Supplementary material

Enhanced Photocatalytic Desulfurization: Unlocking the Power

of Anderson-type Polyoxometalate-Boosted (001) TiO₂

Nanodisks by Deep Eutectic Solvents

Chuanli Wang,^a Ting Su,^{a*} Qing Liu,^{a*} Deyang Zhao,^b Zhiguo Zhu,^a Kaixuan Yang,^a Christophe Len,^{c,d} and Hongying Lü^a

^a College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005 (China)

^b School of Chemistry and Materials Science, Ludong University, Yantai, 264025 (China)

° Institute of Chemistry for Life and Health Sciences, Chimie ParisTech, PSL

Research University, CNRS, 11 rue Pierre et Marie Curie, F-75005 Paris, France

^d Sorbonne Universités, Université de Technologie de Compiegne, CS 60319, F-60203 Compiegne, France

Corresponding Authors

E-mail address: tingsu@ytu.edu.cn (T. Su); qing.liu@chimieparistech.psl.eu (Q. Liu)

Figure S1. EDX-mapping images of ZnMo₆/DTO (A-E). SEM spectra of catalyst with HBD and HBA is 1:1 (F) and morphology of Cassula perforata plants (G).

Figure S2 Capture experiments of ZnMo₆/DTO.

Figure S3 Charge transfer onto DTO with DBT and ZnMo₆/DTO.

Figure S4 charge density difference plot of DTO with DBT and ZnMo₆/DTO.

Key Abbreviations	Full Name	
DESs	deep eutectic solvents	
POM	polyoxometalate	
DBT	dibenzothiophene	
ZnMo ₆ /DTO	$(NH_4)_4H_6ZnMo_6O_{24}$ modified TiO ₂ with	
	DESs as solvents	
DFT	Density Functional Theory	
HDS	hydrodesulfurization	
ODS	oxidative desulfurization	
PODS	Photocatalytic oxidative desulfurization	
ChCl	choline chloride	
HBA	hydrogen bond acceptor	
OA	oxalic acid	
HBD	hydrogen bond donor	
TBOT	Tetrabutyl titanate	
BT	1-benzothiophene	
4,6-DMDBT	4,6-dimethyldibenzothiophene	
GA	glutaric acid	
EG	ethylene glycol	
TBAC1	tetrabutylammonium chloride	
ClChCl	chlorocholine chloride	
AcChCl	acetylcholine chloride	
BQ	p-Benzoquinone	
IPA	isopropanol	
EDTA	ethylenediaminetetraacetic acid	
CB	conduction band	
VB	valence band	

 Table S1. Important proprietary terms and abbreviations.

Equipment	Power (W)	Time (s)	Energy
			consumption (kJ)
Drying Oven	850	129600	110160
High-Speed Centrifuge	400	360	144
Heated Magnetic Stirrer	530	14400	7632
Magnetic Stirrer	15	3600	54

 Table S2. Energy consumption of different equipment.

110160 + 144 + 7632 + 54

Energy consumption per gram of catalyst: P = 3600 = 32.8 W/h

Fig. S5 (A) Fresh DES; (B) mixture after reaction; (A) DES used after washing with H_2O .

Fig. S6 FTIR of fresh DES, mixture after reaction and DES used after washing with H_2O .

$$M_{DBT}=184.2 \text{ g/mol}, M_{DBTO2}=216.2 \text{ g/mol}, M_{H_2O_2}=34 \text{ g/mol}$$
$$AU = \frac{216.2}{184.2 + 2*34} *100\% = 85.7\%$$

Fig. S7 Reaction equation of DBT oxidation with H_2O_2 and atomic utilization calculation.