Supporting information

Two-step hybrid photo-thermochemical looping process, using metallic clusters on metal oxide carriers, for very efficient green hydrogen production

Anh Dung Nguyen^{a+}, David Buceta^{b+}, Qingqing Wu^{c+}, Moteb Alotaibi^d, Julian T. Müller^e, Iria R. Arias^b, Albert Gili^f, Maged F. Bekheet^e, Martin Dieste^g, Nerea Davila-Ferreira^g, Fatimah Alhawiti^h, Colin Lambert^{e*}, M. Arturo López-Quintela^{b*}, Reinhard Schomäcker^{a*}

Fig. S1 (a) Evolution of hydrogen, after deposition of Cu AQCs onto TiO_2 , (b) Hydrogen evolution in standardized photoreactor without light.

Fig. S2 Volume of H₂ evolved in every cycle with CeO₂/Ag₅ AQCs (0.5 wt% Ag₅), m CeO₂ = 100 mg, A_{irradiation} = 19.6 cm², dV/dt = 10 mL min⁻¹, ϕ = 30%, T = 773 K, Irradiation source: 200 W Hg (Xe) lamp, λ < 1450nm, t_{irradiation} = 1h, t_{oxidation} = 0.5h.

Fig. S3 Model of the pristine $CeO_2(111)$ surface (Lateral and top views) and the corresponding density of states.

Fig. S4 Geometries and oxygen vacancy positions of a CeO_2 surface with the trapezoidal Ag₅ AQC adsorbed on (left panel) and the corresponding density of states (right panel).

Fig. S5 Geometries and oxygen vacancy positions of a CeO_2 surface with the bipyramidal Ag₅ AQC adsorbed on (right top panel), the corresponding density of states (left panel) and wavefunctions for the structure of position 1 (right bottom panel).

Fig. S6 Oxygen vacancy formation energy (E_{Vo}) calculations for pure CeO₂ surface. (A) Geometries of surface Vo. (B) Geometries of subsurface Vo. (C) Values of E_{Vo} . (D, E) Density of states corresponding to surface and subsurface Vo.

Fig. S7 Dependence of Hubbard U of the oxygen vacancy formation energy (E_{Vo}) calculation for bare CeO₂(111) surface (red line in (A) and green line in (B)) and Ag₅/CeO₂ surface (blue line (A) and orange line in (B)). Two different positions of Vo are presented in (A) and (B).

Fig. S8 Picture of CeO_2/Ag_5 AQCs on a sintered plate, (a) after oxidation on air, (b) after reduction in CH_4 .

Note 1. Zoom of the XRD of the sample CeO_2/Ag_5 AQCs shown in Figure 4B – see Figure below- indicates that the sample contains metallic silver as a minor phase $\approx 0.35 (\pm 0.1)$ wt%. This is due to the presence of silver ions, which are always present at the end of the clusters' synthesis (and are later reduced when deposited onto the oxide), as was reported before (see *e.g.* references 7 and 36 of the main text). Silver ions are usually precipitated with NaCl, but there is always a remaining proportion of unprecipitated Ag⁺ in the final samples. In any case, we carried out blanks using AgNO₃ (with a total loading of 0.5 wt%) in the experiments and we did not observe any catalytic activity. Because the total Ag loading is 0.5 wt%, the "true" loading of Ag₅ clusters in the experiments should be ≈ 0.15 wt%, but we did not take such small

account.

Note 2. Figure below shows the crystallite size of the fluorite structure as a function of time and gas atmosphere at an isothermal temperature of 450 °C: reduction and oxidation periods are indicated by green and red colors, respectively. As observed, the crystallite size of the fluorite structure in the CeO₂ sample remains constant over time and under both atmospheres, suggesting inactivity of this sample. In contrast, the CeO₂/Ag₅ AQCs sample exhibits a significant increase in crystallite size over time during the reduction phase (switching to H₂ before stabilizing during the oxidation phase). The crystallite size increases from 7 nm at the start of the experiment to approximately 11 nm by the end. This increase in crystallite size suggests grain growth of CeO₂ during the reduction step.

Sample	Ce ⁴⁺							Ce ³⁺		Concentration	
	v	v"	v'''	u	u''	u'''	v ₀	u ₀	%Ce ³⁺	%Ce ⁴⁺	
Before											
irradiation	195475.0	144985.0	194099.0	127785.0	88629.9	143023.0	184657.0	129079.0	26.0	74.0	
After red.											
With light	57625.6	25301.1	63482.9	40926.6	12779.9	40449.2	111671.0	51139.4	40.4	59.6	
After red. With											
methane	134989.0	68066.0	144283.0	99113.0	40613.0	94976.4	275760.0	155621.0	42.6	57.4	

Table S1 Results of the deconvolution of the XPS spectra.

Fig. S9 Configurations of the transition states and the reaction paths for H_2 forming from separate [H]s on the reduced CeO₂ surface in the absence (A) and presence (B; site 6) of pyramidal Ag₅ AQC.

Fig. S10 Energetics of H_2O splitting (A) and H_2 forming (B) on bipyramidal Ag₅/CeO₂. The corresponding configuration of the transition state (TS) is shown in the upper panel.

Note 3. STH calculation.

STH was calculated by the following equation (adapted from M. Romero et al. *Energy Environ.Sci.* 2012, **5**, 9234-9245; doi.org/10.1039/C2EE21275G)

Data (per cycle of 2h) ($\Delta G = 285,8 \text{ kJ/mol}$)

Rate H₂ production: 4.91 mg

Energy produced: 4.91/(2*1000) mol *285.8 kJ/mol= <u>0.7 kJ</u>

E solar input: 0,25 J s⁻¹cm⁻² *7200s/1000 = $\underline{1.8 \text{ kJ}}$ (window = 1cm²)

E thermal input: $E_{CZO} + E_{water} + E_{H2} + E_{Ar}$ (from 25°C to 600°C) $E_{CZO} = 2.727g*0.48J/g-K*575K/1000 = 0.75 kJ$ Water injected (liquid): 10 µL /min x 110min = 1100 µL = 1.1 mL = 1.1g $E_{water} = [1.1 g*(4.18J/g-K*75K+2260J/g+2J/g-K*500K)/1000] = 3.93 kJ$ H_2 injected: 2 mL/min * 10 min = 20 mL $E_{H2} = (0.020L/22.4) mol*28.8 J/mol-K*575K/1000) = 0.01 kJ$ Ar injected: (28mL/min *10min (1st step) + 10 mL/min*110min)/1000 = 1.38L $E_{Ar} = (1.38 L/22.4) mol * 20.8J/mol-K * 575K)/1000 = 0.74kJ$ E thermal input = 0.75kJ+3.93kJ+0.01kJ+0.74kJ = <u>5.44kJ</u> E_{TOTAL} input = <u>5.43kJ + 1.8kJ = <u>7.24 kJ</u> Then, the **STH** = (0.7/7.24) *100 = **9.7%**</u>

Fig. S11 Thermal contribution at 600°C. Average net production without light at 600°C: 17.76 mL (2h) or 8.9 mL/h

Fig. S12 Net H_2 production at different temperatures, at the same experimental conditions given in Fig.8, and the corresponding activation energy of the process.

Fig. S13 Initial trials and optimization experiments at 500°C and 600°C using an optimized H₂-assisted method with Ce_{0.5}Zr_{0.5}O₂/Ag₅ AQCs (0.5%); m Ce_{0.5}Zr_{0.5}O₂ = 2.727g. Sample

was stable for more than \approx 370h: 124 cycles (78 at 500°C and 46 at 600°C) x 3h average time per cycle. Data are available at the following link: <u>Data optimized HEL</u>

(Note: poor production in some cycles was due to different failures in the experiments, such as broken O-rings, failures in the water syringe supplier, air leaks inside the reactor, etc).

Studied experimental conditions:

- H₂ flow in the first step: from 1 mL/min to 10 mL/min, changing flow time from 2 min to 60 min
- Ar flow: 1st step: 20 mL/min to 29 mL/min; second step: 10 mL/min to 30 mL/min
- Water flow in the second step: from 5 mL/min to 10 mL/min.
- In some cases, an intermediate Ar flow of 20 mL/min (from 30 min to 60 min) was introduced to study the influence of the separation of the 1st and 2nd step.

Table S2 Comparison of the best representative results obtained for Ce-based oxides, perovskites, aluminates and entropy stabilized oxides, reported in the literature for the thermochemical hydrogen (STCH) production, with our photo-thermochemical looping process.

Material	T (°C)	H ₂ (µg g ⁻¹ h ⁻¹)	Reference
CeO ₂		60	Le Gal et al.,10.1021/ef4014373 (2013)
2	1400		
CeO ₂		118	Barcellos et al., 10.1039/c8ee01989d (2018)
	1350		
Ce _{0.46} Zr _{0.54} O ₂		260	Le Gal et al.,10.1021/ef4014373 (2013)
	1400		
$Ce_{0.46}Zr_{0.54}O_2$		118	Le Gal et al.,10.1021/ef4014373 (2013)
	1300		
$Ce_{0.75}Zr_{0.25}O_2$		240	Le Gal et al.,10.1021/ef200972r (2011)
	1200		
$Ce_{0.75}Zr_{0.25}O_2$		197	Le Gal et al.,10.1021/ef200972r (2011)
	1000		
Ce _{0.2} Sr _{1.8} MnO ₄		602	Barcellos et al.,10.1021/acs.inorgchem.8b03487 (2019)
	1400		
Sr _{0.4} La _{0.6} Mn _{0.6} Al _{0.4} O ₃		541	Barcellos et al., 10.1039/c8ee01989d (2018)
	1350		
SrTi _{0.5} Mn _{0.5} O ₃		494	Qian et al., 10.1021/acs.chemmater.0c03278 (2020)
	1400		
$BaCe_{0.25}Mn_{0.75}O_3$		353	Barcellos et al., 10.1039/c8ee01989d (2018)
	1350		
(Lao.8Sro.2)(Mno.2Feo.2		790	Zhang et al., 10.1021/acs.chemmater.2c03054 (2023)
Co0.4Al0.2)O3	1350		
CaTi _{0.5} Mn _{0.5} O ₃		595	Qian et al., 10.1016/j.matt.2020.11.016 (2021)
	1350		
FeAl ₂ O ₄		720	Hoskins et al., 10.1016/j.apenergy.2019.04.169 (2019)
	1450		
La _{0.8} Al _{0.2} NiO ₃		429	Perez et al., 10.1016/j.cattod.2021.12.014 (2021)
	800		
(FeMgCoNi)O		1000	Zhai et al., 10.1039/c8ee00050f (2018)
	1300	& 150	
	&		
	1100		
$Ce_{0.5}Zr_{0.5}O_2/Ag_5$		435	Our photo-thermochemical process
	600		

Fig. S14 m/z = 2 signal from HEL loop with CeO₂ / Ag₅ AQCs as catalyst and CH₄ as reducing agent, reaction conditions : m = 50 mg, $A_{irradiation} = 19.6$ cm², dV/dt = 15 ml min⁻¹ with 2 : 1 Ar : CH₄ for the reduction cycle, dV/dt = 13 ml min⁻¹ with 10 : 3 Ar : H₂O, T = 773 K, Irradiation source: 1000 W Xe lamp, $t_{Oxidation} = 0.5$ h, $t_{Reduction} = 0.5$ h

Fig. S15 Excitation (red, 300 nm) and emission (black, 409 nm) peaks of the electrochemical synthesized Ag₅ AQCs.

Fig. S16a Flow chart of the setup in the reduction cycle (light is introduced through a quartz window from the top).

Fig. S16b Flow chart of the setup in the oxidation cycle (without light).