# Supporting Information

# High Ionic Conductivity Conjugated Artificial Solid Electrolyte Interphase

# **Enabling Stable Lithium Metal Batteries**

Dong Yan<sup>a</sup>, Yuhao Ma<sup>a</sup>, Hao Wang<sup>a</sup>, Weishang Jia<sup>b</sup>, Xiaobin Niu<sup>a</sup>, Haibo Wang<sup>c, \*</sup>, Wei Zou<sup>d, \*</sup>, Liping Wang<sup>a, \*</sup>

<sup>a</sup> School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China.

<sup>b</sup> Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, China.

<sup>c</sup> College of Energy, Soochow University, Suzhou 215006, P. R. China.

<sup>d</sup> Lithium Resources and Lithium Materials Key Laboratory of Sichuan Province, Chengdu 610065, China.

\* Corresponding author.

Corresponding author at:

E-mail: wanghb@suda.edu.cn (H. Wang);

E-mail: zouwei@tianqi-welion.com (W. Zou);

E-mail: lipingwang@uestc.edu.cn (L. Wang).

# Experiment

# 1. Materials

Battery-grade Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), Lithium Tetrafluoroborate (LiBF<sub>4</sub>), Lithium difluoro(oxalato)borate (LiDFOB), Ethylene glycol dimethyl ether (DME), 1,3-Dioxolane (DOL), Diethylcarbonate (DEC), and Fluoroethylene carbonate (FEC) were received from Suzhou DoDoChem Technology Co., Lt. Polyacrylonitrile (PAN) was purchased from Macklin (Mw=8w, AR). N, N-Dimethylformamide (DMF, AR) and Zn(Ac)<sub>2</sub> (AR) were purchased from Aladdin.

# 2. Synthesis of CPAN@ZnO

2.1 Preparation of electrospinning solution:

First, 1 g PAN was dissolved into 10 mL DMF. Then, a certain amount of Zn(Ac)<sub>2</sub> was added into the above solution and stirred for 24h to form a uniform solution.

2.2 Electrospinning process:

The prepared spinning solution was poured into a 10 mL plastic syringe equipped with a 20 G (gauge) stainless steel needle. The needle was connected to a high voltage (30 kV) DC-power supply to initiate the electrospinning under the feeding rate of 0.025 mm min<sup>-1</sup>. The distance between the needle and the tin was 15 cm.

## 2.3 Annealing process:

The obtained composite film was pre-oxidized in air at 260 °C for 1h, with a heating rate of 2°C min<sup>-1</sup>.

# 3. Synthesis of CPAN

The CPAN was prepared using the same method without the adding of Zn(Ac)<sub>2</sub>.

## 4. Materials Characterization

The crystallographic phases of the samples were investigated by XRD (Bruker, D8 Advancer; Cu K $\alpha$ ,  $\lambda$ =1.54 Å). The micro-morphologies were characterized by SEM (SEM, USA-FEI Quanta FEG 250) and TEM (JEM2010F). The chemical states were investigated by XPS (Thermo Fisher Scientific Escalab 250Xi) and FT-IR (Thermo Scientific Nicolet iS50). The mass changes during annealing process and the interactions between PAN and Zn(Ac)<sub>2</sub> were obtained by STA (NETZSCH STA 449F5, the testing conditions for STA were identical to the annealing conditions for preparing CPAN@ZnO: 260 °C for 1h with a heating rate of 2°C/min).

# 5. Electrochemical Measurement

The electrochemical properties of the samples were tested using CR2032 coin-type cells with the separator of Celgard 2325 (thickness=25  $\mu$ m, diameter=19 mm). The diameter of the Cu and NCM811 electrode is 11 mm. The amount of electrolyte was 50 uL and the voltage window of the full cell was 2.8-4.3V.

5.1 For Li||Cu asymmetrical cells:

The CPAN@ZnO layer was rolled on Cu foil, and 1M LiTFSI in DME/DOL 1:1 (v) with 2wt% LiNO<sub>3</sub> was used as the electrolyte.

5.2 For symmetrical cells:

The CPAN@ZnO layer was rolled on Li foils, and 1M LiTFSI in DME/DOL 1:1 (v) with 2wt% LiNO<sub>3</sub> was used as the electrolyte.

5.3 For anode-free full cells:

Full cells were assembled with NCM811 as cathode and Cu@CPAN@ZnO or Cu@CPAN or bare Cu as the anode. 0.6M LiBF<sub>4</sub> and 0.6M LiDFOB in FEC/DEC 1:2 (v) was used as the electrolyte.

For the cathode preparation, NCM811, acetylene black and polyvinylidene difluoride (PVDF) were mixed in N-methyl-2-pyrrolidone (NMP) at a weight ratio of 80:10:10, and the resulting slurry was cast on an aluminum foil followed by drying in a vacuum oven for 12h.

For the anode preparation, Li||Cu cells were first assembled, and 1 mAh/cm<sup>2</sup> of lithium was deposited onto the Cu@CPAN@ZnO\Cu@CPAN\bare Cu anode. The cell was then disassembled to retrieve the pre-lithiation anode, which was subsequently paired with an NCM811 cathode to assemble a full cell for anode-free battery testing.

#### 5.4 Measurement

The galvanostatic charging/discharging of the cells was investigated on a Neware battery tester (CT-3008W). EIS measurements were performed by CHI660E with a frequency range of  $0.01-10^5$  Hz and an AC signal of 5 mV. The Tafel test was conducted by CHI660E using symmetric cells, with a voltage range of -0.3 to 0.3 V and a scan rate of 1 mV/s. And the Tafel formular as follows:

$$\eta = a + blog(i)$$

where  $\eta$  is the overpotential, *i* is the current density, and b is the Tafel slope.

5.5 The electronic conductivity of CPAN@ZnO:

The electronic conductivity is measured using an symmetric cell configuration.<sup>1</sup> The current is below the minimum range of the test equipment (CHI660E), so the artificial SEIs are electronically insulated.

#### 5.6 The ionic conductivity of CPAN@ZnO:

The ionic conductivity of SEl is based on EIS measurement of symmetrical cells. Ionic conductivity of the SEI layer can be calculated by using an equation:<sup>2</sup>

$$\sigma_{SEI} = \frac{2d_{SEI}}{R_{SEI}S_{SEI}} \tag{1}$$

where d is the thickness, R is the resistance, and S is the area of the SEl layer.

5.7 The  $Li^+$  transfer number ( $t_{Li^+}$ ):

The  $t_{Li^+}$  is characterized by the steady state polarization method in Li/Li cell with a polarization voltage of 0.01 V. according to the equation:<sup>3</sup>

$$t_{Li^{+}} = \frac{I_{s}(\Delta V - I_{0}R^{0})}{I_{0}(\Delta V - I_{s}R^{s})}$$
(2)

where  $I_0$  and  $I_s$  are initial and steady-state current, which were recorded by chronoamperometry for 1000s.  $R^0$  and  $R^s$  are interfacial resistance between the electrode and electrolyte before and after the test.

# 6. Theoretical Calculation

Density functional theory (DFT) calculations were performed using the Gaussian (G16) program with Becke's three-parameter hybrid method and the Lee-Yang-Parr correlation functional (B3LYP) at the 6-311++G(d,p) level. These calculations optimized the structures, determined the electrostatic potential (ESP), and calculated the binding energies.



Fig. S1. Optical images of CPAN (left) and CPAN@ZnO (right).



Fig. S2. CE test of different Zn(Ac)<sub>2</sub> additives.



Fig. S3. Simultaneous Thermal Analysis. (a) PAN. (b) PAN@Zn(Ac)<sub>2</sub>. Corresponding comparison of DSC (c), and TGA (d).



Fig. S4. Ionic conductivity of CPAN@ZnO and CPAN.



Fig. S5. The transport mechanism of  $Li^+$  in the CPAN conjugated structure.



Fig. S6. SEM images of CPAN.



Fig. S7. Cross-view of CPAN@ZnO.



Fig. S8. XPS survey spectra before cycling. (a) CPAN@ZnO. (b) CPAN.



Fig. S9. The corresponding histograms of high-resolution for N 1s.



Fig. S10. CE test of Li||Cu batteries under 0.5 mA cm<sup>-2</sup> and 1 mAh cm<sup>-2</sup>. Charge/discharge curves at different cycling number of Li||CPAN@ZnO@Cu (b) and bare Li||Cu (c).



Fig. S11. Critical current density of symmetric cells.



**Fig. S12.** Voltage profiles of the Li||Cu asymmetric cells at 0.5 mA cm<sup>-2</sup>. Red line: Li||CPAN@ZnO@Cu, and black line: bare Li||Cu.



Fig. S13. Tafel curves of the Li symmetric batteries, and corresponding exchange current density.



**Fig. S14.** The current evolution of Li symmetric cells under a polarization voltage of 10 mV and the related Nyquist plots before and after testing. (a) Li@CPAN@ZnO||CPAN@ZnO@Li. (b) bare

Li||Li.



Fig. S15. The equivalent circuit diagram of symmetric cells.



Fig. S16. High-resolution XPS spectra of Zn 2p for CPAN@ZnO.



Fig. S17. High-resolution XPS spectra of CPAN@ZnO after Li deposition. (a) N 1s. (b) O 1s. (c) F





Fig. S18. XRD patterns of CPAN@ZnO before and after Li deposition.



Fig. S19. High-resolution XPS spectra for F 1s.



**Fig. S20.** The surface micromorphology after cycling. (a) CPAN@ZnO. (b) Li metal surface with the protection of CPAN@ZnO artificial SEI. (c) Bare Li metal surface without the protection of CPAN@ZnO artificial SEI.



Fig. S21. The charging/discharging curves at different rates. (a) NCM811||CPAN@ZnO@Cu. (b) NCM811||CPAN@Cu. (c) NCM811|| bare Cu.



Fig. S22. The long cycling performance of full cells and corresponding charging/discharging

curves.



Fig. S23. The charging/discharging curves at 0.5C with an ultra-low N:P ratio of 0.6.



**Fig. S24.** The EDS of CPAN@ZnO@Cu after Li deposition. (a) After deposition of 8 mAh cm<sup>-2</sup>. (a) After deposition of 12 mAh cm<sup>-2</sup>.

| Temp. (°C) | Time (h) | Atmosphere | Ref.     |
|------------|----------|------------|----------|
| 260        | 1        | Air        | our work |
| 350        | 2        | Air        | 4        |
| 500        | 5        | Ar         | 5        |
| 300        | 5        | Ar         | 6        |
| 300        | 12       | Ar         | 7        |
| 450        | NA       | $N_2$      | 8        |
| 280        | 2        | Air        | 9        |
| 286        | 10       | Ar         | 10       |
| 300        | 2        | Air        | 11       |
| 350        | 3        | $N_2$      | 12       |
| 300        | 10       | Ar         | 13       |
| 450        | NA       | Ar         | 14       |

 Table S1. Comparison with conventional PAN-cyclization methods.

| Table S2. EIS fitting resul | ts. |
|-----------------------------|-----|
|-----------------------------|-----|

|              | state         | R1    | R2    | CPE1 | CPE2 |
|--------------|---------------|-------|-------|------|------|
|              | initial state | 42.74 | 32.18 | 0.81 | 0.76 |
|              | stable state  | 45.72 | 32.34 | 0.79 | 0.79 |
| have I ill i | initial state | 88.26 | 35.21 | 0.76 | 0.88 |
|              | stable state  | 85.96 | 42.06 | 0.77 | 0.77 |

| Materials              | Current density Specific Capacity O |                         | Overpotential | Cycling life | Reference  |
|------------------------|-------------------------------------|-------------------------|---------------|--------------|------------|
|                        | (mA cm <sup>-2</sup> )              | (mAh cm <sup>-2</sup> ) | (V)           | ( <b>h</b> ) |            |
| CPAN@ZnO               | 0.5                                 | 1                       | 0.02          | 5400         | <b>Th:</b> |
|                        | 1                                   | 4                       | 0.025         | 3000         | I IIS WOFK |
| SN-SPE                 | 0.2                                 | 1                       | 0.05          | 1800         | 15         |
| HFP                    | 1                                   | 0.5                     | 0.1           | 1400         | 16         |
| NGCS                   | 0.5                                 | 0.5                     | 0.02          | 320          | 17         |
| Li <sub>3</sub> Bi-LiF | 1                                   | 1                       | 0.02          | 1000         | 18         |
| PAN-b-PSBMA            | 0.5                                 | 0.5                     | 0.1           | 700          | 19         |
| LiCu <sub>x</sub>      | 1                                   | 1                       | 0.02          | 1200         | 20         |
| ERS                    | 1                                   | 1                       | 0.1           | 2000         | 21         |
| TPMS                   | 1                                   | 1 0.03                  |               | 1000         | 22         |
| ZrOP                   | 1                                   | 2                       | 0.1           | 1600         | 23         |
| DFNCA                  | 0.5                                 | 0.5                     | 0.05          | 1000         | 24         |
| P(St-Mal)              | 1                                   | 1                       | 0.15          | 1000         | 25         |
| NMSF                   | 1                                   | 1                       | 0.025         | 1900         | 26         |
| TEMED                  | 0.5                                 | 1                       | 0.05          | 3500         | 27         |
| ZnF                    | 1                                   | 1                       | 0.05          | 500          | 28         |

 Table S3. Cycling performance of symmetric cells with different SEIs reported before.

| Cathode   | Anode       | N/P           | Voltage<br>window (V) | Rate<br>(C) | Cycle<br>number | Capacity<br>retention (%) | Ref.     |
|-----------|-------------|---------------|-----------------------|-------------|-----------------|---------------------------|----------|
| NCM811    | Cu@CPAN@ZNO | 0.6           | 2.8-4.3               | 0.5         | 100             | 89                        | Our work |
| NCM811    | Li          | Sufficient Li | 2.8-4.5               | 0.5         | 150             | 76                        | 29       |
| NCM811    | Li          | Sufficient Li | 3-4.4                 | 0.3         | 200             | 80                        | 30       |
| NCM811    | Li          | 2.6           | 3-4.5                 | 0.5         | 100             | 89                        | 31       |
| NCM811    | Gr          | 3             | 3-4.3                 | 1           | 200             | 72                        | 32       |
| NCM811    | SiOx/G      | 1.2           | 2.5-4.3               | 0.5         | 100             | 88                        | 33       |
| NCM811    | PI-Ag-Li    | 1             | 2.8-4.3               | 0.5         | 170             | 90                        | 34       |
| NCM811@C  | Li          | Sufficient Li | 2.8-4.35              | 0.1         | 100             | 88                        | 35       |
| LS-NCM523 | Gr          | 1.07          | 2.8-4.3               | 0.5/1       | 100             | 94                        | 36       |
| SS-NCM523 | Gr          | 1.07          | 2.8-4.3               | 0.5/1       | 100             | 78                        | 36       |
| LFP       | PGr-PP      | 1.1           | NA                    | 0.2         | 200             | 77                        | 37       |

 Table S4. Comparison of cycling stability of full cells with different N/P.

#### Notes and references

- Y. Luo, S. Pan, J. Tian, Y. Liang, H. Zhong, R. Ma, J. Gu, Y. Wu, H. Zhang, H. Lin, W. Huang,
   Y. Deng, Y. Su, Z. Gong, J. Huang, Z. Hu and Y. Yang, *Adv. Mater.*, 2024, 36, 2413325.
- 2 W. Ren, X. Shang, Y. Lin, H. Ren, L. Zhang, H. Su, Q. Li, L. Zhi, M. Wu and Z. Li, *Adv. Energy Mater.*, 2024, DOI: 10.1002/aenm.202405284, 2405284.
- 3 M. Li, S. Li, D. Yan, Y. Ma, X. Niu and L. Wang, *Chemical Science*, 2025, **16**, 2609-2618.
- Y. Kang, J. Chen, S. Feng, H. Zhou, F. Zhou, Z. Low, Z. Zhong and W. Xing, *J. Membr. Sci.*, 2022, 662, 120985.
- 5 C. Hong, R. Tao, S. Tan, L. A. Pressley, C. A. Bridges, H. Li, X. Liu, H. Li, J. Li, H. Yuan, X. Sun and J. Liang, *Adv. Funct. Mater.*, 2024, **35**, 2412177.
- J. Wang, Q. Yuan, Z. Ren, C. Sun, J. Zhang, R. Wang, M. Qian, Q. Shi, R. Shao, D. Mu, Y.
   Su, J. Xie, F. Wu and G. Tan, *Nano Lett.*, 2022, 22, 5221-5229.
- 7 K. Zhang, W. Cao, J. Wang, Z. Zhao, W. Yin, Z. Lv, J. Zhang, R. Wang, F. Wu and G. Tan, *Rare Met.*, 2025, 44, 3575-3581.
- 8 T. Zhou, S. Wang, Y. Ao, B. Lan, Y. Sun, G. Tian, T. Yang, L. Huang, L. Jin, L. Tang, W. Yang and W. Deng, *Nano Energy*, 2025, **138**, 110910.
- Y. Kang, Z. X. Low, K. Zhou, S. Feng, D. Zou, Z. Zhong and W. Xing, J. Membr. Sci., 2025, 725, 123944.
- J. Song, Z. Huang, T. Tian, X. Xiang, S. Zeng, S. Wang and H. Tang, *Nano Res.*, 2025, DOI: 10.26599/nr.2025.94907486.
- 11 J. Yang, S. Wang, L. Du, S. Bi, J. Zhu, L. Liu and Z. Niu, *Adv. Funct. Mater.*, 2024, **34**, 2314426.
- 12 X. Wang, Y. Qian, L. Wang, H. Yang, H. Li, Y. Zhao and T. Liu, *Adv. Funct. Mater.*, 2019, **29**, 1902929.
- 13 S. Ma, J. Zhao, Q. Gao, C. Song, H. Xiao, F. Li and G. Li, Angew. Chem. Int. Ed., 2023, 62, e202315564
- 14 K. Wang, T. Zhao, R. Lv, W. Tang, T. Yu, G. Chen, L. Li, F. Wu and R. Chen, Adv. Energy

Mater., 2024, 14, 2401281.

- 15 R. Lin, Y. He, C. Wang, P. Zou, E. Hu, X.-Q. Yang, K. Xu and H. L. Xin, *Nature Nanotechnology*, 2022, **17**, 768-776.
- Y. Xie, Y. Huang, Y. Zhang, T. Wu, S. Liu, M. Sun, B. Lee, Z. Lin, H. Chen, P. Dai, Z. Huang,J. Yang, C. Shi, D. Wu, L. Huang, Y. Hua, C. Wang and S. Sun, *Nat. Commun.*, 2023, 14, 2883.
- 17 G. Hou, X. Ren, X. Ma, L. Zhang, W. Zhai, Q. Ai, X. Xu, L. Zhang, P. Si, J. Feng, F. Ding and L. Ci, *J. Power Sources*, 2018, **386**, 77-84.
- Q. Ran, H. Zhao, J. Liu, L. Li, Q. Hu, J. Song, X. Liu and S. Kormarneni, *J. Energy Chem.*, 2023, 83, 612-621.
- 19 Y. Zhan, Z. Liu, Y. Geng, P. Shi, N. Yao, C. Jin, B. Li, G. Ye, X. Zhang and J. Huang, *Energy Storage Materials*, 2023, **60**, 102799.
- 20 J. Xing, T. Chen, L. Yi, Z. Wang, Z. Song, X. Chen, C. Wei, A. Zhou, H. Li and J. Li, *Energy Storage Materials*, 2023, 63, 103067.
- 21 K. Long, S. Huang, H. Wang, A. Wang, Y. Chen, Z. Liu, Y. Zhang, Z. Wu, W. Wang and L. Chen, *Energy Environ. Sci.*, 2024, 17, 260-273.
- 22 C. Ma, S. Zou, Y. Wu, K. Yue, X. Cai, Y. Wang, J. Nai, T. Guo, X. Tao and Y. Liu, *Angew. Chem. Int. Ed.*, 2024, **63**, e202402910.
- 23 Y. Gu, J. Hu, M. Lei, W. Li and C. Li, Adv. Energy Mater., 2023, 14, 202302174.
- W.-h. Hou, P. Zhou, H. Gu, Y. Ou, Y. Xia, X. Song, Y. Lu, S. Yan, Q. Cao, H. Liu, F. Liu and K. Liu, *ACS Nano*, 2023, 17, 17527-17535.
- 25 T. Naren, G. C. Kuang, R. Jiang, P. Qing, H. Yang, J. Lin, Y. Chen, W. Wei, X. Ji and L. Chen, *Angew. Chem. Int. Ed.*, 2023, **62**, e202305287.
- 26 Q. Wang, M. Wu, Y. Xu, C. Li, Y. Rong, Y. Liao, M. Gao, X. Zhang, W. Chen and J. Lu, *Carbon Energy*, 2024, 6, e576.
- J. Pokharel, A. Cresce, B. Pant, M. Y. Yang, A. Gurung, W. He, A. Baniya, B. S. Lamsal, Z. Yang, S. Gent, X. Xian, Y. Cao, W. A. Goddard, K. Xu and Y. Zhou, *Nat. Commun.*, 2024, 15, 3085.
- 28 C. Wei, Y. Xiao, Z. Wu, C. Liu, Q. Luo, Z. Jiang, L. Li, L. Ming, J. Yang, S. Cheng and C. Yu, Science China Chemistry, 2024, 67, 1990-2001.
- 29 Y. Cui, Y. Wang, S. Gu, C. Qian, T. Chen, S. Chen, J. Zhao and S. Zhang, J. Power Sources,

2020, 453, 227852.

- H. Zeng, C. Chen, C. Xu, K. Tan, L. Yang, S. Zhang and M. Wu, *Nano Energy*, 2025, 141, 111121.
- 31 S. Li, H. Hong, X. Yang, D. Li, Q. Xiong, D. Zhang, S. Wang, Z. Huang, H. Lv and C. Zhi, *Adv. Mater.*, 2025, DOI: 10.1002/adma.202504333, 202504333.
- W. Zhang, T. Sun, T. Ma, W. Hao, Z. Zha, M. Cheng and Z. Tao, *Chem. Eng. J.*, 2024, 491, 151946.
- Q. Meng, M. Fan, X. Chang, H. Li, W. Wang, Y. Zhu, J. Wan, Y. Zhao, F. Wang, R. Wen, S. Xin and Y. Guo, *Adv. Energy Mater.*, 2023, 13, 2300507.
- Z. ChaoHui, G. YuJie, T. ShuangJie, W. YuHao, G. J. Chen, T. YiFan, Z. XuSheng, L.
   BoZheng, X. Sen, Z. Juan, W. LiJun and G. YuGuo, *Science Advances* 2024, 10, eadl4842.
- 35 M. Yang, S. Zhao, P. Guo, M. Cui, H. Li, M. Wang, J. Wang, F. Wu and G. Tan, *Energy Storage Materials*, 2025, **78**, 104272.
- M. Yoon, J. Park, W. Chen, Y. Huang, T. Dai, Y. Lee, J. Shin, S. Lee, Y. Kim, D. Lee, D. Shin,
  J. Cho, Y. Dong and J. Li, *Energy Environ. Sci.*, 2025, DOI: 10.1039/d5ee01086a.
- S. Xu, Q. Fang, J. Wu, S. Weng, X. Li, Q. Liu, Q. Wang, X. Yu, L. Chen, Y. Li, Z. Wang and
   X. Wang, *Small*, 2023, 20, 2305639.