sup>b</sup> |
| 1     |             | TsOH                                                           | 82                     |
| 2     | <i>p</i> -7 | Toluic acid                                                    | n.d.                   |
| 3     |             | АсОН                                                           | n.d.                   |

<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), TBAPF<sub>6</sub> (0.2 mmol), MeCN (4 mL), Acid (0.2 mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), the distance between the electrodes (5 mm), constant current = 5 mA, 5 h, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields. n.d. = not detected.

#### 2.1.6 Table S6 screening of TsOH dosages<sup>a</sup>



<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), TBAPF<sub>6</sub> (0.2 mmol), MeCN (4 mL), TsOH (x mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), the distance between the electrodes (5 mm), constant current = 5 mA, 5 h, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields.

|       | se Se   | C(+) C(-), 5 mA, 5 h<br>TBAPF <sub>6</sub> (x mmol), TsOH (0.05 mmol) | Se                     |
|-------|---------|-----------------------------------------------------------------------|------------------------|
|       | • Se Se | MeCN, r.t.<br>undivided cell                                          |                        |
| 1n    | 2n      |                                                                       | 3n                     |
| Entry |         | TBAPF <sub>6</sub> (x mmol)                                           | Yield (%) <sup>b</sup> |
| 1     |         | 0.2                                                                   | 92                     |
| 2     |         | 0.15                                                                  | 66                     |
| 3     |         | 0.1                                                                   | 52                     |
| 4     |         | 0.05                                                                  | 38                     |
| 5     |         | 0.03                                                                  | 30                     |

#### 2.1.7 Table S7 screening of TBAPF<sub>6</sub> dosages<sup>a</sup>

<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), TBAPF<sub>6</sub> (x mmol), MeCN (4 mL), TsOH (0.05 mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), the distance between the electrodes (5 mm), constant current = 5 mA, 5 h, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields.

### 2.1.8 Table S8 screening of times<sup>a</sup>

|          | s Se  | C(+) C(-), 5 mA, <mark>Time</mark><br>TBAPF <sub>6</sub> , TsOH (0.05 mmol) | Se                     |
|----------|-------|-----------------------------------------------------------------------------|------------------------|
| <b>4</b> | Se Se | MeCN, r.t.<br>undivided cell                                                |                        |
| 10       | 20    |                                                                             | 3n                     |
| Entry    |       | Time (h)                                                                    | Yield (%) <sup>b</sup> |
| 1        |       | 3                                                                           | 90                     |
| 2        |       | 5                                                                           | 92                     |
| 3        |       | 8                                                                           | 68                     |
| 1        |       | 10                                                                          | trace                  |

<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), TBAPF<sub>6</sub> (0.2 mmol), MeCN (4 mL), TsOH (0.05 mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), the distance between the electrodes (5 mm), constant current = 5 mA, time, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields.

### 2.1.9 Table S9 screening of 2n dosages<sup>a</sup>

|       | s Se | C(+) C(-), 5 mA, 2.5-5 h<br>TBAPF <sub>6</sub> , TsOH (0.05 mmol) | Se                     |
|-------|------|-------------------------------------------------------------------|------------------------|
| Ť     | Se   | MeCN, r.t.<br>undivided cell                                      |                        |
| 1n    | 2n   |                                                                   | 3n                     |
| Entry |      | 2n (x mmol)                                                       | Yield (%) <sup>b</sup> |
| 10    |      | 0.075                                                             | 76                     |
| $2^d$ |      | 0.12                                                              | 81                     |
| 3     |      | 0.15                                                              | 84                     |
| 4     |      | 0.2                                                               | 92                     |
|       |      | 0.2                                                               | 12                     |

<sup>*a*</sup>Reaction conditions: **1n** (0.3 mmol), **2n** (x mmol), TBAPF<sub>6</sub> (0.2 mmol), MeCN (4 mL), TsOH (0.05 mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), the distance between the electrodes (5 mm), constant current = 5 mA, 5 h, room temperature, under air, undivided cell. <sup>*b*</sup>Isolated yields. <sup>*c*</sup>2.5 h. <sup>*d*</sup>3 h.

#### 2.1.10 The general procedure for the amidoselenation reaction of cyclohexene



Under air, a mixture of cyclohexene **1n** (30  $\mu$ L, 0.3 mmol), diphenyl diselenide **2n** (62.4 mg, 0.2 mmol), TBAPF<sub>6</sub> (77.5 mg, 0.2 mmol), TsOH (8.6 mg, 0.05 mmol) and MeCN (4 mL) were added in an oven dried undivided bottle (10 mL). The bottle was equipped with graphite rod as the anode and the cathode. The resulting mixture was stirred and electrolyzed at a constant current mode with a constant current of 5 mA at ambient temperature for 5 h. When the reaction was finished, the resulting mixture and all the volatiles were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v) to afford the desired product **3n** as a white solid (82.5 mg, 92% yield).

#### 2.2 Substrate synthesis method

#### 2.2.1 General procedure for the synthesis of diselenides<sup>[1]</sup>

$$R \stackrel{II}{\downarrow} + Se \xrightarrow{CuO (10 \text{ mol}\%), \text{ KOH}} B \stackrel{II}{\downarrow} Se \xrightarrow{II} Se \xrightarrow{II} R$$

Under nitrogen atmosphere, a stirred solution of Se (6.0 mmol) powder and aryl iodides (3.0 mmol) in dry DMSO (6.0 mL) was added CuO nanoparticles (10 mol%) followed by KOH (2.0 equiv) at 90 °C. The progress of the reaction was monitored by TLC. After the reaction was complete, the reaction mixture was allowed to cool, which was subjected to column chromatographic separation to give pure diselenides.

#### 2.3 Scale-up reaction

#### 2.3.1 Gram-scale of amidoselenation synthesis reactions



In the air, cyclohexene **1n** (607  $\mu$ L, 6 mmol), diphenyldiselenide **2n** (1.25 g, 4 mmol), TBAPF<sub>6</sub> (1.55 g, 4 mmol), TsOH (86.1 mg, 0.5 mmol), and MeCN (40 mL) were added to a dry 150 mL beaker. The beaker is equipped with a graphite (27 mm×15.0 mm×1 mm) anode and a graphite (27 mm×15.0 mm×1 mm) cathode. The mixture was subjected to electrolysis at room temperature, with the current set to 40 mA, and the reaction was allowed to proceed for 48 hours. After the reaction, the mixture and all volatile substances were removed by rotary evaporation under reduced pressure. The resulting residue was purified by silica gel column chromatography, using a petroleum ether (60-90 °C)/ethyl acetate = 1:1 (v:v) eluent. The target product **3n** was obtained as a white solid (1.38 g, 78% yield).

#### 2.3.2 Flow electrochemical synthesis of amidoselenation



In air, **1n** (304  $\mu$ L, 3 mmol), **2n** (0.625 g, 2 mmol), TBAPF<sub>6</sub> (0.775 g, 2 mmol), TsOH (86.1 mg, 0.5 mmol), and MeCN (10 mL) were mixed and then aspirated into a syringe. A flow electrochemical reactor, equipped with graphite plates as both the anode and cathode, was used, with the surface area of the graphite plates measuring 8 cm×6 cm. The mixture underwent flow

electrolysis at room temperature under a constant current mode, with a current of 120 mA and a flow rate of 0.2 mL/min for 16.6 hours. Upon completion of the reaction, the mixture and all volatile substances were evaporated under reduced pressure. The resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/ethyl acetate = 1:1, v:v), yielding the target product **3n** as a white solid (0.59 g, 66% yield).



Fig. S3 Flow electrochemical reactor for scale-up experiment

# 3. Calculation of Green Chemistry Metrics

To evaluate the green chemistry aspects of the developed reaction, we calculated the green chemistry metrics, including Atom Economy (AE), Atom Efficiency (AEf) and Reaction Mass Efficiency (RME).<sup>[2]</sup> Additionally, we compared these metrics with two other efficient synthetic methods for sulfoxides. The chemistry metrics were calculated using the formulas provided below.

 $Atom \ Economy \ (AE) \ (\%) = \frac{Molecular \ Weight \ of \ Desired \ Product}{Sum \ of \ Molecular \ Weights \ of \ All \ Reactants} \times 100$ 

Atom Efficiency (AEf) (%) = Atom Economy (AE)(%) × yeild

Reaction Mass Efficiency (RME) (%) = 
$$\frac{Mass of Desired Product}{Mass of Reactants Used} \times 100$$

This work



|                    | mmol  | mg   | MW      | Green Chemistry Metrics            |        |
|--------------------|-------|------|---------|------------------------------------|--------|
| 1n                 | 0.3   | 24.6 | 82.15   | Atom Economy (AE) (%)              | 84.90% |
| 2n                 | 0.2   | 62.4 | 312.13  | Atom Efficiency (AEf) (%)          | 78.11% |
| TsOH               | 0.05  | 9.5  | 190.22  | Reaction Mass Efficiency (RME) (%) | 94.01% |
| MeCN               | -     | 3107 | 41.05   | -                                  | -      |
| TBAPF <sub>6</sub> | 0.2   | 77.5 | 387.43  | -                                  | -      |
| 3n                 | 0.276 | 81.8 | 296.283 | -                                  | -      |

Table S10 The green chemistry metrics

# 4. Mechanistic studies

# 4.1 Radical trapping experiments

# 4.1.1 Table S11 the radical capture experiment in the amidoselenation reaction of cyclohexene<sup>*a*</sup>

| +<br>1n                   | Se.Se<br>2n | C(+) C(-), 5 mA, 5 h<br>TBAPF <sub>6</sub> , TsOH (0.05 mmol)<br>Radical scavenger, MeCN, r.t.<br>undivided cell | Se<br>NH<br>O<br>3n    |
|---------------------------|-------------|------------------------------------------------------------------------------------------------------------------|------------------------|
| <i><sup>a</sup></i> Entry | Radical     | scavenger (mmol)                                                                                                 | Yield (%) <sup>b</sup> |
| 1                         |             | none                                                                                                             | 92                     |

| 2                     | BHT (0.2)                                                            | 55                     |
|-----------------------|----------------------------------------------------------------------|------------------------|
| 3                     | BHT (0.4)                                                            | 20                     |
| 4                     | 1,1-diphenythylene (0.2)                                             | trace                  |
| <sup>a</sup> Reaction | conditions: 1n (0.3 mmol), 2n (0.2 mmol), TBAPF <sub>6</sub> (0.2 mm | ol), radical scavenger |

"Reaction conditions: **1n** (0.3 mmol), **2n** (0.2 mmol), TBAPF<sub>6</sub> (0.2 mmol), radical scavenger, MeCN (4.0 mL), TsOH (0.05 mmol), C anode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), C cathode (immersed surface area  $8 \times 5$  mm<sup>2</sup>), 5 mA, 5 h, room temperature, undivided cell. <sup>*b*</sup>Isolated yields

# 4.1.2 The HRMS spectra of compound 4a and 4b











Fig. S4 The HRMS spectra of compound 4a



Fig. S5 The HRMS spectra of compound 4b

# 4.2 The hydrogen detection experiment<sup>a</sup>



Fig. S6 The hydrogen detection experiment

In order to demonstrate the release of  $H_2$  during electrochemical aminoselenation of cyclohexene, the model reaction of cyclohexene **1n** and diphenyl diselenide **2n** was monitored by a  $H_2$  detector under standard conditions. Just as shown in Fig. S6, as the reaction proceeded, the  $H_2$  was observed clearly, and the concentration increased gradually.

#### 4.3 DFT calculations on the plausible mechanism

#### 4.3.1 Computation details:

All calculations have been performed using the DFT method implemented in the commercial Gaussian 16<sup>[3]</sup> program package. Molecular geometries of the model complexes were optimized at the PBE0(D3BJ)/Def2SVP<sup>[4-6]</sup> level with the SMD<sup>[7]</sup> solvation model and acetonitrile as the solvent. As soon as the convergences of optimizations were obtained, the frequency calculations ate the same level have been performed to identify all the stationary points as minima or transition states, which has the unique imaginary frequencies. And the intrinsic reaction coordinate (IRC)<sup>[8]</sup> calculations have confirmed that all stationary points were smoothly connected to each other. All of the optimized geometries mentioned were built by GaussView 6.0.<sup>[9]</sup>

# **4.3.2** The DFT calculation process for the Markovnikov and anti-Markovnikov additions of allylbenzene



Fig. S7 Computed reaction free energy diagram for the formation of 31' and 31



4.3.3 Optimized corresponding structures of intermediates and transition states

**Fig. S8** Optimized corresponding structures of intermediates and transition states along pathway of Fig. 3 (the manuscript) at the PBE0(D3BJ)/Def2svp level (distances in Å, in parentheses are the unique imaginary frequencies of the transition state) with SMD solvation model and acetonitrile as the solvent



Fig. S9 Optimized corresponding structures of intermediates and transition states along pathway of Fig. S7 at the PBE0(D3BJ)/Def2svp level (distances in Å, in parentheses are the unique imaginary frequencies of the transition state) with SMD solvation model and acetonitrile as the solvent

#### 4.3.4 Cartesian coordinates and energies of DFT-computed structures

Standard orientation, imaginary frequencies, thermodynamic energies of All Stationary Points

| Center | Atomic | Atomic | Coo       | rdinates (Angs | stroms)   |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Туре   | Х         | Y              | Ζ         |
| 1      | 6      | 0      | 0.693260  | 1.183891       | 0.317315  |
| 2      | 6      | 0      | 1.490495  | -0.045308      | -0.108455 |
| 3      | 6      | 0      | 0.667179  | -1.298850      | -0.057177 |
| 4      | 6      | 0      | -0.668017 | -1.298489      | 0.057100  |
| 5      | 6      | 0      | -1.490494 | -0.044437      | 0.108594  |
| 6      | 6      | 0      | -0.692547 | 1.184257       | -0.317396 |
| 7      | 1      | 0      | 1.883349  | 0.089304       | -1.134682 |
| 8      | 1      | 0      | 2.384891  | -0.165303      | 0.526975  |
| 9      | 1      | 0      | 0.584058  | 1.182689       | 1.416710  |
| 10     | 1      | 0      | 1.242518  | 2.102778       | 0.057287  |
| 11     | 1      | 0      | -1.202627 | -2.254041      | 0.114390  |
| 12     | 1      | 0      | -2.385157 | -0.163728      | -0.526571 |
| 13     | 1      | 0      | -1.882918 | 0.090402       | 1.134971  |
| 14     | 1      | 0      | -0.583314 | 1.182694       | -1.416795 |
| 15     | 1      | 0      | -1.241285 | 2.103523       | -0.057609 |
| 16     | 1      | 0      | 1.201226  | -2.254701      | -0.114568 |

\_\_\_\_\_

#### **1n (Charge = 0 Multiplicity = 1)**

0 imaginary frequencies

| Sum of electronic and zero-point Energies=   | -234.066747 |
|----------------------------------------------|-------------|
| Sum of electronic and thermal Energies=      | -234.061250 |
| Sum of electronic and thermal Enthalpies=    | -234.060306 |
| Sum of electronic and thermal Free Energies= | -234.095347 |

#### MeCN (Charge = 0 Multiplicity = 1)

| Center | Atomic | Atomic | Coo       | rdinates (Angs | stroms)   |  |
|--------|--------|--------|-----------|----------------|-----------|--|
| Number | Number | Туре   | Х         | Y              | Z         |  |
| 1      | 6      | 0      | -0.000000 | -0.000000      | -1.172687 |  |
| 2      | 1      | 0      | -0.000000 | 1.034048       | -1.547238 |  |
| 3      | 1      | 0      | 0.895512  | -0.517024      | -1.547238 |  |
| 4      | 1      | 0      | -0.895512 | -0.517024      | -1.547238 |  |
| 5      | 6      | 0      | 0.000000  | 0.000000       | 0.274715  |  |
| 6      | 7      | 0      | 0.000000  | 0.000000       | 1.432792  |  |
|        |        |        |           |                |           |  |

0 imaginary frequencies

| Sum of electronic and zero-point Energies=   | -132.458538 |
|----------------------------------------------|-------------|
| Sum of electronic and thermal Energies=      | -132.454957 |
| Sum of electronic and thermal Enthalpies=    | -132.454013 |
| Sum of electronic and thermal Free Energies= | -132.481493 |

| Center | Atomic | Atomic | Coordin   | ates (Angstro | ms)       |
|--------|--------|--------|-----------|---------------|-----------|
| Number | Number | Туре   | Х         | Y             | Ζ         |
| 1      | 34     | 0      | 1.836246  | -0.000008     | -0.000003 |
| 2      | 6      | 0      | -0.062994 | -0.000191     | 0.000020  |
| 3      | 6      | 0      | -0.764711 | -1.213572     | -0.000017 |
| 4      | 6      | 0      | -0.764446 | 1.213445      | 0.000029  |
| 5      | 6      | 0      | -2.159109 | -1.205151     | 0.000029  |
| 6      | 1      | 0      | -0.223256 | -2.162957     | -0.000079 |
| 7      | 6      | 0      | -2.158786 | 1.205323      | -0.000029 |
| 8      | 1      | 0      | -0.222666 | 2.162664      | 0.000060  |
| 9      | 6      | 0      | -2.862193 | 0.000147      | -0.000008 |
| 10     | 1      | 0      | -2.699269 | -2.155721     | 0.000044  |
| 11     | 1      | 0      | -2.698878 | 2.155949      | -0.000055 |
| 12     | 1      | 0      | -3.954854 | 0.000323      | -0.000021 |

\_\_\_\_\_

#### PhSe• (Charge = 0 Multiplicity = 2)

| 0 imaginary frequencies                      |              |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -2632.077723 |
| Sum of electronic and thermal Energies=      | -2632.071986 |
| Sum of electronic and thermal Enthalpies=    | -2632.071042 |
| Sum of electronic and thermal Free Energies= | -2632.109351 |

| Center | Atomic | Atomic | Coore     | dinates (Angst | roms)     |  |
|--------|--------|--------|-----------|----------------|-----------|--|
| Number | Number | Туре   | Х         | Y              | Ζ         |  |
| 1      | 6      | 0      | -3.769530 | -0.103191      | 0.428441  |  |
| 2      | 6      | 0      | -2.691346 | 0.887740       | 0.865040  |  |
| 3      | 6      | 0      | -1.322540 | 0.239352       | 1.032953  |  |
| 4      | 6      | 0      | -1.200189 | -1.153005      | 0.863063  |  |
| 5      | 6      | 0      | -2.132457 | -1.942229      | 0.013266  |  |
| 6      | 6      | 0      | -3.232156 | -1.085130      | -0.603876 |  |
| 7      | 1      | 0      | -2.637778 | 1.723492       | 0.147986  |  |
| 8      | 1      | 0      | -2.965352 | 1.345877       | 1.829440  |  |
| 9      | 1      | 0      | -4.126195 | -0.672519      | 1.305174  |  |
| 10     | 1      | 0      | -4.639495 | 0.446462       | 0.036665  |  |

# TS1 (Charge = 0, Multiplicity = 2)

| 11 | 1  | 0 | -0.316433 | -1.657729 | 1.266239  |  |
|----|----|---|-----------|-----------|-----------|--|
| 12 | 1  | 0 | -1.558490 | -2.476854 | -0.766826 |  |
| 13 | 1  | 0 | -2.576849 | -2.746876 | 0.632239  |  |
| 14 | 1  | 0 | -2.825268 | -0.523792 | -1.463320 |  |
| 15 | 1  | 0 | -4.036566 | -1.726943 | -0.995147 |  |
| 16 | 1  | 0 | -0.692747 | 0.675613  | 1.814953  |  |
| 17 | 34 | 0 | -0.106468 | 1.109267  | -0.703897 |  |
| 18 | 6  | 0 | 1.558641  | 0.307313  | -0.252369 |  |
| 19 | 6  | 0 | 2.390763  | 0.896809  | 0.710776  |  |
| 20 | 6  | 0 | 1.958000  | -0.889232 | -0.865231 |  |
| 21 | 6  | 0 | 3.600519  | 0.295705  | 1.055661  |  |
| 22 | 1  | 0 | 2.085329  | 1.830172  | 1.190744  |  |
| 23 | 6  | 0 | 3.170351  | -1.485095 | -0.518402 |  |
| 24 | 1  | 0 | 1.313202  | -1.353306 | -1.615735 |  |
| 25 | 6  | 0 | 3.993287  | -0.895456 | 0.442334  |  |
| 26 | 1  | 0 | 4.241394  | 0.762381  | 1.808495  |  |
| 27 | 1  | 0 | 3.472599  | -2.417883 | -1.001959 |  |
| 28 | 1  | 0 | 4.942499  | -1.364669 | 0.713600  |  |
|    |    |   |           |           |           |  |

# 1 imaginary frequencies (210.09 icm<sup>-1</sup>)

| Sum of electronic and zero-point Energies=   | -2866.154559 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -2866.142112 |
| Sum of electronic and thermal Enthalpies=    | -2866.141168 |
| Sum of electronic and thermal Free Energies= | -2866.197249 |

# IM1 (Charge = 0, Multiplicity = 2)

| Center | Atomic | Atomic | Cod      | ordinates (Ang | stroms)   |  |
|--------|--------|--------|----------|----------------|-----------|--|
| Number | Number | Туре   | Х        | Y              | Ζ         |  |
| 1      | 6      | 0      | 2.663496 | 1.857167       | 0.545852  |  |
| 2      | 6      | 0      | 1.415016 | 1.000649       | 0.730709  |  |
| 3      | 6      | 0      | 1.306055 | -0.051760      | -0.370201 |  |
| 4      | 6      | 0      | 2.573046 | -0.804040      | -0.582924 |  |
| 5      | 6      | 0      | 3.870254 | -0.072201      | -0.531364 |  |
| 6      | 6      | 0      | 3.917117 | 0.992251       | 0.564005  |  |
| 7      | 1      | 0      | 1.467563 | 0.487937       | 1.706573  |  |
| 8      | 1      | 0      | 0.507502 | 1.623899       | 0.741609  |  |
| 9      | 1      | 0      | 2.601229 | 2.403328       | -0.413090 |  |
| 10     | 1      | 0      | 2.709281 | 2.620030       | 1.339833  |  |
| 11     | 1      | 0      | 2.528433 | -1.761261      | -1.114337 |  |
| 12     | 1      | 0      | 4.705225 | -0.784684      | -0.427557 |  |
| 13     | 1      | 0      | 4.031864 | 0.428252       | -1.511956 |  |
| 14     | 1      | 0      | 3.996648 | 0.498757       | 1.548680  |  |

| 15 | 1  | 0 | 4.821008  | 1.610739  | 0.445074  |  |
|----|----|---|-----------|-----------|-----------|--|
| 16 | 1  | 0 | 1.015679  | 0.442058  | -1.319764 |  |
| 17 | 34 | 0 | -0.113134 | -1.371629 | -0.004480 |  |
| 18 | 6  | 0 | -1.667184 | -0.259605 | -0.050240 |  |
| 19 | 6  | 0 | -2.745743 | -0.614515 | 0.770613  |  |
| 20 | 6  | 0 | -1.781047 | 0.851439  | -0.894873 |  |
| 21 | 6  | 0 | -3.924583 | 0.129692  | 0.739988  |  |
| 22 | 1  | 0 | -2.660010 | -1.473494 | 1.441777  |  |
| 23 | 6  | 0 | -2.956111 | 1.602723  | -0.903790 |  |
| 24 | 1  | 0 | -0.957023 | 1.135999  | -1.552982 |  |
| 25 | 6  | 0 | -4.033149 | 1.244394  | -0.092116 |  |
| 26 | 1  | 0 | -4.760035 | -0.159522 | 1.383153  |  |
| 27 | 1  | 0 | -3.030364 | 2.472694  | -1.561804 |  |
| 28 | 1  | 0 | -4.953454 | 1.833506  | -0.106830 |  |
|    |    |   |           |           |           |  |

| 0 imaginary frequencie | s |
|------------------------|---|
|------------------------|---|

| Sum of electronic and zero-point Energies=   | -2866.154451 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -2866.141903 |
| Sum of electronic and thermal Enthalpies=    | -2866.140959 |
| Sum of electronic and thermal Free Energies= | -2866.195918 |

# <sup>1</sup>IM2 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | Coo       | ordinates (Ang | stroms)   |  |
|--------|--------|--------|-----------|----------------|-----------|--|
| Number | Number | Туре   | Х         | Y              | Ζ         |  |
| 1      | 6      | 0      | -3.711810 | 0.645584       | 0.475719  |  |
| 2      | 6      | 0      | -2.466194 | 1.528315       | 0.409009  |  |
| 3      | 6      | 0      | -1.184939 | 0.783983       | 0.721352  |  |
| 4      | 6      | 0      | -1.157168 | -0.673183      | 0.812370  |  |
| 5      | 6      | 0      | -2.404058 | -1.479801      | 0.603978  |  |
| 6      | 6      | 0      | -3.482492 | -0.721042      | -0.155765 |  |
| 7      | 1      | 0      | -2.383234 | 2.003290       | -0.580704 |  |
| 8      | 1      | 0      | -2.536642 | 2.355683       | 1.131598  |  |
| 9      | 1      | 0      | -4.002552 | 0.501457       | 1.530431  |  |
| 10     | 1      | 0      | -4.547363 | 1.167704       | -0.013426 |  |
| 11     | 1      | 0      | -0.381516 | -1.119472      | 1.443329  |  |
| 12     | 1      | 0      | -2.154024 | -2.442656      | 0.134679  |  |
| 13     | 1      | 0      | -2.763990 | -1.715598      | 1.622671  |  |
| 14     | 1      | 0      | -3.187359 | -0.604539      | -1.215193 |  |
| 15     | 1      | 0      | -4.411004 | -1.310806      | -0.154490 |  |
| 16     | 1      | 0      | -0.419407 | 1.326186       | 1.285186  |  |
| 17     | 34     | 0      | -0.229272 | -0.030917      | -0.875933 |  |
| 18     | 6      | 0      | 1.571995  | -0.006398      | -0.233376 |  |

| 19 | 6 | 0 | 2.224604 | -1.216732 | 0.009404  |  |
|----|---|---|----------|-----------|-----------|--|
| 20 | 6 | 0 | 2.228405 | 1.218216  | -0.096397 |  |
| 21 | 6 | 0 | 3.557444 | -1.192893 | 0.416786  |  |
| 22 | 1 | 0 | 1.697214 | -2.165726 | -0.113147 |  |
| 23 | 6 | 0 | 3.560694 | 1.225964  | 0.313247  |  |
| 24 | 1 | 0 | 1.704359 | 2.154774  | -0.301250 |  |
| 25 | 6 | 0 | 4.222326 | 0.024436  | 0.569647  |  |
| 26 | 1 | 0 | 4.077782 | -2.132952 | 0.615149  |  |
| 27 | 1 | 0 | 4.083217 | 2.178266  | 0.430947  |  |
| 28 | 1 | 0 | 5.266918 | 0.036884  | 0.890113  |  |
|    |   |   |          |           |           |  |

\_\_\_\_\_

| 0 imaginary frequencies                      |              |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -2866.022471 |
| Sum of electronic and thermal Energies=      | -2866.010506 |
| Sum of electronic and thermal Enthalpies=    | -2866.009562 |
| Sum of electronic and thermal Free Energies= | -2866.061928 |

# <sup>3</sup>IM2 (Charge = 1, Multiplicity = 3)

| Center | Atomic | Atomic | C         | oordinates (Ai | ngstroms) |  |
|--------|--------|--------|-----------|----------------|-----------|--|
| Number | Number | Туре   | Х         | Y              | Z         |  |
| 1      | 6      | 0      | -3.827595 | -0.610075      | -0.726441 |  |
| 2      | 6      | 0      | -3.635115 | 0.537348       | 0.264828  |  |
| 3      | 6      | 0      | -2.548030 | 0.282024       | 1.245175  |  |
| 4      | 6      | 0      | -1.338975 | -0.429078      | 0.854307  |  |
| 5      | 6      | 0      | -1.540530 | -1.508752      | -0.204786 |  |
| 6      | 6      | 0      | -2.497521 | -1.073021      | -1.305237 |  |
| 7      | 1      | 0      | -3.380131 | 1.460569       | -0.300637 |  |
| 8      | 1      | 0      | -4.572256 | 0.771486       | 0.793816  |  |
| 9      | 1      | 0      | -4.309193 | -1.457807      | -0.208886 |  |
| 10     | 1      | 0      | -4.512573 | -0.297371      | -1.529581 |  |
| 11     | 1      | 0      | -0.749419 | -0.765702      | 1.717936  |  |
| 12     | 1      | 0      | -0.575080 | -1.838317      | -0.616497 |  |
| 13     | 1      | 0      | -1.961977 | -2.376329      | 0.333464  |  |
| 14     | 1      | 0      | -2.040284 | -0.252573      | -1.888956 |  |
| 15     | 1      | 0      | -2.651046 | -1.908125      | -2.006094 |  |
| 16     | 1      | 0      | -2.557860 | 0.795991       | 2.210854  |  |
| 17     | 34     | 0      | -0.066333 | 1.015475       | 0.056209  |  |
| 18     | 6      | 0      | 1.616029  | 0.229285       | 0.031099  |  |
| 19     | 6      | 0      | 1.916307  | -1.010407      | 0.633666  |  |
| 20     | 6      | 0      | 2.624761  | 0.969936       | -0.627902 |  |
| 21     | 6      | 0      | 3.212883  | -1.495536      | 0.569940  |  |
| 22     | 1      | 0      | 1.147555  | -1.584452      | 1.152170  |  |

| 23 | 6 | 0 | 3.915573 | 0.467115  | -0.681684 |  |
|----|---|---|----------|-----------|-----------|--|
| 24 | 1 | 0 | 2.381203 | 1.929546  | -1.091005 |  |
| 25 | 6 | 0 | 4.211235 | -0.763424 | -0.085477 |  |
| 26 | 1 | 0 | 3.454155 | -2.452876 | 1.036950  |  |
| 27 | 1 | 0 | 4.698382 | 1.033890  | -1.190209 |  |
| 28 | 1 | 0 | 5.229710 | -1.156557 | -0.129343 |  |
|    |   |   |          |           |           |  |

0 imaginary frequencies

| Sum of electronic and zero-point Energies=   | -2865.962099 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -2865.949495 |
| Sum of electronic and thermal Enthalpies=    | -2865.948550 |
| Sum of electronic and thermal Free Energies= | -2866.003307 |

# TS3 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | Coo       | rdinates (Angs | stroms)   |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Туре   | Х         | Y              | Z         |
| 1      | 6      | 0      | -3.068707 | -1.435271      | -0.592872 |
| 2      | 6      | 0      | -1.936433 | -0.884284      | -1.463166 |
| 3      | 6      | 0      | -0.809176 | -0.236138      | -0.666820 |
| 4      | 6      | 0      | -1.055953 | 0.020980       | 0.749903  |
| 5      | 6      | 0      | -1.901094 | -0.910222      | 1.560524  |
| 6      | 6      | 0      | -2.550380 | -2.004651      | 0.720850  |
| 7      | 1      | 0      | -1.511464 | -1.677681      | -2.096765 |
| 8      | 1      | 0      | -2.327207 | -0.119517      | -2.152058 |
| 9      | 1      | 0      | -3.788689 | -0.630537      | -0.368310 |
| 10     | 1      | 0      | -3.621684 | -2.200864      | -1.156854 |
| 11     | 1      | 0      | -0.348401 | 0.666821       | 1.275660  |
| 12     | 1      | 0      | -1.275234 | -1.320172      | 2.367916  |
| 13     | 1      | 0      | -2.662240 | -0.296956      | 2.067176  |
| 14     | 1      | 0      | -1.817807 | -2.806175      | 0.517249  |
| 15     | 1      | 0      | -3.364617 | -2.467400      | 1.297489  |
| 16     | 1      | 0      | -0.322713 | 0.596834       | -1.185009 |
| 17     | 34     | 0      | 0.684967  | -1.489818      | -0.204568 |
| 18     | 6      | 0      | 2.082434  | -0.191735      | -0.062991 |
| 19     | 6      | 0      | 2.525921  | 0.485300       | -1.204012 |
| 20     | 6      | 0      | 2.686668  | 0.033836       | 1.177176  |
| 21     | 6      | 0      | 3.567441  | 1.404736       | -1.095022 |
| 22     | 1      | 0      | 2.057290  | 0.294209       | -2.172795 |
| 23     | 6      | 0      | 3.736627  | 0.947273       | 1.273791  |
| 24     | 1      | 0      | 2.334513  | -0.499703      | 2.063226  |
| 25     | 6      | 0      | 4.174034  | 1.634214       | 0.141360  |
| 26     | 1      | 0      | 3.912416  | 1.938640       | -1.984030 |

| 27 | 1 | 0 | 4.210633  | 1.125482 | 2.242271  |  |
|----|---|---|-----------|----------|-----------|--|
| 28 | 1 | 0 | 4.994181  | 2.352129 | 0.221410  |  |
| 29 | 6 | 0 | -2.804813 | 2.613102 | 0.204910  |  |
| 30 | 7 | 0 | -2.289159 | 1.638071 | 0.546978  |  |
| 31 | 6 | 0 | -3.457386 | 3.827145 | -0.216513 |  |
| 32 | 1 | 0 | -3.824597 | 3.705371 | -1.246047 |  |
| 33 | 1 | 0 | -4.303871 | 4.040800 | 0.452140  |  |
| 34 | 1 | 0 | -2.740362 | 4.660335 | -0.178908 |  |
|    |   |   |           |          |           |  |

1 imaginary frequencies (393.23 icm-1)Sum of electronic and zero-point Energies=-2998.465931Sum of electronic and thermal Energies=-2998.449103Sum of electronic and thermal Enthalpies=-2998.448158Sum of electronic and thermal Free Energies=-2998.514511

# IM3 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | Coordi    | nates (Angstro | oms)      |
|--------|--------|--------|-----------|----------------|-----------|
| Number | Number | Туре   | Х         | Y              | Z         |
| 1      | 6      | 0      | 3.008971  | -1.108208      | 1.130841  |
| 2      | 6      | 0      | 1.791281  | -0.359070      | 1.654643  |
| 3      | 6      | 0      | 1.101646  | 0.459498       | 0.562088  |
| 4      | 6      | 0      | 0.802851  | -0.351746      | -0.710581 |
| 5      | 6      | 0      | 2.022573  | -1.132272      | -1.186303 |
| 6      | 6      | 0      | 2.662604  | -1.965734      | -0.081188 |
| 7      | 1      | 0      | 1.033440  | -1.068163      | 2.022183  |
| 8      | 1      | 0      | 2.048619  | 0.304480       | 2.493574  |
| 9      | 1      | 0      | 3.799176  | -0.386190      | 0.857232  |
| 10     | 1      | 0      | 3.425359  | -1.729878      | 1.938358  |
| 11     | 1      | 0      | 0.449902  | 0.330674       | -1.496520 |
| 12     | 1      | 0      | 1.739482  | -1.759824      | -2.045282 |
| 13     | 1      | 0      | 2.758953  | -0.401926      | -1.566655 |
| 14     | 1      | 0      | 1.973325  | -2.772678      | 0.223671  |
| 15     | 1      | 0      | 3.566980  | -2.458636      | -0.470333 |
| 16     | 1      | 0      | 0.175625  | 0.916429       | 0.945293  |
| 17     | 34     | 0      | -0.702718 | -1.579834      | -0.370973 |
| 18     | 6      | 0      | -2.045528 | -0.242256      | -0.092177 |
| 19     | 6      | 0      | -2.629065 | -0.103624      | 1.171530  |
| 20     | 6      | 0      | -2.459376 | 0.578457       | -1.147937 |
| 21     | 6      | 0      | -3.622905 | 0.854808       | 1.376561  |
| 22     | 1      | 0      | -2.302080 | -0.742898      | 1.995227  |
| 23     | 6      | 0      | -3.441232 | 1.544126       | -0.932107 |
| 24     | 1      | 0      | -2.014174 | 0.459403       | -2.139174 |

| 25 | 6 | 0 | -4.026333 | 1.681311 | 0.328207  |  |
|----|---|---|-----------|----------|-----------|--|
| 26 | 1 | 0 | -4.077918 | 0.958938 | 2.364935  |  |
| 27 | 1 | 0 | -3.758912 | 2.186220 | -1.757740 |  |
| 28 | 1 | 0 | -4.801204 | 2.434512 | 0.491918  |  |
| 29 | 6 | 0 | 3.451673  | 3.540079 | -0.466984 |  |
| 30 | 1 | 0 | 3.736332  | 3.433988 | -1.524864 |  |
| 31 | 1 | 0 | 2.900505  | 4.480921 | -0.317434 |  |
| 32 | 1 | 0 | 4.350152  | 3.525037 | 0.168598  |  |
| 33 | 6 | 0 | 2.608419  | 2.444665 | -0.100479 |  |
| 34 | 7 | 0 | 1.933628  | 1.566249 | 0.199061  |  |
|    |   |   |           |          |           |  |

| 0 imaginary frequencies                      |              |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -2998.505617 |
| Sum of electronic and thermal Energies=      | -2998.489509 |
| Sum of electronic and thermal Enthalpies=    | -2998.488565 |
| Sum of electronic and thermal Free Energies= | -2998.552139 |

# TS4 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                       | Y         | Z         |  |
| 1      | 6      | 0      | 2.508405                | -1.633769 | 1.104809  |  |
| 2      | 6      | 0      | 1.455709                | -0.617378 | 1.533510  |  |
| 3      | 6      | 0      | 0.928393                | 0.203269  | 0.360492  |  |
| 4      | 6      | 0      | 0.443497                | -0.673999 | -0.803094 |  |
| 5      | 6      | 0      | 1.493053                | -1.706582 | -1.200480 |  |
| 6      | 6      | 0      | 1.994149                | -2.529276 | -0.017655 |  |
| 7      | 1      | 0      | 0.589752                | -1.141056 | 1.969266  |  |
| 8      | 1      | 0      | 1.838218                | 0.058759  | 2.313434  |  |
| 9      | 1      | 0      | 3.420226                | -1.111262 | 0.764785  |  |
| 10     | 1      | 0      | 2.809054                | -2.239844 | 1.973816  |  |
| 11     | 1      | 0      | 0.209005                | -0.025044 | -1.658289 |  |
| 12     | 1      | 0      | 1.094631                | -2.356130 | -1.995611 |  |
| 13     | 1      | 0      | 2.340494                | -1.154191 | -1.645318 |  |
| 14     | 1      | 0      | 1.176427                | -3.164830 | 0.365218  |  |
| 15     | 1      | 0      | 2.788358                | -3.213720 | -0.355192 |  |
| 16     | 1      | 0      | 0.094262                | 0.844772  | 0.690417  |  |
| 17     | 34     | 0      | -1.246262               | -1.584798 | -0.349671 |  |
| 18     | 6      | 0      | -2.310208               | -0.019793 | -0.059531 |  |
| 19     | 6      | 0      | -2.947212               | 0.153992  | 1.173745  |  |
| 20     | 6      | 0      | -2.474775               | 0.935665  | -1.069672 |  |
| 21     | 6      | 0      | -3.745435               | 1.277577  | 1.393576  |  |
| 22     | 1      | 0      | -2.812131               | -0.587812 | 1.964827  |  |

| 23 | 6 | 0 | -3.256787 | 2.065787 | -0.836143 |  |
|----|---|---|-----------|----------|-----------|--|
| 24 | 1 | 0 | -1.992492 | 0.795513 | -2.040617 |  |
| 25 | 6 | 0 | -3.896525 | 2.237295 | 0.393087  |  |
| 26 | 1 | 0 | -4.242506 | 1.406670 | 2.358562  |  |
| 27 | 1 | 0 | -3.376295 | 2.812361 | -1.625712 |  |
| 28 | 1 | 0 | -4.514473 | 3.121184 | 0.570281  |  |
| 29 | 6 | 0 | 4.019635  | 1.839697 | 1.044552  |  |
| 30 | 1 | 0 | 4.967662  | 1.474735 | 0.620111  |  |
| 31 | 1 | 0 | 4.130797  | 2.902925 | 1.302612  |  |
| 32 | 1 | 0 | 3.779178  | 1.263327 | 1.946873  |  |
| 33 | 6 | 0 | 2.933308  | 1.664739 | 0.080201  |  |
| 34 | 7 | 0 | 1.896224  | 1.131508 | -0.183247 |  |
| 35 | 8 | 0 | 3.353214  | 2.736991 | -1.188297 |  |
| 36 | 1 | 0 | 2.807265  | 2.501990 | -1.967476 |  |
| 37 | 1 | 0 | 4.294974  | 2.694953 | -1.458435 |  |
|    |   |   |           |          |           |  |

1 imaginary frequencies (172.77 icm<sup>-1</sup>)

---

| Sum of electronic and zero-point Energies=   | -3074.751828 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -3074.734486 |
| Sum of electronic and thermal Enthalpies=    | -3074.733542 |
| Sum of electronic and thermal Free Energies= | -3074.798532 |

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                       | Y         | Ζ         |  |
| 1      | 6      |        | 3 267086                | -0 952946 | 1 054610  |  |
| 2      | 6      | 0      | 1.975476                | -0.381499 | 1.624481  |  |
| 3      | 6      | 0      | 1.136347                | 0.341686  | 0.574319  |  |
| 4      | 6      | 0      | 0.913898                | -0.509303 | -0.687898 |  |
| 5      | 6      | 0      | 2.203993                | -1.123937 | -1.216416 |  |
| 6      | 6      | 0      | 2.991985                | -1.860083 | -0.138940 |  |
| 7      | 1      | 0      | 1.353632                | -1.195164 | 2.032422  |  |
| 8      | 1      | 0      | 2.178064                | 0.311807  | 2.455934  |  |
| 9      | 1      | 0      | 3.927018                | -0.125809 | 0.740138  |  |
| 10     | 1      | 0      | 3.806845                | -1.503230 | 1.841574  |  |
| 11     | 1      | 0      | 0.450495                | 0.118676  | -1.462578 |  |
| 12     | 1      | 0      | 1.977421                | -1.785468 | -2.067240 |  |
| 13     | 1      | 0      | 2.819470                | -0.298357 | -1.614472 |  |
| 14     | 1      | 0      | 2.424247                | -2.746910 | 0.195492  |  |
| 15     | 1      | 0      | 3.936438                | -2.236203 | -0.563207 |  |
| 16     | 1      | 0      | 0.153558                | 0.595671  | 1.003992  |  |
| 17     | 34     | 0      | -0.430159               | -1.912845 | -0.329827 |  |

| 18   | 6 | 0 | -1.908797 | -0.719889 | -0.079112 |
|------|---|---|-----------|-----------|-----------|
| 19   | 6 | 0 | -2.530233 | -0.637002 | 1.171173  |
| 20   | 6 | 0 | -2.366370 | 0.071891  | -1.139044 |
| 21   | 6 | 0 | -3.600705 | 0.238807  | 1.360024  |
| 22   | 1 | 0 | -2.169032 | -1.251111 | 1.999742  |
| 23   | 6 | 0 | -3.425548 | 0.956379  | -0.939822 |
| 24   | 1 | 0 | -1.892483 | -0.003287 | -2.121301 |
| 25   | 6 | 0 | -4.045199 | 1.040370  | 0.308627  |
| 26   | 1 | 0 | -4.082673 | 0.300002  | 2.339216  |
| 27   | 1 | 0 | -3.774975 | 1.577070  | -1.769057 |
| 28   | 1 | 0 | -4.878549 | 1.730998  | 0.460585  |
| 29   | 6 | 0 | -0.123157 | 3.165158  | 0.052362  |
| 30   | 1 | 0 | -0.151780 | 4.059297  | 0.694870  |
| 31   | 1 | 0 | -0.473970 | 3.445772  | -0.952947 |
| 32   | 1 | 0 | -0.791537 | 2.401775  | 0.469224  |
| 33   | 6 | 0 | 1.241745  | 2.622092  | -0.029404 |
| 34   | 7 | 0 | 1.825602  | 1.552766  | 0.155997  |
| 35   | 8 | 0 | 2.180540  | 3.669501  | -0.553333 |
| 36   | 1 | 0 | 2.094117  | 4.559988  | -0.134702 |
| 37   | 1 | 0 | 3.112427  | 3.345493  | -0.488636 |
| <br> |   |   |           |           |           |

0 imaginary frequencies

| Sum of electronic and zero-point Energies=   | -3074.757468 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -3074.740032 |
| Sum of electronic and thermal Enthalpies=    | -3074.739087 |
| Sum of electronic and thermal Free Energies= | -3074.804609 |

# TS5 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | Coord    | linates (Angstr | roms)     |
|--------|--------|--------|----------|-----------------|-----------|
| Number | Number | Туре   | Х        | Y               | Ζ         |
| 1      | 6      | 0      | 3.279800 | -0.908915       | 1.045925  |
| 2      | 6      | 0      | 1.981832 | -0.374478       | 1.637784  |
| 3      | 6      | 0      | 1.122690 | 0.354382        | 0.609208  |
| 4      | 6      | 0      | 0.910173 | -0.465192       | -0.676484 |
| 5      | 6      | 0      | 2.210098 | -1.041151       | -1.223385 |
| 6      | 6      | 0      | 3.013595 | -1.791609       | -0.167672 |
| 7      | 1      | 0      | 1.377759 | -1.209295       | 2.028124  |
| 8      | 1      | 0      | 2.175753 | 0.302795        | 2.484055  |
| 9      | 1      | 0      | 3.927030 | -0.065050       | 0.748276  |
| 10     | 1      | 0      | 3.832839 | -1.467945       | 1.817119  |
| 11     | 1      | 0      | 0.433815 | 0.176259        | -1.432131 |
| 12     | 1      | 0      | 1.993126 | -1.682716       | -2.091647 |

| 13 | 1  | 0 | 2.810731  | -0.194730 | -1.601396 |  |
|----|----|---|-----------|-----------|-----------|--|
| 14 | 1  | 0 | 2.460735  | -2.694645 | 0.147371  |  |
| 15 | 1  | 0 | 3.961919  | -2.142300 | -0.604490 |  |
| 16 | 1  | 0 | 0.138844  | 0.589280  | 1.045885  |  |
| 17 | 34 | 0 | -0.409350 | -1.898551 | -0.350959 |  |
| 18 | 6  | 0 | -1.902863 | -0.730499 | -0.071231 |  |
| 19 | 6  | 0 | -2.504450 | -0.660321 | 1.189530  |  |
| 20 | 6  | 0 | -2.388567 | 0.058342  | -1.120811 |  |
| 21 | 6  | 0 | -3.582640 | 0.201124  | 1.399386  |  |
| 22 | 1  | 0 | -2.121810 | -1.272882 | 2.009548  |  |
| 23 | 6  | 0 | -3.456157 | 0.927720  | -0.900991 |  |
| 24 | 1  | 0 | -1.929488 | -0.006689 | -2.110780 |  |
| 25 | 6  | 0 | -4.055202 | 0.999895  | 0.358211  |  |
| 26 | 1  | 0 | -4.048595 | 0.253172  | 2.386807  |  |
| 27 | 1  | 0 | -3.827549 | 1.546561  | -1.721989 |  |
| 28 | 1  | 0 | -4.894612 | 1.679272  | 0.526666  |  |
| 29 | 6  | 0 | -0.196880 | 3.189547  | -0.160399 |  |
| 30 | 1  | 0 | -0.284388 | 4.141881  | 0.385082  |  |
| 31 | 1  | 0 | -0.441895 | 3.378798  | -1.217766 |  |
| 32 | 1  | 0 | -0.896303 | 2.453566  | 0.254895  |  |
| 33 | 6  | 0 | 1.171206  | 2.683354  | -0.069871 |  |
| 34 | 7  | 0 | 1.753397  | 1.609065  | 0.241460  |  |
| 35 | 8  | 0 | 2.269078  | 3.498684  | -0.476728 |  |
| 36 | 1  | 0 | 2.380755  | 4.336616  | 0.032485  |  |
| 37 | 1  | 0 | 2.826992  | 2.522676  | -0.125103 |  |

1 imaginary frequencies (1572.95 icm<sup>-1</sup>)

| Sum of electronic and zero-point Energies=   | -3074.742089 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -3074.725207 |
| Sum of electronic and thermal Enthalpies=    | -3074.724263 |
| Sum of electronic and thermal Free Energies= | -3074.788518 |
|                                              |              |

# IM5 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | Coor     | troms)    |           |  |
|--------|--------|--------|----------|-----------|-----------|--|
| Number | Number | Туре   | Х        | Y         | Z         |  |
| 1      | 6      | 0      | 3.464219 | -0.531604 | 0.915907  |  |
| 2      | 6      | 0      | 2.155892 | -0.078307 | 1.554991  |  |
| 3      | 6      | 0      | 1.162624 | 0.500527  | 0.551132  |  |
| 4      | 6      | 0      | 0.964583 | -0.400923 | -0.677758 |  |
| 5      | 6      | 0      | 2.284668 | -0.870839 | -1.275526 |  |
| 6      | 6      | 0      | 3.213135 | -1.493127 | -0.239396 |  |
| 7      | 1      | 0      | 1.659931 | -0.943537 | 2.022397  |  |

| 8  | 1  | 0 | 2.330355  | 0.659155  | 2.353798  |  |
|----|----|---|-----------|-----------|-----------|--|
| 9  | 1  | 0 | 4.037008  | 0.339385  | 0.547617  |  |
| 10 | 1  | 0 | 4.096984  | -1.003476 | 1.683690  |  |
| 11 | 1  | 0 | 0.382073  | 0.147745  | -1.431997 |  |
| 12 | 1  | 0 | 2.086371  | -1.567502 | -2.104542 |  |
| 13 | 1  | 0 | 2.778036  | 0.011028  | -1.723011 |  |
| 14 | 1  | 0 | 2.764347  | -2.425264 | 0.148063  |  |
| 15 | 1  | 0 | 4.163983  | -1.778356 | -0.716035 |  |
| 16 | 1  | 0 | 0.197016  | 0.651620  | 1.051203  |  |
| 17 | 34 | 0 | -0.184547 | -1.939565 | -0.205521 |  |
| 18 | 6  | 0 | -1.788505 | -0.908877 | -0.005071 |  |
| 19 | 6  | 0 | -2.269664 | -0.602184 | 1.271999  |  |
| 20 | 6  | 0 | -2.463267 | -0.437522 | -1.137402 |  |
| 21 | 6  | 0 | -3.413240 | 0.185544  | 1.413979  |  |
| 22 | 1  | 0 | -1.743350 | -0.972246 | 2.155211  |  |
| 23 | 6  | 0 | -3.601430 | 0.354641  | -0.989067 |  |
| 24 | 1  | 0 | -2.092751 | -0.686946 | -2.134986 |  |
| 25 | 6  | 0 | -4.076042 | 0.668682  | 0.285702  |  |
| 26 | 1  | 0 | -3.783633 | 0.426017  | 2.413862  |  |
| 27 | 1  | 0 | -4.122298 | 0.725317  | -1.875687 |  |
| 28 | 1  | 0 | -4.968628 | 1.289124  | 0.399224  |  |
| 29 | 6  | 0 | -0.627005 | 2.791041  | -0.051173 |  |
| 30 | 1  | 0 | -1.075444 | 3.679207  | -0.514152 |  |
| 31 | 1  | 0 | -1.034280 | 1.884867  | -0.520950 |  |
| 32 | 1  | 0 | -0.897421 | 2.768423  | 1.016853  |  |
| 33 | 6  | 0 | 0.845522  | 2.831880  | -0.172965 |  |
| 34 | 7  | 0 | 1.613786  | 1.822579  | 0.108672  |  |
| 35 | 8  | 0 | 1.456796  | 3.917022  | -0.555038 |  |
| 36 | 1  | 0 | 2.617340  | 1.966074  | -0.021685 |  |
| 37 | 1  | 0 | 0.819146  | 4.626763  | -0.753662 |  |
|    |    |   |           |           |           |  |

| $\mathbf{a}$ | • •           | C     | •        |
|--------------|---------------|-------|----------|
| 11           | 1100001000077 | traa  | 11000000 |
| <b>v</b>     | innaymaiv     | II CU | UCHCIES  |
| ~            | Building      |       |          |

| Sum of electronic and zero-point Energies=   | -3074.831018 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -3074.814422 |
| Sum of electronic and thermal Enthalpies=    | -3074.813477 |
| Sum of electronic and thermal Free Energies= | -3074.876301 |

# **3n (Charge = 0, Multiplicity = 1)**

| Center | Atomic | Atomic | Coo      | ordinates (Ang | stroms)  |  |
|--------|--------|--------|----------|----------------|----------|--|
| Number | Number | Type   | X        | Y              | Z        |  |
| 1      | 6      | 0      | 3.467447 | -0.542703      | 0.913069 |  |
| 2      | 6      | 0      | 2.163863 | -0.081485      | 1.557105 |  |

| 3  | 6  | 0 | 1.195699  | 0.551247  | 0.556925  |  |
|----|----|---|-----------|-----------|-----------|--|
| 4  | 6  | 0 | 0.967708  | -0.355980 | -0.665567 |  |
| 5  | 6  | 0 | 2.276045  | -0.838543 | -1.279130 |  |
| 6  | 6  | 0 | 3.202760  | -1.484970 | -0.255684 |  |
| 7  | 1  | 0 | 1.658562  | -0.950732 | 2.008450  |  |
| 8  | 1  | 0 | 2.354393  | 0.637678  | 2.369282  |  |
| 9  | 1  | 0 | 4.045460  | 0.328697  | 0.554166  |  |
| 10 | 1  | 0 | 4.099898  | -1.033569 | 1.669950  |  |
| 11 | 1  | 0 | 0.382681  | 0.197048  | -1.414749 |  |
| 12 | 1  | 0 | 2.069264  | -1.521326 | -2.118090 |  |
| 13 | 1  | 0 | 2.777534  | 0.045567  | -1.712642 |  |
| 14 | 1  | 0 | 2.745318  | -2.417891 | 0.120900  |  |
| 15 | 1  | 0 | 4.148804  | -1.775445 | -0.739755 |  |
| 16 | 1  | 0 | 0.231702  | 0.706773  | 1.060452  |  |
| 17 | 34 | 0 | -0.188696 | -1.896952 | -0.201256 |  |
| 18 | 6  | 0 | -1.798719 | -0.874702 | -0.009029 |  |
| 19 | 6  | 0 | -2.295967 | -0.578772 | 1.264455  |  |
| 20 | 6  | 0 | -2.467573 | -0.402631 | -1.144546 |  |
| 21 | 6  | 0 | -3.448591 | 0.196917  | 1.399616  |  |
| 22 | 1  | 0 | -1.774185 | -0.947262 | 2.151026  |  |
| 23 | 6  | 0 | -3.614788 | 0.377586  | -1.003640 |  |
| 24 | 1  | 0 | -2.084734 | -0.642199 | -2.139950 |  |
| 25 | 6  | 0 | -4.105606 | 0.679669  | 0.267788  |  |
| 26 | 1  | 0 | -3.830365 | 0.429126  | 2.397233  |  |
| 27 | 1  | 0 | -4.129624 | 0.748910  | -1.893578 |  |
| 28 | 1  | 0 | -5.005062 | 1.291147  | 0.375880  |  |
| 29 | 6  | 0 | -0.559686 | 2.831979  | -0.001515 |  |
| 30 | 1  | 0 | -1.022386 | 3.757455  | -0.364419 |  |
| 31 | 1  | 0 | -0.991429 | 1.972937  | -0.536847 |  |
| 32 | 1  | 0 | -0.798111 | 2.705476  | 1.066202  |  |
| 33 | 6  | 0 | 0.930625  | 2.933588  | -0.211338 |  |
| 34 | 7  | 0 | 1.676729  | 1.851359  | 0.131483  |  |
| 35 | 8  | 0 | 1.456490  | 3.948028  | -0.650363 |  |
| 36 | 1  | 0 | 2.669635  | 1.953046  | -0.059318 |  |
|    |    |   |           |           |           |  |

0 imaginary frequencies

| Sum of electronic and zero-point Energies=   | -3074.401543 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -3074.384805 |
| Sum of electronic and thermal Enthalpies=    | -3074.383861 |
| Sum of electronic and thermal Free Energies= | -3074.448103 |

# 11 (Charge = 0 Multiplicity = 1)

#### \_\_\_\_\_

| Center     | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|------------|--------|--------|-------------------------|-----------|-----------|--|
| <br>Number | Number | Туре   | Х                       | Y         | Z         |  |
| 1          | 6      | 0      | -2.325512               | -0.864607 | 0.216956  |  |
| 2          | 6      | 0      | -1.011607               | -1.281588 | -0.004401 |  |
| 3          | 6      | 0      | 0.004121                | -0.352304 | -0.255103 |  |
| 4          | 6      | 0      | -1.637102               | 1.430133  | -0.053444 |  |
| 5          | 6      | 0      | -2.642941               | 0.492885  | 0.192511  |  |
| 6          | 1      | 0      | -3.104985               | -1.606644 | 0.410131  |  |
| 7          | 1      | 0      | -0.768336               | -2.348066 | 0.015285  |  |
| 8          | 1      | 0      | -1.876194               | 2.496907  | -0.074154 |  |
| 9          | 1      | 0      | -3.671086               | 0.821413  | 0.365696  |  |
| 10         | 6      | 0      | -0.326615               | 1.009899  | -0.272596 |  |
| 11         | 1      | 0      | 0.457942                | 1.749308  | -0.459585 |  |
| 12         | 6      | 0      | 1.428550                | -0.794870 | -0.500422 |  |
| 13         | 1      | 0      | 1.466517                | -1.896009 | -0.453752 |  |
| 14         | 1      | 0      | 1.738037                | -0.503853 | -1.518466 |  |
| 15         | 6      | 0      | 2.392421                | -0.220616 | 0.493670  |  |
| 16         | 1      | 0      | 2.204367                | -0.480715 | 1.543739  |  |
| 17         | 6      | 0      | 3.422819                | 0.572384  | 0.191230  |  |
| 18         | 1      | 0      | 3.637893                | 0.857975  | -0.844968 |  |
| 19         | 1      | 0      | 4.091034                | 0.961785  | 0.965662  |  |
|            |        |        |                         |           |           |  |

\_\_\_\_\_

| 0 imaginary frequencies                      |             |
|----------------------------------------------|-------------|
| Sum of electronic and zero-point Energies=   | -348.149946 |
| Sum of electronic and thermal Energies=      | -348.141841 |
| Sum of electronic and thermal Enthalpies=    | -348.140897 |
| Sum of electronic and thermal Free Energies= | -348.183869 |

| Center | Atomic | omic Atomic Coordinates (Angstro |          | igstroms) |           |
|--------|--------|----------------------------------|----------|-----------|-----------|
| Number | Number | Туре                             | Х        | Y         | Z         |
|        | ·····  |                                  |          | 1.020500  | 0.051145  |
| 1      | 6      | 0                                | 4.43/0/0 | 1.838509  | -0.271145 |
| 2      | 6      | 0                                | 3.312841 | 1.239560  | -0.838256 |
| 3      | 6      | 0                                | 2.907657 | -0.038702 | -0.435724 |
| 4      | 6      | 0                                | 4.768732 | -0.105298 | 1.120242  |
| 5      | 6      | 0                                | 5.167540 | 1.167608  | 0.710292  |
| 6      | 1      | 0                                | 4.745919 | 2.834208  | -0.600030 |
| 7      | 1      | 0                                | 2.743279 | 1.766390  | -1.609354 |
| 8      | 1      | 0                                | 5.338741 | -0.638208 | 1.885761  |
| 9      | 1      | 0                                | 6.050065 | 1.635757  | 1.153829  |
| 10     | 6      | 0                                | 3.644732 | -0.703567 | 0.552006  |

# IM6 (Charge = 1, Multiplicity = 1)
| 11 | 1  | 0 | 3.338295  | -1.703537 | 0.872111  |
|----|----|---|-----------|-----------|-----------|
| 12 | 6  | 0 | 1.666512  | -0.667063 | -1.023925 |
| 13 | 1  | 0 | 1.501764  | -0.298618 | -2.045849 |
| 14 | 1  | 0 | 1.770427  | -1.761698 | -1.060824 |
| 15 | 6  | 0 | 0.487633  | -0.291648 | -0.167364 |
| 16 | 1  | 0 | 0.205606  | 0.767389  | -0.171057 |
| 17 | 6  | 0 | 0.105685  | -1.062268 | 1.007954  |
| 18 | 1  | 0 | 0.641506  | -1.992376 | 1.223963  |
| 19 | 1  | 0 | -0.361549 | -0.561707 | 1.860722  |
| 20 | 34 | 0 | -1.195138 | -1.372325 | -0.456846 |
| 21 | 6  | 0 | -2.495066 | -0.035184 | -0.031157 |
| 22 | 6  | 0 | -2.752054 | 0.968516  | -0.966820 |
| 23 | 6  | 0 | -3.214082 | -0.128978 | 1.161177  |
| 24 | 6  | 0 | -3.742227 | 1.908856  | -0.687292 |
| 25 | 1  | 0 | -2.182746 | 1.018996  | -1.897968 |
| 26 | 6  | 0 | -4.199542 | 0.820429  | 1.426628  |
| 27 | 1  | 0 | -3.004514 | -0.928197 | 1.875973  |
| 28 | 6  | 0 | -4.462133 | 1.835496  | 0.505801  |
| 29 | 1  | 0 | -3.949418 | 2.703683  | -1.407676 |
| 30 | 1  | 0 | -4.765785 | 0.763280  | 2.359244  |
| 31 | 1  | 0 | -5.236663 | 2.576085  | 0.719412  |
|    |    |   |           |           |           |

| 0 imaginary frequencies                      |              |
|----------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=   | -2980.106315 |
| Sum of electronic and thermal Energies=      | -2980.091967 |
| Sum of electronic and thermal Enthalpies=    | -2980.091023 |
| Sum of electronic and thermal Free Energies= | -2980.150638 |

-----

| Center | Atomic | Atomic | Co       | ordinates (Ang | gstroms)  |  |
|--------|--------|--------|----------|----------------|-----------|--|
| Number | Number | Туре   | Х        | Y              | Ζ         |  |
| 1      | 6      | 0      | 3.868559 | 0.328467       | -1.870107 |  |
| 2      | 6      | 0      | 2.634293 | -0.284195      | -1.662626 |  |
| 3      | 6      | 0      | 2.409644 | -1.070537      | -0.525197 |  |
| 4      | 6      | 0      | 4.689827 | -0.633766      | 0.184581  |  |
| 5      | 6      | 0      | 4.900226 | 0.157915       | -0.944308 |  |
| 6      | 1      | 0      | 4.028301 | 0.941637       | -2.760981 |  |
| 7      | 1      | 0      | 1.829701 | -0.146029      | -2.391000 |  |
| 8      | 1      | 0      | 5.493540 | -0.776141      | 0.911813  |  |
| 9      | 1      | 0      | 5.868070 | 0.639620       | -1.105777 |  |
| 10     | 6      | 0      | 3.451302 | -1.241561      | 0.392051  |  |
| 11     | 1      | 0      | 3.285224 | -1.851690      | 1.284349  |  |

### TS6 (Charge = 1, Multiplicity = 1)

| 12 | 6  | 0 | 1.054878  | -1.681823 | -0.275123 |  |
|----|----|---|-----------|-----------|-----------|--|
| 13 | 1  | 0 | 0.726198  | -2.253617 | -1.156455 |  |
| 14 | 1  | 0 | 1.110125  | -2.381357 | 0.572972  |  |
| 15 | 6  | 0 | 0.003263  | -0.625704 | 0.005156  |  |
| 16 | 1  | 0 | -0.228173 | 0.019888  | -0.850329 |  |
| 17 | 6  | 0 | -0.022752 | 0.048262  | 1.292535  |  |
| 18 | 1  | 0 | 0.343974  | -0.473451 | 2.179043  |  |
| 19 | 1  | 0 | -0.680103 | 0.905934  | 1.439274  |  |
| 20 | 34 | 0 | -1.708264 | -1.453652 | 0.610327  |  |
| 21 | 6  | 0 | -2.916880 | -0.125400 | -0.047841 |  |
| 22 | 6  | 0 | -3.084344 | 0.042565  | -1.425898 |  |
| 23 | 6  | 0 | -3.665596 | 0.626842  | 0.861229  |  |
| 24 | 6  | 0 | -3.997249 | 0.986479  | -1.892505 |  |
| 25 | 1  | 0 | -2.502992 | -0.559321 | -2.128782 |  |
| 26 | 6  | 0 | -4.583185 | 1.562047  | 0.382849  |  |
| 27 | 1  | 0 | -3.528452 | 0.485009  | 1.935831  |  |
| 28 | 6  | 0 | -4.746656 | 1.743838  | -0.990400 |  |
| 29 | 1  | 0 | -4.128026 | 1.125775  | -2.968485 |  |
| 30 | 1  | 0 | -5.169688 | 2.153735  | 1.090039  |  |
| 31 | 1  | 0 | -5.464206 | 2.479852  | -1.361510 |  |
| 32 | 6  | 0 | 3.443212  | 3.063162  | 0.891479  |  |
| 33 | 1  | 0 | 3.209301  | 3.994678  | 1.427254  |  |
| 34 | 1  | 0 | 4.397547  | 2.657635  | 1.256852  |  |
| 35 | 1  | 0 | 3.522535  | 3.268376  | -0.185940 |  |
| 36 | 6  | 0 | 2.395764  | 2.098691  | 1.117815  |  |
| 37 | 7  | 0 | 1.566038  | 1.317420  | 1.299794  |  |
|    |    |   |           |           |           |  |

| 1 imaginary frequencies (442.04 icm <sup>-1</sup> ) |              |
|-----------------------------------------------------|--------------|
| Sum of electronic and zero-point Energies=          | -3112.554223 |
| Sum of electronic and thermal Energies=             | -3112.535148 |
| Sum of electronic and thermal Enthalpies=           | -3112.534204 |
| Sum of electronic and thermal Free Energies=        | -3112.605914 |
|                                                     |              |

### IM7 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | Coo       | ordinates (Ang | gstroms)  |  |
|--------|--------|--------|-----------|----------------|-----------|--|
| Number | Number | Туре   | Х         | Y              | Ζ         |  |
| 1      | 6      | 0      | -2.158321 | 2.592288       | -1.119511 |  |
| 2      | 6      | 0      | -0.833271 | 2.209742       | -1.328365 |  |
| 3      | 6      | 0      | -0.004262 | 1.879920       | -0.250832 |  |
| 4      | 6      | 0      | -1.859551 | 2.319653       | 1.256548  |  |
| 5      | 6      | 0      | -2.677061 | 2.646428       | 0.174184  |  |
| 6      | 1      | 0      | -2.790142 | 2.844908       | -1.975107 |  |

| 7  | 1  | 0 | -0.434201 | 2.159962  | -2.345038 |
|----|----|---|-----------|-----------|-----------|
| 8  | 1  | 0 | -2.255047 | 2.358556  | 2.274787  |
| 9  | 1  | 0 | -3.717158 | 2.939285  | 0.338762  |
| 10 | 6  | 0 | -0.533994 | 1.943660  | 1.044676  |
| 11 | 1  | 0 | 0.097147  | 1.701678  | 1.905160  |
| 12 | 6  | 0 | 1.442077  | 1.515521  | -0.477064 |
| 13 | 1  | 0 | 1.672464  | 1.497209  | -1.552370 |
| 14 | 1  | 0 | 2.070286  | 2.300065  | -0.025967 |
| 15 | 6  | 0 | 1.853722  | 0.172864  | 0.150481  |
| 16 | 1  | 0 | 1.280320  | 0.004299  | 1.075668  |
| 17 | 6  | 0 | 1.756086  | -1.064207 | -0.746083 |
| 18 | 1  | 0 | 2.443528  | -0.961277 | -1.599701 |
| 19 | 1  | 0 | 2.047113  | -1.959408 | -0.179064 |
| 20 | 34 | 0 | 0.037326  | -1.349396 | -1.594258 |
| 21 | 6  | 0 | -1.115150 | -1.414940 | -0.073312 |
| 22 | 6  | 0 | -2.438979 | -0.999008 | -0.257752 |
| 23 | 6  | 0 | -0.697524 | -1.871274 | 1.181789  |
| 24 | 6  | 0 | -3.334305 | -1.032187 | 0.809736  |
| 25 | 1  | 0 | -2.765681 | -0.632149 | -1.234271 |
| 26 | 6  | 0 | -1.595544 | -1.880480 | 2.249299  |
| 27 | 1  | 0 | 0.325233  | -2.222847 | 1.336664  |
| 28 | 6  | 0 | -2.914293 | -1.462588 | 2.068915  |
| 29 | 1  | 0 | -4.364744 | -0.700715 | 0.657544  |
| 30 | 1  | 0 | -1.258564 | -2.226711 | 3.229934  |
| 31 | 1  | 0 | -3.613837 | -1.473234 | 2.908329  |
| 32 | 6  | 0 | 5.690600  | 0.367326  | 1.287458  |
| 33 | 1  | 0 | 6.064894  | 1.385521  | 1.100990  |
| 34 | 1  | 0 | 5.766575  | 0.128162  | 2.359131  |
| 35 | 1  | 0 | 6.267416  | -0.360402 | 0.696490  |
| 36 | 6  | 0 | 4.317947  | 0.300535  | 0.892406  |
| 37 | 7  | 0 | 3.215181  | 0.251008  | 0.579626  |

| 0 imaginary frequencies              |
|--------------------------------------|
| Sum of electronic and zero-point Ene |

------

| Sum of electronic and zero-point Energies=   | -3112.590208 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -3112.571722 |
| Sum of electronic and thermal Enthalpies=    | -3112.570778 |
| Sum of electronic and thermal Free Energies= | -3112.639514 |

-----

#### TS7 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | C         | oordinates (A | ngstroms) |  |
|--------|--------|--------|-----------|---------------|-----------|--|
| Number | Number | Туре   | Х         | Y             | Z         |  |
| 1      | 6      | 0      | -3.569424 | -2.131126     | -0.153147 |  |

-----

| 2  | 6  | 0 | -2.912555 | -1.118929 | -0.853622 |  |
|----|----|---|-----------|-----------|-----------|--|
| 3  | 6  | 0 | -2.472166 | 0.032067  | -0.193461 |  |
| 4  | 6  | 0 | -3.349366 | -0.859632 | 1.885627  |  |
| 5  | 6  | 0 | -3.786350 | -2.005663 | 1.219050  |  |
| 6  | 1  | 0 | -3.909779 | -3.024598 | -0.683070 |  |
| 7  | 1  | 0 | -2.733417 | -1.223769 | -1.927303 |  |
| 8  | 1  | 0 | -3.519671 | -0.752007 | 2.960056  |  |
| 9  | 1  | 0 | -4.297505 | -2.799770 | 1.769349  |  |
| 10 | 6  | 0 | -2.698760 | 0.153389  | 1.182953  |  |
| 11 | 1  | 0 | -2.361069 | 1.051238  | 1.709296  |  |
| 12 | 6  | 0 | -1.732999 | 1.110731  | -0.943803 |  |
| 13 | 1  | 0 | -1.794480 | 0.955094  | -2.030162 |  |
| 14 | 1  | 0 | -2.199921 | 2.087623  | -0.742637 |  |
| 15 | 6  | 0 | -0.292850 | 1.218281  | -0.537128 |  |
| 16 | 1  | 0 | -0.025151 | 0.869094  | 0.464469  |  |
| 17 | 6  | 0 | 0.791687  | 1.297398  | -1.502467 |  |
| 18 | 1  | 0 | 0.526704  | 1.728852  | -2.475216 |  |
| 19 | 1  | 0 | 1.757855  | 1.645211  | -1.122659 |  |
| 20 | 34 | 0 | 0.804042  | -0.666723 | -1.698821 |  |
| 21 | 6  | 0 | 1.849696  | -1.097167 | -0.155593 |  |
| 22 | 6  | 0 | 1.271768  | -1.875802 | 0.851507  |  |
| 23 | 6  | 0 | 3.181169  | -0.681495 | -0.061413 |  |
| 24 | 6  | 0 | 2.034428  | -2.233716 | 1.963144  |  |
| 25 | 1  | 0 | 0.229605  | -2.194084 | 0.770283  |  |
| 26 | 6  | 0 | 3.930196  | -1.033915 | 1.059896  |  |
| 27 | 1  | 0 | 3.629816  | -0.084281 | -0.859145 |  |
| 28 | 6  | 0 | 3.359297  | -1.810493 | 2.069816  |  |
| 29 | 1  | 0 | 1.585122  | -2.840516 | 2.753191  |  |
| 30 | 1  | 0 | 4.969497  | -0.705670 | 1.140102  |  |
| 31 | 1  | 0 | 3.951916  | -2.087729 | 2.945220  |  |
| 32 | 6  | 0 | 0.447429  | 5.400778  | 1.297651  |  |
| 33 | 1  | 0 | -0.459828 | 5.985758  | 1.507861  |  |
| 34 | 1  | 0 | 0.995462  | 5.224420  | 2.234764  |  |
| 35 | 1  | 0 | 1.088009  | 5.955669  | 0.596695  |  |
| 36 | 6  | 0 | 0.079756  | 4.135812  | 0.712508  |  |
| 37 | 7  | 0 | -0.222335 | 3.124988  | 0.242815  |  |
|    |    |   |           |           |           |  |

1 imaginary frequencies (393.71 icm<sup>-1</sup>)

\_\_\_\_

| Sum of electronic and zero-point Energies=   | -3112.552409 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Energies=      | -3112.533131 |
| Sum of electronic and thermal Enthalpies=    | -3112.532187 |
| Sum of electronic and thermal Free Energies= | -3112.606714 |

IM8 (Charge = 1, Multiplicity = 1)

| Center | Atomic | Atomic | Coordinates (Angstroms) |           |           |  |
|--------|--------|--------|-------------------------|-----------|-----------|--|
| Number | Number | Туре   | Х                       | Y         | Ζ         |  |
|        |        |        | 4 083260                | 0 307788  | 1 587874  |  |
| 1      | 6      | 0      | -7.863709               | -0.356998 | 1.387874  |  |
| 2      | 6      | 0      | -2.003707               | -1.032039 | 0.298356  |  |
| 4      | 6      | 0      | -4 655462               | -0.372196 | -0.655331 |  |
| 5      | 6      | 0      | -4 982053               | 0.306024  | 0.518551  |  |
| 6      | 1      | 0      | -4 335842               | 0.831007  | 2 513973  |  |
| 7      | 1      | 0      | -2.161888               | -0 349030 | 2.317191  |  |
| 8      | 1      | 0      | -5 355618               | -0.384201 | -1 494822 |  |
| 9      | 1      | 0      | -5.937562               | 0.829958  | 0.603521  |  |
| 10     | 6      | 0      | -3.432819               | -1.036657 | -0.762627 |  |
| 11     | 1      | 0      | -3.176968               | -1.562596 | -1.686981 |  |
| 12     | 6      | 0      | -1.169355               | -1.681726 | 0.158144  |  |
| 13     | 1      | 0      | -0.960262               | -2.308466 | 1.039336  |  |
| 14     | 1      | 0      | -1.165652               | -2.342306 | -0.723461 |  |
| 15     | 6      | 0      | -0.032689               | -0.666958 | 0.030288  |  |
| 16     | 1      | 0      | 0.052898                | -0.068036 | 0.949272  |  |
| 17     | 6      | 0      | -0.145284               | 0.269111  | -1.172520 |  |
| 18     | 1      | 0      | -0.418503               | -0.278759 | -2.087441 |  |
| 19     | 1      | 0      | 0.801905                | 0.800097  | -1.351946 |  |
| 20     | 34     | 0      | 1.649566                | -1.675531 | -0.136545 |  |
| 21     | 6      | 0      | 2.856133                | -0.208780 | 0.112565  |  |
| 22     | 6      | 0      | 2.898839                | 0.475515  | 1.333090  |  |
| 23     | 6      | 0      | 3.715437                | 0.160543  | -0.927379 |  |
| 24     | 6      | 0      | 3.786508                | 1.536746  | 1.501942  |  |
| 25     | 1      | 0      | 2.238171                | 0.176666  | 2.151118  |  |
| 26     | 6      | 0      | 4.614576                | 1.212480  | -0.744587 |  |
| 27     | 1      | 0      | 3.676901                | -0.371957 | -1.880759 |  |
| 28     | 6      | 0      | 4.647473                | 1.904184  | 0.465808  |  |
| 29     | 1      | 0      | 3.812922                | 2.073269  | 2.453916  |  |
| 30     | 1      | 0      | 5.286237                | 1.496771  | -1.558696 |  |
| 31     | 1      | 0      | 5.347574                | 2.731951  | 0.604282  |  |
| 32     | 6      | 0      | -2.851514               | 3.149971  | -0.567382 |  |
| 33     | 1      | 0      | -2.416259               | 4.114037  | -0.871758 |  |
| 34     | 1      | 0      | -3.754185               | 2.936560  | -1.159126 |  |
| 35     | 1      | 0      | -3.101788               | 3.169731  | 0.504027  |  |
| 36     | 6      | 0      | -1.890864               | 2.115465  | -0.795107 |  |
| 37     | 7      | 0      | -1.123724               | 1.282647  | -0.976676 |  |

\_\_\_\_\_

\_\_\_

0 imaginary frequencies

Sum of electronic and zero-point Energies=

-3112.591435

| Sum of electronic and thermal Energies=      | -3112.572683 |
|----------------------------------------------|--------------|
| Sum of electronic and thermal Enthalpies=    | -3112.571739 |
| Sum of electronic and thermal Free Energies= | -3112.642413 |

#### 4.4 The cyclic voltammetry of olefins within the reaction system

#### 4.4.1 The cyclic voltammetry of unreacted olefins within the reaction system



**Fig. S10** CV experiments. Red Line: cyclic voltammetry of **1** (0.3 mmol), **2n** (0.2 mmol), TBAPF<sub>6</sub> (0.2 mmol) and TsOH (0.05 mmol) in MeCN (4.0 mL) under air. Black Line: cyclic voltammetry of TBAPF<sub>6</sub> (0.2 mmol) in MeCN (4.0 mL) under air. A glassy carbon disk (R = 5.5 mm, h = 10 mm) was used as the working electrode. A Pt disk (R = 5.5 mm, h = 10 mm) and Ag/AgCl (R = 5.0 mm, h = 10 mm) were used as the counter and reference electrodes, respectively. The scan rate was 150 mV/s.

## 4.4.2 The cyclic voltammograms of cyclopentene, cyclohexene, cycloheptene, 1dodecene, phenyl disulfide and 1,2-bis(4-bromophenyl) disulfane within the reaction system



**Fig. S11** CV experiments. Red Line: cyclic voltammetry of **1** (0.3 mmol), **2** (0.2 mmol), TBAPF<sub>6</sub> (0.2 mmol) and TsOH (0.05 mmol) in MeCN (4.0 mL) under air. Black Line: cyclic voltammetry of TBAPF<sub>6</sub> (0.2 mmol) in MeCN (4.0 mL) under air. A glassy carbon disk (R = 5.5 mm, h = 10 mm) was used as the working electrode. A Pt disk (R = 5.5 mm, h = 10 mm) and Ag/AgCl (R = 5.0 mm, h = 10 mm) were used as the counter and reference electrodes, respectively. The scan rate was 150 mV/s.



#### 4.5 The atomic dipole corrected Hirshfeld (ADCH)<sup>[10]</sup>

Fig. S12 ADCH atomic charge analysis of the  $IM1 \rightarrow {}^{1}IM2$  transformation process for cyclopentene, cyclohexene, and cycloheptene.

Computational analysis confirmed that the structural transition from IM1 to <sup>1</sup>IM2 is the ratedetermining step regulating product yield. The IM1 structural variations of cyclopentene, cyclohexene and cycloheptene show Se-C1 bond lengths of 2.06 Å, 1.97 Å and 2.03 Å, respectively, indicating more stable Se-C1 bonding in cyclohexene.

ADCH atomic charge analysis (Multiwfn 3.8)<sup>[11]</sup> shows:

- Se charge: -0.1804 (cyclohexene) < -0.1296 (cycloheptene) <-0.1205 (cyclopentene)
- C1 charge: -0.0617 (cyclohexene) > -0.0631 (cycloheptene) < +0.01818 (cyclopentene)
- C2 charge: -0.1664 (cyclohexene) < -0.0946 (cycloheptene) < +0.236 (cyclopentene)

These charge distributions, shaped by structural differences, critically govern the  $IM1 \rightarrow {}^{1}IM2$  transition:

Cyclopentene: The positive C2 charge (+0.236) hinders electron loss needed for cationicintermediate formation, blocking  $IM1 \rightarrow {}^{1}IM2$  conversion.

Cyclohexene: The negative C2 charge (-0.1664) promotes single-electron oxidation, enabling efficient IM1 $\rightarrow$ <sup>1</sup>IM2 progression.

Cycloheptene: The near-neutral C2 charge (-0.0946) allows slight electron loss, permitting partial  $IM1 \rightarrow IM2$  progression.

This explains the significant yield differences: 3m has nearly zero yield (unactivated), 3o has a lower yield (limited electron transfer), and 3n has a high yield (optimal radical stabilization and IM1 $\rightarrow$ <sup>1</sup>IM2 conversion).

#### 5. Analytical data



*N*-(1-(phenylselanyl)hexan-2-yl)acetamide (3a): Known compound.<sup>[12]</sup> (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 85.2 mg, yield: 95%. white solid. m.p.: 64.3-65.1 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (dt, *J* = 6.5, 1.7 Hz, 2H), 7.27-7.23 (m, 3H), 5.41 (d, *J* = 8.8 Hz, 1H), 4.20-4.14 (m, 1H), 3.17 (dd, *J* = 12.8, 5.0 Hz, 1H), 3.09 (dd, *J* = 12.8, 4.8 Hz, 1H), 1.81 (s, 3H), 1.60-1.54 (m, 1H), 1.52-1.45 (m, 1H), 1.28-1.24 (m, 4H), 0.86 (t, *J* = 6.9 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.7, 132.7, 130.4, 129.4, 127.2, 49.3, 34.1, 33.8, 28.3, 23.4, 22.6, 14.1.



*N*-(1-(phenylselanyl)dodecan-2-yl)acetamide (3b): Known compound.<sup>[12]</sup> (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 73.6 mg, yield: 64%. white solid. m.p.: 66.4-67.2 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (dt, *J* = 6.5, 1.7 Hz, 2H), 7.27 (t, *J* = 1.9 Hz, 1H), 7.26-7.21 (m, 2H), 5.40 (d, *J* = 8.7 Hz, 1H), 4.20-4.14 (m, 1H), 3.17 (dd, *J* = 12.8, 5.0 Hz, 1H), 3.09 (dd, *J* = 12.8, 4.8 Hz, 1H), 1.81 (s, 3H), 1.60-1.57 (m, 1H), 1.49-1.44 (m, 1H), 1.26-1.22 (m, 16H), 0.88 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.5, 132.5, 130.2, 129.2, 126.9, 49.1, 34.2, 33.6, 31.8, 29.5, 29.5, 29.4, 29.3, 29.3, 25.9, 23.2, 22.6, 14.1.



*N*-(1-(phenylselanyl)octadecan-2-yl)acetamide (3c): Known compound.<sup>[12]</sup>. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 92.5 mg, yield: 66%, white solid. m.p.: 80.1-81.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (dt, *J* = 6.5, 1.7 Hz, 2H), 7.27 (t, *J* = 2.1 Hz, 1H), 7.25-7.21 (m, 2H), 5.40 (d, *J* = 8.7 Hz, 1H), 4.20-4.14 (m, 1H), 3.17 (dd, *J* = 12.8, 5.0 Hz, 1H), 3.09 (dd, *J* = 12.8, 4.8 Hz, 1H), 1.80 (s, 3H), 1.57-1.54 (m, 1H), 1.50-1.45 (m, 1H), 1.29-1.23 (m, 28H), 0.88 (t, *J* = 6.9 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.5, 132.5, 130.2, 129.2, 127.0, 49.1, 34.2, 33.6, 31.9, 29.6, 29.6, 29.6, 29.6, 29.6, 29.5, 29.4, 29.3, 25.9, 23.2, 22.6, 14.1.



*N*-(4-methyl-1-(phenylselanyl)pentan-2-yl)acetamide (3d): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 48.1 mg, yield: 54%, yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.52 (dt, J = 6.6 Hz, J = 1.6 Hz, 2H), 7.28-7.26 (m, 1H), 7.26-7.21 (m, 2H), 5.38 (d, J = 8.8 Hz, 1H), 4.31-4.25 (m, 1H), 3.18 (dd, J = 12.8, 5.0 Hz, 1H), 3.07 (dd, J = 12.8, 4.5 Hz, 1H), 1.79 (s, 3H), 1.58-1.53 (m, 1H), 1.42-1.39 (m, 2H), 0.89 (d, J = 6.6 Hz, 3H), 0.86 (d, J = 6.6 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.6, 132.7, 130.5, 129.4, 127.2, 47.3, 43.6, 34.4, 25.1, 23.4, 23.0, 22.4. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>21</sub>NOSeNa [M+Na]<sup>+</sup>: 322.0681; Found: 322.0673.



*N*-(11-bromo-1-(phenylselanyl)undecan-2-yl)acetamide (3e): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 99.5 mg, yield: 74%, brown solid. m.p.: 163.7-164.8 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.52 (dt, J = 6.6, 1.9 Hz, 2H), 7.28-7.26 (m, 1H), 7.25-7.21 (m, 2H), 5.43 (d, J = 8.7 Hz, 1H), 4.20-4.14 (m, 1H), 3.40 (t, J = 6.8 Hz, 2H), 3.16 (dd, J = 12.8, 5.0 Hz, 1H), 3.09 (dd, J = 12.8, 4.8 Hz, 1H), 1.86-1.82 (m, 2H), 1.80 (s, 3H), 1.59-1.54 (m, 1H), 1.41-1.39 (m, 1H), 1.30-1.22 (m, 12H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.7, 132.7, 130.4, 129.4, 127.2, 49.2, 34.4, 34.2, 33.8, 32.9, 29.4, 29.4, 28.8, 28.3, 26.1, 23.4. HRMS (ESI) m/z Calcd for C<sub>19</sub>H<sub>30</sub>BrNOSeNa [M+Na]<sup>+</sup>: 470.0568; Found: 470.0556.



**Methyl 10-acetamido-11-(phenylselanyl)undecanoate (3f):** New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 93.8 mg, yield: 76%, white solid. m.p.: 70.8-71.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (dt, J = 6.6, 1.6 Hz, 2H), 7.30-7.26 (m, 1H), 7.26-7.22 (m, 2H), 5.41 (d, J = 8.7 Hz, 1H), 4.19-4.13 (m, 1H), 3.66 (s, 3H), 3.16 (dd, J = 12.8, 5.0 Hz, 1H), 3.09 (dd, J = 12.8, 4.8 Hz, 1H), 2.29 (td, J = 7.6, 3.3 Hz, 2H), 1.81 (s, 3H), 1.62-1.58 (m, 3H), 1.49-1.43 (m, 1H), 1.31-1.26 (m, 5H), 1.24-1.22 (m, 5H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  174.3, 169.5, 134.9, 132.5, 130.2, 129.2, 127.0, 51.4, 49.0, 34.2, 34.0, 33.6, 29.2, 29.1, 29.0, 29.0,

29.0, 25.9, 24.8, 23.2. **HRMS (ESI)** m/z Calcd for  $C_{20}H_{31}NO_3SeNa$  [M+Na]<sup>+</sup>: 436.1361; Found: 436.1357.



*N*-(1-cyclohexyl-3-(phenylselanyl)propyl)acetamide (3g): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 91.4 mg, yield: 90%, white solid. m.p.: 123.9-124.8 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$ 7.54-7.51 (m, 2H), 7.27-7.23 (m, 3H), 5.51 (d, *J* = 9.3 Hz, 1H), 4.05-4.00 (m, 1H), 3.14 (d, *J* = 5.2 Hz, 2H), 1.84 (s, 3H), 1.76-1.69 (m, 3H), 1.67-1.61 (m, 2H), 1.54-1.48 (m, 1H), 1.20-1.10 (m, 3H), 1.01-0.92 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 132.7, 130.2, 129.1, 127.0, 53.5, 40.8, 31.6, 29.6, 28.8, 26.1, 25.8, 25.8, 23.2. HRMS (ESI) m/z Calcd for C<sub>17</sub>H<sub>25</sub>NOSeNa [M+Na]<sup>+</sup>: 348.0837; Found: 348.0829.



*N*-(2-(phenylselanyl)-1-(4'-propyl-[1,1'-bi(cyclohexan)]-4-yl)ethyl)acetamide (3h): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 63.6 mg, yield: 47%, white solid. m.p.: 172.8-173.5 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.53 (dt, J = 6.1, 2.1 Hz, 2H), 7.28-7.26 (m, 1H), 7.26-7.23 (m, 2H), 5.39 (d, J = 9.3 Hz, 1H), 4.02-3.98 (m, 1H), 3.14 (d, J = 5.1 Hz, 2H), 1.82 (s, 3H), 1.79-1.64 (m, 9H), 1.45-1.42 (m, 1H), 1.31-1.27 (m, 3H), 1.14-1.11 (m, 3H), 0.99-0.89 (m, 8H), 0.86 (t, J =7.4 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 132.7, 130.2, 129.2, 127.1, 53.6, 43.2, 42.9, 41.0, 39.7, 37.5, 33.5, 31.8, 29.9, 29.9, 29.9, 29.4, 29.4, 29.1, 23.2, 19.9, 14.4. HRMS (ESI) m/z Calcd for C<sub>25</sub>H<sub>39</sub>NOSeNa [M+Na]<sup>+</sup>: 472.2089; Found: 472.2083.



*N*-(2-(phenylselanyl)octan-3-yl)acetamide (3j): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 23.7 mg, yield: 24%, brown solid. m.p.: 68.7-69.1 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.60-7.58 (m, 2H), 7.28-7.26 (m, 3H), 5.57 (d, *J* = 9.0 Hz, 1H), 4.34-4.28 (m, 1H), 3.24-3.22 (m, 1H), 1.93 (s, 3H), 1.69-1.64 (m, 1H), 1.62-1.57 (m, 2H), 1.51-1.47 (m, 1H), 1.29-1.24 (m, 4H), 1.17 (d, *J* = 6.7 Hz, 3H), 0.87 (t, *J* = 7.0 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.5, 134.3, 131.7, 130.1, 129.3, 127.6, 53.9, 48.9, 33.3, 31.7, 27.9, 23.6, 22.7, 20.3, 14.2. HRMS (ESI) m/z

Calcd for C<sub>16</sub>H<sub>25</sub>NOSeNa [M+Na]<sup>+</sup>: 350.0994; Found: 350.0986.



*N*-(3-(phenylselanyl)octan-2-yl)acetamide (3j'): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 21.6 mg, yield: 22%, yellow solid. m.p.: 74.3-75.6 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.61-7.58 (m, 2H), 7.29-7.26 (m, 3H), 5.47 (d, *J* = 9.4 Hz, 1H), 4.11-4.06 (m, 1H), 3.51 (qd, *J* = 7.1, 3.3 Hz, 1H), 1.96 (s, 3H), 1.58-1.52 (m, 1H), 1.47-1.42 (m, 1H), 1.41 (d, *J* = 7.1 Hz, 3H), 1.26-1.16 (m, 6H), 0.84 (t, *J* = 7.1 Hz, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.9, 135.0, 129.3, 129.1, 127.9, 54.3, 45.3, 34.1, 31.7, 26.0, 23.6, 22.6, 20.0, 14.1. HRMS (ESI) m/z Calcd for C<sub>16</sub>H<sub>25</sub>NOSeNa [M+Na]<sup>+</sup>: 350.0994; Found: 350.0989.



*N*-(4-phenyl-1-(phenylselanyl)butan-2-yl)acetamide (3k): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 51.8 mg, yield: 50%, white solid. m.p.: 103.2-104.5 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.53 (dt, J = 6.1, 1.9 Hz, 2H), 7.31-7.26 (m, 3H), 7.26-7.23 (m, 2H), 7.20-7.16 (m, 1H), 7.14-7.11 (m, 2H), 5.46 (d, J = 8.8 Hz, 1H), 4.28-4.22 (m, 1H), 3.18 (dd, J = 12.9, 5.1 Hz, 1H), 3.11 (dd, J = 12.9, 4.9 Hz, 1H), 2.63-2.60 (m, 2H), 1.96-1.91 (m, 1H), 1.88-1.81 (m, 1H), 1.78 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.7, 141.4, 132.8, 130.2, 129.4, 128.6, 128.6, 128.4, 127.3, 126.2, 49.2, 36.1, 33.8, 32.5, 23.4. HRMS (ESI) m/z Calcd for C<sub>18</sub>H<sub>21</sub>NOSeNa [M+Na]<sup>+</sup>: 370.0681; Found: 370.0673.



*N*-(1-phenyl-3-(phenylselanyl)propan-2-yl)acetamide (3l): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 31 mg, yield: 31%, white solid. m.p.: 107.6-108.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.52-7.49 (m, 2H), 7.29-7.26 (m, 2H), 7.26-7.20 (m, 4H), 7.15-7.12 (m, 2H), 5.50 (d, *J* = 8.3 Hz, 1H), 4.45-4.39 (m, 1H), 3.11 (dd, *J* = 12.9, 5.2 Hz, 1H), 2.99 (dd, *J* = 12.9, 5.2 Hz, 1H), 2.94-2.86 (m, 2H), 1.76 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.7, 137.4, 132.8, 130.1, 129.4, 128.7, 127.3, 126.8, 50.4, 39.9, 32.2, 23.3. HRMS (ESI) m/z Calcd for C<sub>17</sub>H<sub>19</sub>NOSeNa [M+Na]<sup>+</sup>: 356.0524; Found: 356.0516.



*N*-(3-phenyl-2-(phenylselanyl)propyl)acetamide (3Γ): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 20.8 mg, yield: 21%, yellow oil. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.52-7.49 (m, 2H), 7.32-7.28 (m, 4H), 7.28-7.27 (m, 1H), 7.25-7.21 (m, 1H), 7.20-7.18 (m, 2H), 5.77 (s, 1H), 3.58-3.51 (m, 2H), 3.38-3.32 (m, 1H), 2.99 (dd, J = 14.3, 6.8 Hz, 1H), 2.93 (dd, J = 14.3, 7.4 Hz, 1H), 1.87 (s, 3H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 170.1, 138.9, 135.1, 129.4, 129.2, 128.7, 128.2, 128.1, 126.9, 46.7, 43.4, 40.0, 23.3. HRMS (ESI) m/z Calcd for C<sub>17</sub>H<sub>19</sub>NOSeNa [M+Na]<sup>+</sup>: 356.0524; Found: 356.0517.



*N*-(2-(phenylselanyl)cyclohexyl)acetamide (3n): Known compound.<sup>[13]</sup> (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 81.9 mg, yield: 92%. white solid. m.p.: 118.2-119.5 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (d, *J* = 5.3 Hz, 2H), 7.29-7.26 (m, 3H), 5.50 (d, *J* = 3.4 Hz 1H), 3.83-3.79 (m, 1H), 3.02 (t, *J* = 11.0 Hz, 1H), 2.16 (t, *J* = 16.0 Hz, 2H), 1.90 (s, 3H), 1.68 (s, 2H), 1.53 (q, *J* = 12.5 Hz, 1H), 1.39-1.31 (m, 1H), 1.26-1.15 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.4, 135.5, 129.2, 128.4, 127.9, 53.4, 48.1, 34.2, 33.9, 26.8, 24.7, 23.6.



*N*-(2-(phenylselanyl)cycloheptyl)acetamide (30): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 11.3 mg, yield: 12%, white solid. m.p.: 103.4-103.8 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.57-7.54 (m, 2H), 7.28 (t, J = 3.2 Hz, 3H), 5.52 (d, J = 8.0 Hz, 1H), 4.07-4.03 (m, 1H), 3.23 (td, J = 9.0, 3.3 Hz, 1H), 2.11-2.06 (m, 1H), 1.97-1.92 (m, 1H), 1.89 (s, 3H), 1.84-1.77 (m, 2H), 1.77-1.70 (m, 2H), 1.68-1.63 (m, 1H), 1.60-1.57 (m, 2H), 1.48-1.42 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.2, 134.8, 129.7, 129.3, 127.7, 55.8, 50.6, 33.8, 32.8, 28.1, 26.6, 23.7, 23.6. HRMS (ESI) m/z Calcd for C<sub>15</sub>H<sub>21</sub>NOSeNa [M+Na]<sup>+</sup>: 334.0671; Found: 334.0681.



*N*-(5-(phenylselanyl)-9-oxabicyclo[6.1.0]nonan-4-yl)acetamide (3p): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 66.2 mg, yield:

65%, yellow solid. m.p.: 118.7-119.1 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.52 (dt, J = 7.5, 1.7 Hz, 2H), 7.28-7.23 (m, 3H), 5.81 (d, J = 8.1 Hz, 1H), 4.32-4.25 (m, 1H), 4.02 (t, J = 5.6 Hz, 1H), 3.88 (t, J = 5.6 Hz, 1H), 3.76-3.71 (m, 1H), 3.16-3.12 (m, 1H), 2.33 (dd, J = 14.5, 5.7 Hz, 1H), 2.06-2.03 (m, 2H), 1.97 (s, 3H), 1.85-1.83 (m, 1H), 1.78-1.70 (m, 1H), 1.64-1.57 (m, 1H), 1.45-1.38 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.7, 134.1, 129.1, 128.3, 127.5, 68.8, 67.2, 48.4, 44.4, 27.7, 26.1, 24.9, 24.8, 23.2. HRMS (ESI) m/z Calcd for C<sub>16</sub>H<sub>21</sub>NO<sub>2</sub>SeNa [M+Na]<sup>+</sup>: 362.0630; Found: 362.0617.



*N*-((*3aS*,4*R*,6*S*,7*S*,7*aR*)-6-(phenylselanyl)-3a,4,5,6,7,7*a*-hexahydro-1*H*-4,7methanoinden-5-yl)acetamide (3q): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 76.5 mg, yield: 74%, yellow solid. m.p.: 148.8-149.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.48-7.41 (m, 2H), 7.29-7.23 (m, 3H), 6.35 (d, *J* = 8.8 Hz, 1H), 5.74 (dd, *J* = 5.6, 2.3 Hz, 1H), 5.48 (dd, *J* = 5.6, 2.6 Hz, 1H), 4.05-4.00 (m, 1H), 3.52 (s, 1H), 2.83 (dd, *J* = 8.5, 2.5 Hz, 1H), 2.64-2.59 (m, 1H), 2.28-2.23 (m, 2H), 2.13 (d, *J* = 4.1 Hz, 1H), 2.00-1.96 (m, 1H), 1.95 (s, 3H), 1.93-1.91 (m, 1H), 1.73-1.68 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.2, 133.5, 132.3, 131.2, 130.4, 129.4, 127.2, 54.3, 52.9, 50.5, 48.1, 46.2, 42.4, 39.5, 38.2, 23.8. HRMS (ESI) m/z Calcd for C<sub>18</sub>H<sub>21</sub>NOSe [M+H]<sup>+</sup>: 348.0861; Found: 348.0854.



*N*-(2-(*o*-tolylselanyl)cyclohexyl)acetamide (3r): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 61.8 mg, yield: 66%, white solid. m.p.: 123.2-124.9 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.55 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.22-7.15 (m, 2H), 7.10 (td, *J* = 7.5, 1.7 Hz, 1H), 5.48 (d, *J* = 8.3 Hz, 1H), 3.92-3.87 (m, 1H), 3.08 (td, *J* = 11.1, 3.9 Hz, 1H), 2.43 (s, 3H), 2.18-2.14 (m, 1H), 2.14-2.09 (m, 1H), 1.85 (s, 3H), 1.71-1.66 (m, 2H), 1.60-1.53 (m, 1H), 1.42-1.34 (m, 1H), 1.25-1.23 (m, 1H), 1.20-1.16 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.4, 141.3, 134.9, 130.4, 130.2, 127.8, 126.6, 53.9, 47.7, 34.1, 33.6, 26.7, 24.7, 23.5, 23.2. HRMS (ESI) m/z Calcd for C<sub>15</sub>H<sub>21</sub>NOSeNa [M+Na]<sup>+</sup>: 334.0681; Found: 334.0672.



*N*-(2-(*m*-tolylselanyl)cyclohexyl)acetamide (3s): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 64.8 mg, yield: 70%, white solid. m.p.: 110.8-111.5 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.40 (t, *J* = 1.7 Hz, 1H), 7.36 (d, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 7.12-7.08 (m, 1H), 5.42 (d, *J* = 8.1 Hz, 1H), 3.82-3.76 (m, 1H), 3.00 (td, *J* = 11.2, 4.0 Hz, 1H), 2.33 (s, 3H), 2.21-2.13 (m, 2H), 1.89 (s, 3H), 1.71-1.66 (m, 2H), 1.58-1.50 (m, 1H), 1.38-1.34 (m, 1H), 1.26-1.22 (m, 1H), 1.18-1.15 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.4, 139.0, 136.1, 132.4, 129.0, 128.8, 128.3, 53.6, 48.1, 34.3, 34.0, 26.8, 24.7, 23.6, 21.4. HRMS (ESI) m/z Calcd for C<sub>15</sub>H<sub>21</sub>NOSeNa [M+Na]<sup>+</sup>: 334.0681; Found: 334.0674.



*N*-(2-(*p*-tolylselanyl)cyclohexyl)acetamide (3t): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 59.8 mg, yield: 64%, yellow solid. m.p.: 116.6-117.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.45 (dt, J = 8.4, 2.2 Hz, 2H), 7.09 (d, J = 7.7 2H), 5.44 (d, J = 8.0 Hz, 1H), 3.78-3.71 (m, 1H), 2.92 (td, J = 11.3, 3.9 Hz, 1H), 2.33 (s, 3H), 2.20-2.16 (m, 1H), 2.14-2.09 (m, 1H), 1.92 (s, 3H), 1.69-1.65 (m, 2H), 1.54-1.46 (m, 1H), 1.35-1.31 (m, 1H), 1.24-1.20 (m, 1H), 1.18-1.11 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.6, 138.4, 136.2, 130.2, 124.5, 53.6, 48.3, 34.5, 34.2, 27.1, 25.0, 23.8, 21.5. HRMS (ESI) m/z Calcd for C<sub>15</sub>H<sub>21</sub>NOSeNa [M+Na]<sup>+</sup>: 334.0681; Found: 334.0675.



*N*-(2-((2,5-dimethylphenyl)selanyl)cyclohexyl)acetamide (3u): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 62.5 mg, yield: 64%, white solid. m.p.: 126.3-127.4 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.39 (s, 1H), 7.10 (d, *J* = 7.7 Hz, 1H), 7.01-6.98 (m, 1H), 5.39 (d, *J* = 8.0 Hz, 1H), 3.91-3.85 (m, 1H), 3.04 (td, *J* = 11.1, 3.9 Hz, 1H), 2.40 (s, 3H), 2.30 (s, 3H), 2.21-2.16 (m, 1H), 2.14-2.10 (m, 1H), 1.85 (s, 3H), 1.75-1.66 (m, 3H), 1.60-1.53 (m, 1H), 1.43-1.36 (m, 1H), 1.25-1.24 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.2, 138.1, 135.9, 135.7, 129.8, 129.8, 128.6, 53.9, 47.5, 34.0, 33.5, 26.7, 24.5, 23.3, 22.5, 20.7. HRMS (ESI) m/z Calcd for C<sub>16</sub>H<sub>23</sub>NOSeNa [M+Na]<sup>+</sup>: 348.0837; Found: 348.0828.



*N*-(2-((2-isopropylphenyl)selanyl)cyclohexyl)acetamide (3v): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 60 mg, yield: 59%, yellow solid. m.p.: 99.3-100.7 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.57 (dd, *J* = 7.7, 1.4 Hz, 1H), 7.30-7.27 (m, 2H), 7.10 (td, *J* = 7.2, 1.8 Hz, 1H), 5.41 (d, *J* = 8.2 Hz, 1H), 3.92-3.87 (m, 1H), 3.55-3.50 (m, 1H), 3.07 (td, *J* = 11.1, 3.9 Hz, 1H), 2.21-2.16 (m, 1H), 2.09-2.06 (m, 1H), 1.86 (s, 3H), 1.72-1.65 (m, 2H), 1.60-1.53 (m, 1H), 1.43-1.35 (m, 1H), 1.26-1.23 (m, 1H), 1.21 (dd, *J* = 6.9, 2.8 Hz, 6H). 1.19-1.15 (m, 1H), <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 151.4, 135.1, 129.6, 128.1, 126.4, 125.8, 53.8, 48.1, 34.2, 33.6, 32.9, 26.7, 24.6, 23.9, 23.8, 23.4. HRMS (ESI) m/z Calcd for C<sub>17</sub>H<sub>25</sub>NOSeNa [M+Na]<sup>+</sup>: 362.0994; Found: 362.0984.



*N*-(2-((4-(*tert*-butyl)phenyl)selanyl)cyclohexyl)acetamide (3w): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 50.9 mg, yield: 48%, yellow solid. m.p.: 120.3-121.4 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.48 (dt, J = 8.3, 2.4 Hz, 2H), 7.29 (dt, J = 8.9, 2.5 Hz, 2H), 5.51 (d, J = 8.1 Hz, 1H), 3.81-3.75 (m, 1H), 2.97 (td, J = 11.2, 3.9 Hz, 1H), 2.20-2.12 (m, 2H), 1.88 (s, 3H), 1.69-1.65 (m, 2H), 1.56-1.49 (m, 1H), 1.36-1.32 (m, 1H), 1.30 (s, 9H), 1.26-1.21 (m, 1H), 1.19-1.14 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.4, 151.2, 135.4, 126.3, 124.7, 53.6, 47.9, 34.7, 34.2, 33.9, 31.4, 26.8, 24.7, 23.6. HRMS (ESI) m/z Calcd for C<sub>18</sub>H<sub>27</sub>NOSeNa [M+Na]<sup>+</sup>: 376.1150; Found: 376.1144.



*N*-(2-((4-(methylthio)phenyl)selanyl)cyclohexyl)acetamide (3x): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 53.4 mg, yield: 52%, white solid. m.p.: 149.3-150.1 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.48 (d, *J* = 8.3 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 5.43 (d, *J* = 8.2 Hz, 1H), 3.79-3.73 (m, 1H), 2.92 (td, *J* = 11.2, 3.9 Hz, 1H), 2.47 (s, 3H), 2.20-2.15 (m, 1H), 2.14-2.08 (m, 1H), 1.94 (s, 3H), 1.70-1.65 (m, 2H), 1.52-1.45 (m, 1H), 1.36-1.31 (m, 1H), 1.24-1.19 (m, 1H), 1.18-1.13 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 139.0, 136.3, 126.7, 123.6, 53.0, 48.1, 34.1, 33.8, 26.7, 24.6, 23.5, 15.5. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>18</sub>NOSSe [M+Na]<sup>+</sup>: 366.0401; Found: 366.0393.



*N*-(2-((2-chlorophenyl)selanyl)cyclohexyl)acetamide (3y): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 70.6 mg, yield: 71%, yellow solid. m.p.: 102.4-103.2 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.64 (dd, J = 7.5, 1.8 Hz, 1H), 7.41 (dd, J = 7.8, 1.6 Hz, 1H), 7.23-7.17 (m, 2H), 5.50 (d, J = 8.0 Hz, 1H), 3.95-3.90 (m, 1H), 3.29 (td, J = 10.7, 4.0 Hz, 1H), 2.22-2.17 (m, 1H), 2.13-2.10 (m, 1H), 1.90 (s, 3H), 1.72-1.61 (m, 4H), 1.47-1.38 (m, 1H), 1.30-1.25 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.4, 137.7, 135.5, 129.7, 129.6, 128.7, 127.1, 52.9, 47.2, 33.7, 33.3, 26.3, 24.4, 23.4. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>18</sub>ClNOSeNa [M+Na]<sup>+</sup>: 354.0134; Found: 354.0124.



*N*-(2-((3-chlorophenyl)selanyl)cyclohexyl)acetamide (3z): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 65.7 mg, yield: 66%, white solid. m.p.: 124.7-125.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.56 (t, J = 1.8 Hz, 1H), 7.44 (dt, J = 7.7, 1.4 Hz, 1H), 7.25-7.24 (m, 1H), 7.20 (t, J = 7.8 Hz, 1H), 5.41 (d, J = 8.4 Hz, 1H), 3.86-3.80 (m, 1H), 3.04 (td, J = 11.1, 4.0 Hz, 1H), 2.16-2.09 (m, 2H), 1.91 (s, 3H), 1.71-1.66 (m, 2H), 1.57-1.50 (m, 1H), 1.37-1.34 (m, 1H), 1.26-1.22 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.2, 134.6, 134.4, 133.1, 130.0, 129.9, 127.8, 52.9, 48.5, 34.0, 33.7, 26.5, 24.5, 23.4. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>18</sub>ClNOSeNa [M+Na]<sup>+</sup>: 354.0134; Found: 354.0126.



*N*-(2-((4-chlorophenyl)selanyl)cyclohexyl)acetamide (3aa): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 85.5 mg, yield: 86%, white solid. m.p.: 133.5-134.2 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.50 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 5.45 (d, J = 8.4 Hz, 1H), 3.83-3.77 (m, 1H), 2.97 (td, J = 11.1, 3.9 Hz, 1H), 2.18-2.06 (m, 2H), 1.94 (s, 3H), 1.70-1.64 (m, 2H), 1.52-1.45 (m, 1H), 1.38-1.30 (m, 1H), 1.27-1.23 (m, 1H), 1.21-1.18 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.3, 137.0, 134.3, 129.2, 126.0, 52.8, 48.3, 34.0, 33.7, 26.6, 24.6, 23.5. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>18</sub>CINOSe [M+Na]<sup>+</sup>: 354.0134; Found: 354.0122.



*N*-(2-((2-bromophenyl)selanyl)cyclohexyl)acetamide (3ab): New compound.(Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 76.5 mg, yield: 68%, yellow solid. m.p.: 99.1-101.2 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.64 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.59 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.23 (td, *J* = 7.6, 1.4 Hz, 1H), 7.12 (td, *J* = 7.6, 1.6 Hz, 1H), 5.47 (d, *J* = 8.1 Hz, 1H), 3.97-3.91 (m, 1H), 3.30 (td, *J* = 10.5, 3.8 Hz, 1H), 2.24-2.19 (m, 1H), 2.15-2.11 (m, 1H), 1.91 (s, 3H), 1.71-1.63 (m, 4H), 1.46-1.42 (m, 1H), 1.29-1.27 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 135.2, 133.2, 132.4, 128.8, 127.9, 52.9, 47.8, 33.7, 33.3, 26.5, 24.5, 23.6. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>18</sub>BrNOSe [M+Na]<sup>+</sup>: 397.9629; Found: 397.9624.



*N*-(2-((3-bromophenyl)selanyl)cyclohexyl)acetamide (3ac): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 94.6 mg, yield: 84%, yellow solid. m.p.: 124.7-125.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.73 (t, *J* = 1.8 Hz, 1H), 7.50 (d, *J* = 8.0 Hz, 1H), 7.41 (dt, *J* = 6.8, 1.0 Hz, 1H), 7.15 (t, *J* = 7.8 Hz, 1H), 5.45 (d, *J* = 8.5 Hz, 1H), 3.89-3.81 (m, 1H), 3.05 (td, *J* = 11.1, 4.0 Hz, 1H), 2.17-2.10 (m, 2H), 1.92 (s, 3H), 1.73-1.65 (m, 3H), 1.58-1.50 (m, 1H), 1.38-1.35 (m, 1H), 1.25-1.24 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.3, 137.5, 133.7, 130.8, 130.5, 130.4, 122.7, 53.0, 48.6, 34.0, 33.8, 26.6, 24.6, 23.5. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>18</sub>BrNOSeNa [M+Na]<sup>+</sup>: 397.9629; Found: 397.9617.



*N*-(2-(phenylthio)cyclohexyl)acetamide (3ad): Known compound.<sup>[14]</sup> (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 45.1 mg, yield: 60%. white solid. m.p.: 96.2-97.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.45-7.42 (m, 2H), 7.31-7.28 (m, 2H), 7.26-7.23 (m, 1H), 5.47 (d, *J* = 7.9 Hz, 1H), 3.78-3.72 (m, 1H), 2.91 (td, *J* = 10.8, 3.8 Hz, 1H), 2.20-2.16 (m, 1H), 2.10-2.06 (m, 1H), 1.90 (s, 3H), 1.74-1.64 (m, 3H), 1.44-1.40 (m, 1H), 1.37-1.33 (m, 1H), 1.21-1.17 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 134.0, 133.1, 129.1, 127.5, 53.0, 51.8, 33.7, 33.1, 25.9, 24.7, 23.6.



*N*-(2-(*p*-tolylthio)cyclohexyl)acetamide (3ae): Known compound.<sup>[15]</sup> (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 32.9 mg, yield: 42%. white solid. m.p.: 103.2-101.4 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.33 (dt, *J* = 8.6, 2.3 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 5.55 (d, *J* = 7.0 Hz, 1H), 3.71-3.65 (m, 1H), 2.80 (td, *J* = 10.9, 3.8 Hz, 1H), 2.32 (s, 3H), 2.20-2.16 (m, 1H), 2.07-2.03 (m, 1H), 1.93 (s, 3H), 1.72-1.70 (m, 1H), 1.66-1.63 (m, 1H), 1.41-1.35 (m, 1H), 1.33-1.28 (m, 1H), 1.26-1.21 (m, 1H), 1.19-1.13 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  169.6, 137.8, 134.0, 129.8, 129.7, 52.9, 52.0, 33.7, 33.1, 26.0, 24.6, 23.6, 21.2.



*N*-(2-((4-chlorophenyl)thio)cyclohexyl)acetamide (3af): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 55.2 mg, yield: 65%, white solid. m.p.: 106.2-107.3 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.38 (dt, J = 9.2, 2.7 Hz, 2H), 7.26 (dt, J = 9.2, 2.7 Hz, 2H), 5.45 (d, J = 8.3 Hz, 1H), 3.77-3.72 (m, 1H), 2.87 (td, J = 10.6, 3.8 Hz, 1H), 2.18-2.14 (m, 1H), 2.06-2.02 (m, 1H), 1.95 (s, 3H), 1.73-1.65 (m, 2H), 1.40-1.32 (m, 2H),1.29-1.23 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.6, 134.7, 133.8, 132.2, 129.8, 129.2, 127.0, 52.5, 51.9, 33.5, 32.9, 25.8, 24.5, 23.7. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>18</sub>CINOSNa [M+Na]<sup>+</sup>: 306.0690; Found: 306.0688.



*N*-(2-((4-bromophenyl)thio)cyclohexyl)acetamide (3ag): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 55.2 mg, yield: 65%, white solid. m.p.: 113.1-114.7 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.42 (dt, J = 9.2, 2.7 Hz, 2H), 7.31 (dt, J = 9.2, 2.7 Hz, 2H), 5.44 (d, J = 8.2 Hz, 1H), 3.78-3.72 (m, 1H), 2.89 (td, J = 10.6, 3.8 Hz, 1H), 2.18-2.14 (m, 1H), 2.06-2.02 (m, 1H), 1.94 (s, 3H), 1.73-1.69 (m, 1H), 1.68-1.65 (m, 1H), 1.41-1.33 (m, 2H), 1.29-1.24 (m, 2H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.6, 134.8, 132.9, 132.2, 121.8, 52.5, 51.8, 33.5, 32.8, 25.8, 24.5, 23.7. HRMS (ESI) m/z Calcd for C<sub>14</sub>H<sub>19</sub>BrNOS [M+H]<sup>+</sup>: 328.0365; Found: 328.0361.



*N*-(2-(thiophen-2-ylthio)cyclohexyl)acetamide (3ah): New compound. (Eluent: petroleum ether (60-90 °C)/EtOAc = 1:1, v:v). 55.2 mg, yield: 65%, white solid. m.p.: 125.9-126.4 °C. <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.38 (dd, J = 5.3, 1.3 Hz, 1H), 7.15 (dd, J = 3.5, 1.3 Hz, 1H), 6.99 (dd, J = 5.4, 3.5 Hz, 1H), 5.57 (d, J = 6.9 Hz, 1H), 3.68-3.62 (m, 1H), 2.60 (td, J = 11.2, 3.8 Hz, 1H), 2.22-2.18 (m, 1H), 2.11-2.07 (m, 1H), 2.01 (s, 3H), 1.74-1.71 (m, 1H), 1.67-1.64 (m, 1H), 1.44-1.41 (m, 1H), 1.31-1.28 (m, 1H), 1.24-1.21 (m, 1H), 1.18-1.11 (m, 1H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.6, 136.3, 130.6, 127.9, 54.0, 52.3, 34.0, 33.2, 26.2, 24.6, 23.7. HRMS (ESI) m/z Calcd for C<sub>12</sub>H<sub>17</sub>NOS<sub>2</sub>Na [M+Na]<sup>+</sup>: 278.0644; Found: 278.0634.

#### 6. References

- Singh, D.; Deobald, A. M.; Camargo, L. R. S.; Tabarelli, G.; Rodrigues, O. E. D.; Braga, A. L. Org. Lett., 2010, 12, 3288-3291.
- [2] Fantozzi, N.; Volle, J.-N.; Porcheddu, A.; Virieux, D.; García F.; Colacino, E., *Chem. Soc. Rev.*, 2023, **52**, 6680-6714.
- [3] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 16 A.03.* Wallingford, CT, 2016.
- [4] Chai, J-D.; Gordon, M. H. Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.
- [5] Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem., 2011, 32, 1456-1465.
- [6] Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- [7] Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B., 2009, 113, 6378-6396.
- [8] Fukui, K. Acc. Chem. Res., 1981, 14, 368-375.
- [9] Semichem, Inc., GaussView 6.0.16 program: http://gaussian.com/gaussview6/ (accessed on Nov 25,2019).
- [10] Lu, T.; Chen, F. J. Theor. Comput. Chem., 2012, 11, 163-183.
- [11] Lu, T.; Chen, F. J. Comput. Chem., 2012, 33, 580-592.
- [12] Toshimitsu, A.; Aoai, T.; Owada, H.; Uemura, S.; Okano, M. J. Org. Chem., 1981, 46, 4727-4733.
- [13] Conner, E. S.; Crocker, K. E.; Fernando, R. G.; Fronczek, F. R.; Stanley, G. G.; Ragains. J. R. Org. Lett., 2013, 15, 5558-5561.
- [14] Zheng, Y.; He, Y.; Rong, G.-W.; Zhang, X.-L.; Weng, Y.-C; Dong, K.-Y.; Xu, X.-F.; Mao, J.-C. Org. Lett., 2015, 17, 5444-5447.
- [15] Wang, D.-Y.; Yan, Z.-H.; Xie, Q.-H.; Zhang, R.-X.; Lin, S.; Wang, Y.-X. Org. Biomol. Chem., 2017, 15, 1998-2002.

### 7. NMR spectra of the products



## <sup>1</sup>H NMR of product 3a in CDCl<sub>3</sub> (600 MHz)

C NMR of product 3a in CDCl<sub>3</sub> (151 MHz)



### <sup>1</sup>H NMR of product 3b in CDCl<sub>3</sub> (600 MHz)



<sup>3</sup>C NMR of product 3b in CDCl<sub>3</sub> (151 MHz)





### <sup>1</sup>H NMR of product 3c in CDCl<sub>3</sub> (600 MHz)

<sup>13</sup>C NMR of product 3c in CDCl<sub>3</sub> (151 MHz)



### <sup>1</sup>H NMR of product 3d in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3d in CDCl<sub>3</sub> (151 MHz)





# <sup>1</sup>H NMR of product 3e in CDCl<sub>3</sub> (600 MHz)

<sup>13</sup>C NMR of product 3e in CDCl<sub>3</sub> (151 MHz)



<sup>1</sup>H NMR of product 3f in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3f in CDCl<sub>3</sub> (151 MHz)



<sup>1</sup>H NMR of product 3g in CDCl<sub>3</sub> (600 MHz)



S65



# <sup>13</sup>C NMR of product 3g in CDCl<sub>3</sub> (151 MHz)

<sup>1</sup>H NMR of product 3h in CDCl<sub>3</sub> (600 MHz)



S66



# <sup>13</sup>C NMR of product 3h in CDCl<sub>3</sub> (151 MHz)

## <sup>1</sup>H NMR of product 3j in CDCl<sub>3</sub> (600 MHz)



# <sup>13</sup>C NMR of product 3j in CDCl<sub>3</sub> (151 MHz)



<sup>1</sup>H NMR of product 3j` in CDCl<sub>3</sub> (600 MHz)





# <sup>13</sup>C NMR of product 3j` in CDCl<sub>3</sub> (151 MHz)



## <sup>1</sup>H NMR of product 3k in CDCl<sub>3</sub> (600 MHz)



S69



# <sup>13</sup>C NMR of product 3k in CDCl<sub>3</sub> (151 MHz)

<sup>1</sup>H NMR of product 3l in CDCl<sub>3</sub> (600 MHz)





## C NMR of product 3l in CDCl<sub>3</sub> (151 MHz)



<sup>1</sup>H NMR of product 3l' in CDCl<sub>3</sub> (600 MHz)

. 2720 . 2600 CDCl3 . 2443 . 2419 . 2397 . 2296 2011 276C 1950 1892 .9148 Ž 86: 



<sup>13</sup>C NMR of product 3Γ in CDCl<sub>3</sub> (151 MHz)



## <sup>1</sup>H NMR of product 3n in CDCl<sub>3</sub> (600 MHz)


<sup>13</sup>C NMR of product 3n in CDCl<sub>3</sub> (151 MHz)



<sup>1</sup>H NMR of product 30 in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 30 in CDCl<sub>3</sub> (151 MHz)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

# <sup>1</sup>H NMR of product 3p in CDCl<sub>3</sub> (600 MHz)



# <sup>3</sup>C NMR of product 3p in CDCl<sub>3</sub> (151 MHz)



# <sup>1</sup>H NMR of product 3q in CDCl<sub>3</sub> (600 MHz)



# <sup>13</sup>C NMR of product 3q in CDCl<sub>3</sub> (151 MHz)







#### <sup>1</sup>H NMR of product 3r in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3r in CDCl<sub>3</sub> (151 MHz)



S78

#### <sup>1</sup>H NMR of product 3s in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3s in CDCl<sub>3</sub> (151 MHz)





# <sup>1</sup>H NMR of product 3t in CDCl<sub>3</sub> (600 MHz)

<sup>13</sup>C NMR of product 3t in CDCl<sub>3</sub> (151 MHz)



#### <sup>1</sup>H NMR of product 3u in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3u in CDCl<sub>3</sub> (151 MHz)



#### <sup>1</sup>H NMR of product 3v in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3v in CDCl<sub>3</sub> (151 MHz)



S82



#### <sup>1</sup>H NMR of product 3w in CDCl<sub>3</sub> (600 MHz)

<sup>13</sup>C NMR of product 3w in CDCl<sub>3</sub> (151 MHz)



# <sup>1</sup>H NMR of product 3x in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3x in CDCl<sub>3</sub> (151 MHz)



#### <sup>1</sup>H NMR of product 3y in CDCl<sub>3</sub> (600 MHz)



<sup>3</sup>C NMR of product 3y in CDCl<sub>3</sub> (151 MHz)



# <sup>1</sup>H NMR of product 3z in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3z in CDCl<sub>3</sub> (151 MHz)



#### <sup>1</sup>H NMR of product 3aa in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3aa in CDCl<sub>3</sub> (151 MHz)



S87

# <sup>1</sup>H NMR of product 3ab in CDCl<sub>3</sub> (600 MHz)



#### <sup>13</sup>C NMR of product 3ab in CDCl<sub>3</sub> (151 MHz)



fl (ppm)

# <sup>1</sup>H NMR of product 3ac in CDCl<sub>3</sub> (600 MHz)



<sup>13</sup>C NMR of product 3ac in CDCl<sub>3</sub> (151 MHz)



#### <sup>1</sup>H NMR of product 3ad in CDCl<sub>3</sub> (600 MHz)



# <sup>13</sup>C NMR of product 3ad in CDCl<sub>3</sub> (151 MHz)



210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)



# <sup>1</sup>H NMR of product 3ae in CDCl<sub>3</sub> (600 MHz)





210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)



<sup>1</sup>H NMR of product 3ag in CDCl<sub>3</sub> (600 MHz)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)



<sup>13</sup>C NMR of product 3ah in CDCl<sub>3</sub> (151 MHz)



