Electronic Supplementary Information

Highly Efficient Sulfurized Re-Ir Catalysts for Multiple *N*-Methylation of Ethylenediamine and Its Homologous Series with CO₂ and H₂ in Water Solvent

Min Wang,^a Mizuho Yabushita,^{a,*} Kazuki Okuma,^b Tomohiro Shono,^b Yoshinao Nakagawa,^a Keiichi Tomishige^{a,c,*}

^aDepartment of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07 Aoba, Aramaki, Aobaku, Sendai, Miyagi 980-8579, Japan ^bOrganic Materials Research Laboratory, Tosoh Corporation, Kaisei-cho 4560, Shunan, Yamaguchi 746-8501, Japan ^cAdvanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan

*Corresponding authors: m.yabushita@tohoku.ac.jp (M.Y.); tomishige@tohoku.ac.jp (K.T.)

Entry	Catalvet	Metal ^b	Substrate [mn		Temp.	Time	$P(CO_2)$	$P(H_2)$	Solvent	Conv.	Target produ	ct	TOF ^c	Ref
Linu y	Catalyst	[mol%]		lioij	[K]	[h]	[MPa]	[MPa]	([mL])	[%]	Structure	Yield [%]	[h ⁻¹]	Kel.
1	[Ru(triphos)(tmm)] ^d	2.5	NH ₂	1.0	423	15	2.0	6.0	THF (2)	n.r.	N_	94	5.0	S1
2	Ru(acac) ₃ ^e	1	NH ₂	0.5	413	16	2.0	6.0	THF (2)	100	N_	96	12	S2
		5	MH ₂	0.5	413	24	2.0	6.0	THF (2)	n.r.	₩ 7 N	87	1.4	
3	Co(OAc) ₂ ·4H ₂ O ^f	5	NH ₂	1.0	423	24	2.0	7.0	Methanol (2.0)	n.r.	N_	98	1.6	S3
4	CuAlO _x	38	NH ₂	1.0	433	48	3.0	7.0	Hexane (2)	n.r.	N_	83	0.2	S4
		38	NH ₂	1.0	433	48	3.0	7.0	Hexane (2)	100	N I	81	0.2	
5	2 wt% Pd/CuZrO _x	0.75	NH ₂	1.0	423	30	1.0	2.5	Octane (2)	n.r.	N I	54	4.8	S5
		0.75	()10 NH2	1.0	423	48	1.0	2.5	Octane (2)	n.r.	() ₁₀ N	68 ^h	6.0	
6	0.7 wt% Au/γ-Al ₂ O ₃	0.5	NH ₂	1	413	7	2	6	Hexane (10)	100	N,	92	52	S6
		0.5	M ₄ NH ₂	1	443	7	2	6	Hexane (10)	n.r.	M ₄ N	95	54	
		0.5	NH ₂	1	443	7	2	6	Hexane (10)	n.r.		93	52	
		0.5		1	443	7	2	6	Hexane (10)	n.r.		92	52	
7	2 wt% Au/MIL-101(Cr) @SiO ₂ @Fe ₃ O ₄	1.5	NH ₂	1.0	473	10	1.0	3.0	Cyclohexane (3.0)	44.0	N_	12.1	1.8	S7
		1.5	NH ₂	1.0	473	10	1.0	3.0	Cyclohexane (3.0)	99.1	N I	96.0	13	

Table S1. Summary of previous reports on double and quadruple N-methylation of primary (di)amines with CO2 and H2.^a

^aAbbreviations: triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane; tmm = trimethylene methane; acac = acetylacetonate; OAc = acetate; C-BP = carbon black (Black Pearls 2000, supplied from Cabot); THF = tetrahydrofuran.

^bThe molar percent of active metal against substrate.

^cTurnover frequency, calculated from the mole of *N*-methyl groups involved in the product divided by the mole of active metal and reaction time (the values of mole and reaction time listed in this table were used for this calculation, except for entries 8 and 9). In the cases of supported metal catalysts, the mole of supported metal(s) was used for the calculation.

^d5 mol% of trifluoromethanesulfonylimide was also added.

°2 mol% of triphos and 1.5 mol% of methanesulfonic acid were also added.

^f10 mol% of triphos and 0.3 equiv. of $Sn(OTf)_2$ (OTf = trifluoromethanesulfonate) were also added.

^gFor calculation, the moles of both Re and Ir were involved.

^hIsolated yield.

ⁱThe TOF value was calculated from the initial slope of N_{Me} in the time course for quadruple N-methylation of EDA (for entry 9, see Fig. 3).

Reagent	Detailed information
NH ₄ ReO ₄	Mitsuwa Chemical
$Ru(NO)(NO_3)_{3-x}(OH)_x$	Sigma-Aldrich
$Rh(NO_3)_3$	FUJIFILM Wako Pure Chemical
$[Pt(NH_3)_4](NO_3)_2$	Sigma-Aldrich
$Ir(NO_3)_4$	Furuya Metal, HNO ₃ solution
AgNO ₃	FUJIFILM Wako Pure Chemical
$HAuCl_4 \cdot 4H_2O$	FUJIFILM Wako Pure Chemical
$(NH_4)_6Mo_7O_{24} \cdot 4H_2O$	FUJIFILM Wako Pure Chemical
ReS ₂	Thermo Fisher Scientific
Carbon black	Cabot, Black Pearls 2000, $S_{BET} = 1280 \text{ m}^2 \text{ g}^{-1}$, denoted as C-BP
ZrO ₂	FUJIFILM Wako Pure Chemical
Ethylenediamine	FUJIFILM Wako Pure Chemical
Ethanol	Kanto Chemical
1,4-Butanediol	FUJIFILM Wako Pure Chemical
2,3-Butanediol	Tokyo Chemical Industry, mixture of stereoisomers
N-Methylethylenediamine	Tokyo Chemical Industry, denoted as M-EDA
N,N-Dimethylethylenediamine	Tokyo Chemical Industry, denoted as N,N-DM-EDA
N, N'-Dimethylethylenediamine	Tokyo Chemical Industry, denoted as N,N'-DM-EDA
N, N, N'-Trimethylethylenediamine	Tokyo Chemical Industry, denoted as TriM-EDA
N, N, N', N'-Tetramethylethylenediamine	Tokyo Chemical Industry, denoted as TetraM-EDA
1,2-Diaminopropane	Tokyo Chemical Industry
1,3-Diaminopropane	Tokyo Chemical Industry
1,4-Diaminobutane	Tokyo Chemical Industry
1,6-Diaminohexane	Tokyo Chemical Industry
Diethylenetriamine	Tokyo Chemical Industry
Triethylenetetramine	Kanto Chemical
2-(2-Aminoethylamino)ethanol	FUJIFILM Wako Pure Chemical
Methylamine	Tokyo Chemical Industry, ca. 40% in water
<i>n</i> -Butylamine	FUJIFILM Wako Pure Chemical
Aniline	Tokyo Chemical Industry
<i>n</i> -Octane	Tokyo Chemical Industry
H_2	99.9%, Taiyo Nippon Sanso
CO_2	99.995%, Taiyo Nippon Sanso
Ar	99.99%, Taiyo Nippon Sanso
N_2	99.99%, Taiyo Nippon Sanso

Table S2. Detailed information about reagents and gases used in this study.

				a	N-Meth	⁶] vlated EDA				N-Form	vlated ED	A				D 1
Entry	Catalyst	Ir/Re ^c	$S/(Re + Ir)^d$	Conv. [%]	M- EDA	N,N- DM- EDA	N,N'- DM-EDA	TriM- EDA	TetraM- EDA	F- EDA	F-M- EDA	F-DM- EDA	F-TriM- EDA	Others ^e	N _{Me} ¹ [%]	Bal. [%]
1	Re/C-BP	0	3.7	39	10	6.5	0.2	1.7	4.5	4.3	1.9	0.3	0.3	1.3	47	92
2	Re-Ir/C-BP	0.13	2.8	51	9.9	8.4	0.3	1.4	12	7.1	2.0	0.8	0.5	0.9	81	92
3	Re-Ir/C-BP	0.25	2.9	64	7.1	9.8	0.0	1.3	22	9.3	2.3	1.5	0.7	1.3	117	91
4	Re-Ir/C-BP	0.5	2.9	70	4.5	9.9	0.0	1.9	34	6.8	2.3	1.6	0.8	2.2	164	94
5	Re-Ir/C-BP	0.75	2.4	69	5.0	9.9	0.0	1.5	34	5.6	1.7	1.7	0.9	1.9	166	92
6	Re-Ir/C-BP	1.0	2.1	65	3.9	9.5	0.0	1.4	34	5.6	1.6	1.9	0.8	3.1	165	97
7	Ir/C-BP ^g	_	3.5	36	3.9	5.4	0.0	0.5	2.7	14	2.4	0.8	0.0	1.0	27	94

Table S3. Detailed data for Fig. 2A (effects of Ir/Re molar ratio at the constant Re loading of 4 wt% on the catalytic activity of Re-Ir/C-BP for *N*-methylation of EDA).^{a,b}

^aReaction conditions: EDA 4.0 mmol; catalyst (Re 4 wt%, Ir/Re = 0-1.0, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 16 h.

^bAbbreviations: M-EDA = N-methylethylenediamine; N,N-DM-EDA = N,N-dimethylethylenediamine; N,N'-DM-EDA = N,N'-dimethylethylenediamine; TriM-EDA = N,N,N'-tetramethylethylenediamine; F-EDA = N-(2-aminoethyl)formamide; F-M-EDA = N-(2-aminoethyl)-N-methylformamide; F-DM-EDA = N-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = N-(2-(dimethylamino)ethyl)-N-methylformamide.

^cIr/Re molar ratio based on the amounts of metal precursors used in the catalyst preparation.

^dMolar ratio of S to the sum of Re and Ir, determined by XRF.

^eIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

^fDegree of *N*-methylation calculated using eqn. 4.

^gIr $\overline{4}$ wt%.

															_	
		Doc		Conv	N-Methy	lated EDA				N-Form	ylated EDA	A		_	N/f	Dol
Entry	Catalyst	[wt%]	S/(Re + Ir) ^d	[%]	M- EDA	N,N- DM- EDA	N,N'- DM-EDA	TriM- EDA	TetraM- EDA	F- EDA	F-M- EDA	F-DM- EDA	F-TriM- EDA	Others ^e	[%]	Баі. [%]
1	Re-Ir/C-BP	2	6.7	45	10	9.7	0.0	1.5	13	5.2	1.8	0.6	0.6	0.2	85	95
2	Re-Ir/C-BP	4	2.9	70	4.5	9.9	0.0	1.9	34	6.8	2.3	1.6	0.8	2.2	164	94
3	Re-Ir/C-BP	6	1.7	70	3.7	10	0.0	1.4	34	6.8	1.7	2.5	0.9	3.6	163	92
4	Re-Ir/C-BP	8	1.0	71	4.2	10	0.0	1.4	32	6.7	1.7	2.5	0.8	3.8	158	90

Table S4. Detailed data for Fig. 2B (effects of Re loading at the constant Ir/Re molar ratio of 0.5 on the catalytic activity of Re-Ir/C-BP for *N*-methylation of EDA).^{a,b}

^aReaction conditions: EDA 4.0 mmol; catalyst (Re 2–8 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 16 h.

^bAbbreviations: M-EDA = N-methylethylenediamine; N,N-DM-EDA = N,N-dimethylethylenediamine; N,N'-DM-EDA = N,N'-dimethylethylenediamine; TriM-EDA = N,N,N'-tetramethylethylenediamine; F-EDA = N-(2-aminoethyl)formamide; F-M-EDA = N-(2-aminoethyl)-N-methylformamide; F-DM-EDA = N-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = N-(2-(dimethylamino)ethyl)-N-methylformamide.

^cRe molar ratio based on the amounts of metal precursors used in the catalyst preparation.

^dMolar ratio of S to the sum of Re and Ir, determined by XRF.

^eIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

^fDegree of *N*-methylation calculated using eqn. 4.

					Yield	[%]									_	
Enter	$P(CO_2)^c$	$P(H_2)^{c}$	D(CO)/D(U)	Conv.	N-Met	thylated EDA	1			N-For	mylated	EDA			$N_{\rm Me}{}^{\rm e}$	Bal.
Епиу	[MPa]	[MPa]	$F(CO_2)/F(\Pi_2)$	[%]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^d	[%]	[%]
					EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA			
1	1.0	4.0	0.25	61	6.4	11	0.0	2.0	22	6.4	1.9	1.5	0.7	1.9	123	93
2	2.0	3.0	0.67	71	7.2	11	0.0	3.0	35	4.0	1.3	0.8	0.9	2.4	180	96
3	3.0	2.0	1.5	60	7.7	10	0.2	1.1	20	12	2.6	2.1	0.9	1.6	112	100
4	4.0	1.0	4.0	53	10	11	0.4	2.1	14	4.6	1.5	0.5	0.5	2.2	94	94
5	0.2	0.8	0.25	16	7.6	3.3	0.0	0.5	1.0	3.1	0.5	0.0	0.0	1.1	20	101
6	0.6	2.4	0.25	30	11	8.2	0.2	1.5	7.0	3.0	0.7	0.3	0.2	1.0	60	103

Table S5. Pressure effect of *N*-methylation of EDA over Re-Ir/C-BP catalyst at 413 K.^{a,b}

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; 413 K; 12 h.

^bAbbreviations: M-EDA = *N*-methylethylenediamine; N,N-DM-EDA = *N*,*N*-dimethylethylenediamine; N,N'-DM-EDA = *N*,*N*'-dimethylethylenediamine; TriM-EDA = *N*,*N*', rimethylethylenediamine; TetraM-EDA = *N*,*N*,*N*',*N*'-tetramethylethylenediamine; F-EDA = *N*-(2-aminoethyl)formamide; F-M-EDA = *N*-(2-aminoethyl)-*N*-methylformamide; F-DM-EDA = *N*-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = *N*-(2-(dimethylamino)ethyl)-*N*-methylformamide.

^cPressure at r.t.

^dIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

^eDegree of *N*-methylation calculated using eqn. 4.

			Yield	[%]										
Entry	Temp.	Conv.	N-Met	thylated EDA	Δ			N-For	mylated	EDA		_	$N_{\rm Me}{}^{ m d}$	Bal.
Епиу	[K]	[%]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^c	[%]	[%]
			EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA			
1	373	20	2.1	0.6	0.0	0.5	0.4	13	0.6	0.0	0.0	0.0	7	98
2	393	46	5.9	6.9	0.0	0.6	7.2	14	2.2	1.8	0.6	0.0	50	94
3	403	56	7.1	10	0.0	1.1	17	10	2.4	1.8	0.7	0.5	98	94
4	413	70	4.5	9.9	0.0	1.9	34	6.8	2.3	1.6	0.8	2.2	164	94
5	433	87	2.3	6.2	0.0	2.0	42	2.0	1.0	0.7	1.3	18	189	89
6	453	100	0.7	4.4	0.0	3.4	27	0.0	0.4	0.2	0.6	55	127	91
7 ^e	433	2.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.4	0	101
8 ^e	453	22	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23	0	101

Table S6. Effect of reaction temperature on *N*-methylation of EDA over Re-Ir/C-BP catalyst.^{a,b}

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 373–453 K; 16 h.

^bAbbreviations: M-EDA = *N*-methylethylenediamine; N,N-DM-EDA = *N*,*N*-dimethylethylenediamine; N,N'-DM-EDA = *N*,*N*'-dimethylethylenediamine; TriM-EDA = *N*,*N*,*N*'-trimethylethylenediamine; TetraM-EDA = *N*,*N*,*N*',*N*'-tetramethylethylenediamine; F-EDA = *N*-(2-aminoethyl)formamide; F-M-EDA = *N*-(2-aminoethyl)-*N*-methylformamide; F-DM-EDA = *N*-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = *N*-(2-(dimethylamino)ethyl)-*N*-methylformamide.

^cThe detailed composition is shown in Table S6.

^dDegree of *N*-methylation calculated using eqn. 4.

^eWithout catalyst.

Table S7. Detailed information about "Others" in Table S6.^{a,b}

I dole D	/ Detailee	, mil of muut	on about other	5 m ruon	6 8 6.					
Enter	Temp.	Conv.	Yield [%]							Bal.
Enuy	[K]	[%]	PM-DETA	M-PZ	DM-PZ	MA ^c	DMA ^c	TMA ^c	EU	[%]
1	373	20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	98
2	393	46	0.0	0.0	0.0	0.0	0.0	0.0	0.0	94
3	403	56	0.5	0.0	0.0	0.0	0.0	0.0	0.0	94
4	413	70	0.4	0.0	0.5	0.0	0.3	0.4	0.6	94
5	433	87	1.3	0.8	8.0	0.0	2.2	4.2	1.7	89
6	453	100	1.1	1.0	23	2.0	7.0	10	11	91
7 ^d	433	2.5	0.0	0.1 ^e	0.0	0.0	0.0	0.0	3.3	101
8 ^d	453	22	0.0	0.3 ^e	0.0	0.0	0.0	0.0	23	101

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 373–453 K; 16 h.

^bAbbreviations: PM-DETA = N, N, N', N'', N''-pentamethyldiethylenetriamine; M-PZ = N-methylpiperazine; DM-PZ = N, N'-dimethylpiperazine; MA = methylamine; DMA = dimethylamine; TMA = trimethylamine; EU = 2imidazolidinone (*i.e.*, ethylene urea).

^cYield [%] = (Product [mol]) / $(2 \times (EDA [mol])) \times 100$.

^dWithout catalyst.

^ePiperazine. M-PZ was not detected.

			Y ield	[%]									_	
Enter	Time	Conv.	N-Met	hylated EDA	1			N-For	mylated	EDA		_	$N_{\rm Me}{}^{ m d}$	Bal.
Entry	[h]	[%]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^c	[%]	[%]
			EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA			
1	4	18	4.5	1.8	0.0	0.0	0.5	10	0.7	0.0	0.0	0.0	10	100
2	8	30	7.1	5.1	0.0	0.5	3.3	10	1.4	0.7	0.3	0.0	32	96
3	12	42	8.2	8.0	0.0	0.8	7.5	11	1.7	1.0	0.4	0.3	57	97
4	16	56	7.1	10	0.0	1.1	17	10	2.4	1.8	0.7	0.5	98	94
5	24	62	8.0	9.5	0.0	1.4	23	9.0	2.1	1.5	0.8	0.5	121	94
6	48	87	2.7	5.5	0.0	1.8	54	4.7	1.5	1.7	1.3	2.5	236	93
7	72	94	1.9	3.1	0.0	1.3	69	2.8	0.9	1.3	1.0	5.8	287	93
8	96	98	1.9	1.2	0.0	1.0	76	1.3	0.5	0.7	0.7	11	310	96
9	120	99	0.0	0.9	0.0	0.9	82	0.7	0.0	0.5	0.6	12	331	97

Table S8. Detailed data for Fig. 4A (time course of *N*-methylation of EDA over Re-Ir/C-BP catalyst at 403 K.^{a,b}

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 403 K; 4–120 h.

^bAbbreviations: M-EDA = *N*-methylethylenediamine; N,N-DM-EDA = *N*,*N*-dimethylethylenediamine; N,N'-DM-EDA = *N*,*N*'-dimethylethylenediamine; TriM-EDA = *N*,*N*,*N*'-trimethylethylenediamine; TetraM-EDA = *N*,*N*,*N*',*N*'-tetramethylethylenediamine; F-EDA = *N*-(2-aminoethyl)formamide; F-DA = *N*-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = *N*-(2-(dimethylamino)ethyl)-*N*-methylformamide.

^cIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

^dDegree of *N*-methylation calculated using eqn. 4.

			Yield	[%]									_	
Entry	Time	Conv.	N-Met	hylated EDA	Δ			N-For	mylated	EDA			$N_{\rm Me}{}^{\rm d}$	Bal.
Linuy	[h]	[%]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^c	[%]	[%]
			EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA			
1	4	34	7.3	6.0	0.0	0.6	3.8	7.8	1.4	0.7	0.3	0.0	36	93
2	8	52	7.4	10	0.0	1.3	15	6.7	1.9	1.1	0.6	1.3	93	94
3	12	61	6.4	11	0.0	2.0	22	6.4	1.9	1.5	0.7	1.9	123	93
4	16	70	4.5	9.9	0.0	1.9	34	6.8	2.3	1.6	0.8	2.2	164	94
5	24	83	2.4	7.3	0.0	2.1	51	2.7	1.2	1.1	0.7	4.2	227	91
6	48	91	1.5	4.2	0.0	1.7	62	2.5	1.0	0.9	0.7	5.7	264	92
7	72	100	0.0	0.7	0.0	1.8	72	0.0	0.0	0.0	0.4	9.9	293	90
8	96	100	0.0	0.0	0.0	1.1	79	0.0	0.0	0.0	0.5	18	320	100

Table S9. Detailed data for Fig. 4B (time course of *N*-methylation of EDA over Re-Ir/C-BP catalyst at 413 K).^{a,b}

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 4–96 h.

^bAbbreviations: M-EDA = *N*-methylethylenediamine; N,N-DM-EDA = *N*,*N*-dimethylethylenediamine; N,N'-DM-EDA = *N*,*N*'-dimethylethylenediamine; TriM-EDA = *N*,*N*,*N*'-tetramethylethylenediamine; F-EDA = *N*-(2-aminoethyl)formamide; F-M-EDA = *N*-(2-aminoethyl)-*N*-methylformamide; F-DM-EDA = *N*-(2-(dimethylamino)ethyl)-*N*-methylformamide.

^cIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

^dDegree of *N*-methylation calculated using eqn. 4.

		Cotolyct		Yield	[%]									_	
Enter	Time	Catalyst	Conv.	N-Met	thylated EDA	Δ			N-For	nylated	EDA		_	$N_{\rm Me}{}^{ m d}$	Bal.
Linuy	[h]		[%]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^c	[%]	[%]
		lgj		EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA			
1	8	0.10	28	6.0	4.8	0.0	0.3	2.5	13	2.1	1.5	0.3	0.0	26	102
2	16	0.10	46	5.9	6.9	0.0	0.6	7.2	14	2.2	1.8	0.6	0.0	50	94
3	24	0.10	54	6.3	9.6	0.0	1.1	16	11	2.9	3.0	1.0	0.0	92	94
4	48	0.10	72	4.0	8.8	0.0	1.3	34	9.1	2.3	3.3	1.3	1.0	162	91
5	48	0.30	91	2.9	6.1	0.0	1.5	62	3.0	0.7	2.0	2.4	3.1	266	92
6	72	0.30	93	2.0	4.8	0.0	1.0	70	3.1	0.6	2.2	1.5	5.4	293	97
7	96	0.30	95	1.2	3.2	0.0	1.0	74	1.7	0.4	1.4	1.2	6.5	307	96
8	120	0.30	100	0.0	0.8	0.0	1.0	82	0.0	0.0	0.5	1.0	9.7	332	95

Table S10. Time course of *N*-methylation of EDA over Re-Ir/C-BP catalyst at 393 K.^{a,b}

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 or 0.30 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 393 K; 8–120 h.

^bAbbreviations: M-EDA = *N*-methylethylenediamine; N,N-DM-EDA = *N*,*N*-dimethylethylenediamine; N,N'-DM-EDA = *N*,*N*'-dimethylethylenediamine; TriM-EDA = *N*,*N*'-trimethylethylenediamine; TetraM-EDA = *N*,*N*,*N*'-tetramethylethylenediamine; F-EDA = *N*-(2-aminoethyl)formamide; F-M-EDA = *N*-(2-aminoethyl)-*N*-methylformamide; F-DM-EDA = *N*-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = *N*-(2-(dimethylamino)ethyl)-*N*-methylformamide.

^cIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

^dDegree of *N*-methylation calculated using eqn. 4.

			Yield	[%]									_		Ratio of leach	ed metal
Entry	Dun	Conv.	N-Met	hylated EDA	L			N-Form	nylated	EDA			$N_{\mathrm{Me}}{}^{\mathrm{d}}$	Bal.	against origina	al metal loading ^e [%]
Ениу	Kuli	[%]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^c	[%]	[%]	Da	I.,
			EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA				Re	If
1	1st	70	4.5	9.9	0.0	1.9	34	6.8	2.3	1.6	0.8	2.2	164	94	< 0.1	< 0.1
2	2nd	68	5.1	10	0.0	2.0	34	5.8	2.1	1.5	0.7	1.6	168	95	< 0.1	< 0.1
3	3rd	68	5.8	10	0.0	2.7	33	3.5	1.6	1.1	0.8	1.7	166	92	< 0.1	< 0.1
4	4th	67	4.9	10	0.0	1.9	33	4.7	1.4	1.3	1.0	2.1	160	92	< 0.1	< 0.1

Table S11. Detailed data for Fig. 5 (reuse test of Re-Ir/C-BP catalyst for *N*-methylation of EDA).^{a,b}

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 16 h. The spent catalyst was reused after washing with water and ethanol, drying at room temperature, and reduction in H₂ at 773 K.

^bAbbreviations: M-EDA = *N*-methylethylenediamine; N,N-DM-EDA = *N*,*N*-dimethylethylenediamine; N,N'-DM-EDA = *N*,*N*'-dimethylethylenediamine; TriM-EDA = *N*,*N*,*N*'-tetramethylethylenediamine; F-EDA = *N*-(2-aminoethyl)formamide; F-M-EDA = *N*-(2-aminoethyl)-*N*-methylformamide; F-DM-EDA = *N*-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = *N*-(2-(dimethylamino)ethyl)-*N*-methylformamide.

^cIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

^dDegree of *N*-methylation calculated using eqn. 4.

^eQuantified by ICP-OES.

		2				8	
Enter	Catalwat	Ir/Do	Re		Ir		H ₂ consumption amount ^a
Entry	Catalyst	II/Ke	[wt%]	[mmol g ⁻¹] ^a	[wt%]	[mmol g ⁻¹] ^a	[mmol g ⁻¹]
1	Re/C-BP	0	4.0	0.22	_	_	0.44
2	Re-Ir/C-BP	0.13	4.0	0.22	0.5	0.027	0.49
3	Re-Ir/C-BP	0.25	4.0	0.22	1.0	0.053	0.59
4	Re-Ir/C-BP	0.5	4.0	0.22	2.1	0.11	0.66
5	Re-Ir/C-BP	1.0	4.0	0.22	4.1	0.22	1.02
6	Ir/C-BP	_	_	_	4.0	0.21	1.02

Table S12. Results of H₂-TPR for Re-Ir/C-BP and Ir/C-BP catalysts shown in Fig. S6.

^aNormalized by catalyst amount.

Table S13. Results of CO chemisorption for Re-Ir/C-BP, Ir/C-BP, and ReS₂.^a

					, ,	
Entry	Catalyst	Ir/Do	Re	Ir	CO uptake ^b	CO/(Re + Ir)
	Catalyst	II/Ke	[wt%]	[wt%]	[mmol g ⁻¹]	[mol/mol]
1	Re/C-BP	0	4.0	_	8.4	0.039
2	Re-Ir/C-BP	0.13	4.0	0.5	13	0.055
3	Re-Ir/C-BP	0.25	4.0	1.0	16	0.061
4	Re-Ir/C-BP	0.5	4.0	2.1	37	0.12
5	Re-Ir/C-BP	0.75	4.0	3.1	44	0.12
6	Re-Ir/C-BP	1.0	4.0	4.1	42	0.10
7	Ir/C-BP	_	_	4.0	42	0.20
8	ReS_2	_	74	_	0.0	0.0

^aEach catalyst was reduced under a H₂ flow (30 mL min⁻¹) at 773 K for 1 h prior to CO adsorption. ReS₂ was analyzed as-is without reduction treatment.

^bCO uptake normalized by catalyst amount.

					Yield [%]									_
Easters	EDA ^c	Time	Conv.	$v_{\rm EDA}^{\rm d}$	<i>N</i> -Methylated EDA					N-Form	nylated I		Bal.		
Entry	[mmol]	[h]	[%]	[mmol g ⁻¹ h ⁻¹]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^e	[%]
					EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA		
1	4.0	0.5	3.3	4.8	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	100
2	(0.75)	1	11		1.9	0.3	0.0	0.0	0.0	5.4	0.0	0.0	0.0	0.0	97
3		2	21		4.6	1.9	0.0	0.1	0.5	7.7	0.6	0.2	0.0	0.0	94
4	6.0	1	6.5	5.5	1.6	0.2	0.0	0.0	0.0	5.3	0.5	0.0	0.0	0.0	101
5	(1.1)	2	11		4.0	0.9	0.0	0.0	0.1	6.5	0.5	0.0	0.0	0.0	101
6		3	25		6.3	2.6	0.0	0.3	0.8	7.1	0.8	0.2	0.0	0.0	93
7	8.0	1	5.3	4.6	1.3	0.2	0.0	0.0	0.0	4.5	0.3	0.0	0.0	0.0	101
8	(1.4)	2	14		3.5	0.5	0.0	0.0	0.1	5.9	0.3	0.0	0.0	0.0	97
9		3	23		5.2	1.7	0.0	0.2	0.4	6.6	0.6	0.0	0.0	0.0	92
10	10	1	7.7	4.9	0.8	0.0	0.0	0.0	0.0	4.7	0.0	0.0	0.0	0.0	98
11	(1.8)	2	13		2.3	0.3	0.0	0.0	0.0	5.6	0.2	0.0	0.0	0.0	96
12		3	17		4.1	1.0	0.0	0.0	0.2	6.3	0.5	0.0	0.0	0.0	96

Table S14. Detailed data for Fig. 7A (double logarithmic plot of EDA conversion rate as a function of concentration of EDA in *N*-methylation of EDA over Re-Ir/C-BP at 413 K).^{a,b}

^aReaction conditions: EDA 4.0–10 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 0–3 h.

^bAbbreviations: M-EDA = *N*-methylethylenediamine; N,N-DM-EDA = *N*,*N*-dimethylethylenediamine; N,N'-DM-EDA = *N*,*N*'-dimethylethylenediamine; TriM-EDA = *N*,*N*,*N*'-trimethylethylenediamine; TetraM-EDA = *N*,*N*,*N*',*N*'-tetramethylethylenediamine; F-EDA = *N*-(2-aminoethyl)formamide; F-M-EDA = *N*-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = *N*-(2-(dimethylamino)ethyl)-*N*-methylformamide.

^cThe values in parentheses represent the concentration of EDA (unit: M).

^dConversion rate of EDA based on the mass of catalyst used.

^eIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

					Yield [%]									_
Entry	$P(H_2)$	Time	Conv.	$v_{\rm EDA}{}^{\rm c}$	N-Methylated EDA					N-Form	nylated I		Bal.		
Liiuy	[MPa]	[h]	[%]	[mmol g ⁻¹ h ⁻¹]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^d	[%]
					EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA		
1	1.0	2	8.0	1.1	1.5	0.0	0.0	0.0	0.0	4.3	0.0	0.0	0.0	0.0	98
2		4	12		4.5	1.5	0.0	0.0	0.3	5.2	0.4	0.0	0.0	0.0	100
3		6	18		6.2	2.5	0.0	0.2	0.7	5.2	0.5	0.0	0.0	0.0	97
4	2.0	1	3.5	2.1	0.6	0.0	0.0	0.0	0.0	3.9	0.0	0.0	0.0	0.0	101
5		2	8.9		2.5	0.4	0.0	0.0	0.0	5.5	0.0	0.0	0.0	0.0	100
6		3	13		5.0	1.7	0.0	0.1	0.3	6.0	0.5	0.0	0.0	0.0	101
7	3.0	1	7.3	2.7	1.1	0.0	0.0	0.0	0.0	4.9	0.0	0.0	0.0	0.0	99
8		2	14		3.7	1.1	0.0	0.0	0.2	6.8	0.4	0.0	0.0	0.0	98
9		3	20		5.2	2.1	0.0	0.2	0.5	7.1	0.0	0.0	0.0	0.0	98
10	4.0	0.5	3.3	4.8	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	100
11		1	11		1.9	0.3	0.0	0.0	0.0	5.4	0.0	0.0	0.0	0.0	97
12		2	21		4.6	1.9	0.0	0.1	0.5	7.7	0.6	0.2	0.0	0.0	94

Table S15. Detailed data for Fig. 7B (double logarithmic plot of EDA conversion rate as a function of partial pressure of H_2 in *N*-methylation of EDA over Re-Ir/C-BP at 413 K).^{a,b}

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 1.0–4.0 MPa + Ar (4 – P(H₂)) MPa (r.t.); 413 K; 0–3 h.

^bAbbreviations: M-EDA = *N*-methylethylenediamine; N,N-DM-EDA = *N*,*N*-dimethylethylenediamine; N,N'-DM-EDA = *N*,*N*'-dimethylethylenediamine; TriM-EDA = *N*,*N*'-trimethylethylenediamine; TetraM-EDA = *N*,*N*,*N*',*N*'-tetramethylethylenediamine; F-EDA = *N*-(2-aminoethyl)formamide; F-DM-EDA = *N*-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = *N*-(2-(dimethylamino)ethyl)-*N*-methylformamide.

^cConversion rate of EDA based on the mass of catalyst used.

^dIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

					Yield [[%]									_
Enters	$P(CO_2)$	2) Time	Conv.	$v_{\rm EDA}^{\rm c}$	N-Methylated EDA					N-Forr	nylated]		Bal.		
Entry	[MPa]	[h]	[%]	[mmol g ⁻¹ h ⁻¹]	M-	N,N-DM-	N,N'-DM-	TriM-	TetraM-	F-	F-M-	F-DM-	F-TriM-	Others ^d	[%]
					EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA	EDA		
1	0.3	2	7.7	1.8	2.9	0.6	0.0	0.0	0.0	3.5	0.0	0.0	0.0	0.0	99
2		4	15		6.0	2.6	0.0	0.3	0.6	4.2	0.5	0.0	0.0	0.0	99
3		6	28		8.2	5.1	0.0	0.7	2.3	3.4	0.5	0.2	0.0	0.0	92
4	0.5	1	3.4	2.6	1.0	0.0	0.0	0.0	0.0	3.7	0.0	0.0	0.0	0.0	101
5		1.5	8.8		3.1	0.6	0.0	0.0	0.0	4.7	0.0	0.0	0.0	0.0	100
6		3	16		5.7	2.3	0.0	0.2	0.5	5.2	0.4	0.0	0.0	0.0	96
7	0.7	1	6.3	2.8	1.2	0.0	0.0	0.0	0.0	4.3	0.0	0.0	0.0	0.0	99
8		2	16		4.4	1.5	0.0	0.0	0.3	6.3	0.4	0.0	0.0	0.0	97
9		3	20		5.6	2.5	0.0	0.2	0.7	6.8	0.6	0.0	0.0	0.0	97
10	1.0	0.5	3.3	4.8	0.0	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.0	0.0	100
11		1	11		1.9	0.3	0.0	0.0	0.0	5.4	0.0	0.0	0.0	0.0	97
12		2	21		4.6	1.9	0.0	0.1	0.5	7.7	0.6	0.2	0.0	0.0	94

Table S16. Detailed data for Fig. 7C (double logarithmic plot of EDA conversion rate as a function of partial pressure of CO₂ in the *N*-methylation of EDA over Re-Ir/C-BP at 413 K).^{a,b}

^aReaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 0.3–1.0 MPa + H₂ 4.0 MPa + Ar $(1 - P(CO_2))$ MPa (r.t.); 413 K; 0–6 h.

^bAbbreviations: M-EDA = N-methylethylenediamine; N,N-DM-EDA = N,N-dimethylethylenediamine; N,N'-DM-EDA = N,N'-dimethylethylenediamine; TriM-EDA = N,N',N'-trimethylethylenediamine; TetraM-EDA = N,N,N',N'-tetramethylethylenediamine; F-EDA = N-(2-aminoethyl)formamide; F-M-EDA = N-(2-aminoethyl)-N-methylformamide; F-DM-EDA = N-(2-(dimethylamino)ethyl)formamide; F-TriM-EDA = N-(2-(dimethylamino)ethyl)-N-methylformamide.

°Conversion rate of EDA based on the mass of catalyst used.

^dIncluding piperazine, 2-imidazolidinone, methylamine, and their corresponding *N*-methylated compounds.

Fig. S1 (A) Total ion chromatogram recorded by GC-MS (CI) for the reaction mixture of *N*-methylation of 1,4-diaminobutane, and mass spectra of the peaks at (B) 14.9 min, (C) 15.3 min, (D) 21.8 min, and (E) 22.5 min.

Reaction conditions: 1,4-diaminobutane 2.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.30 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 24 h.

Column for GC-MS: InertCap for Amines capillary column ($\emptyset 0.32 \text{ mm} \times 30 \text{ m}$).

Assignments for mass spectra in Fig. S1

[Fig. S1B] *N*-Methylbutane-1,4-diamine ($M = 102 \text{ g mol}^{-1}$): 72 ([M + H - CH₃NH₂]⁺), 86 ([M + H - NH₃]⁺), 103 ([M + H]⁺).

[Fig. S1C] *N*,*N*-Dimethylbutane-1,4-diamine ($M = 116 \text{ g mol}^{-1}$): 58 ([M + H - (CH₃)₃N]⁺), 72 ([M + H - (CH₃)₂NH]⁺), 100 ([M + H - NH₃]⁺), 117 ([M + H]⁺).

[Figure S1D] *N*-(4-Aminobutyl)formamide ($M = 116 \text{ g mol}^{-1}$): 72 ([M + H - HCONH₂]⁺), 100 ([M + H - NH₃]⁺), 117 ([M + H]⁺).

[Fig. S1E] *N*-(4-Aminobutyl)-*N*-methylformamide ($M = 130 \text{ g mol}^{-1}$): 72 ([M + H – HCONHCH₃]⁺), 86 ([M + H – HCONH₂]⁺), 114 ([M + H – NH₃]⁺), 131 ([M + H]⁺).

Fig. S2 (A) Total ion chromatogram recorded by GC-MS (CI) for the reaction mixture of *N*-methylation of 1,6-diaminohexane, and mass spectra of the peaks at (B) 19.8 min and (C) 25.2 min.

Reaction conditions: 1,6-diaminohexane 2.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.30 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 24 h.

Column for GC-MS: InertCap for Amines capillary column ($\emptyset 0.32 \text{ mm} \times 30 \text{ m}$).

Assignments for mass spectra in Fig. S2

[Fig. S2B] *N*-Methylhexane-1,6-diamine ($M = 130 \text{ g mol}^{-1}$): 100 ([M + H - CH₃NH₂]⁺), 114 ([M + H - NH₃]⁺), 131 ([M + H]⁺), 158 ([M + C₂H₅]⁺).

[Fig. S2C] *N*-(6-Aminohexyl)formamide ($M = 144 \text{ g mol}^{-1}$): 100 ([M + H – HCONH₂]⁺), 117 ([M + H – CO]⁺), 128 ([M + H – NH₃]⁺), 145 ([M + H]⁺), 173 ([M + C₂H₅]⁺).

Fig. S3 (A) Total ion chromatogram recorded by GC-MS (CI) for the reaction mixture of *N*-methylation of *n*-butylamine, and mass spectra of the peaks at (B) 17.1 min and (C) 17.8 min. Reaction conditions: *n*-butylamine 2.0 mmol; Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduced in H₂ at 773 K) 0.30 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 24 h. Column for GC-MS: InertCap for Amines capillary column (\emptyset 0.32 mm × 30 m).

Assignments for mass spectra in Fig. S3

[Fig. S3B] *N*-Butylformamide ($M = 101 \text{ g mol}^{-1}$): 102 ([M + H]⁺), 130 ([M + C₂H₅]⁺). [Fig. S3C] *N*-Butyl-*N*-methylformamide ($M = 115 \text{ g mol}^{-1}$): 116 ([M + H]⁺), 144 ([M + C₂H₅]⁺).

Fig. S4 XRD patterns of catalysts after either reduction (H₂, 773 K) + passivation or reaction: (a) C-BP; (b) Ir/C-BP (Ir 4 wt%); (c) Re/C-BP (Re 4 wt%); (d) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.13); (e) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.25); (f) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5); (g) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, after 4 times use); (h) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 1.0).

Reaction conditions: EDA 4.0 mmol; Re-Ir/C-BP (reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 16 h.

The two broad peaks observed at ca. 24° and 44° in Fig. S4 were attributed to the (002) and (10) planes of graphitic materials, respectively.^{S9}

Fig. S5 HAADF-STEM image and elemental mapping of Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5) after reduction (H₂, 773 K) + passivation.

Fig. S6 H₂-TPR profiles for C-BP impregnated with different amount of Re and Ir precursors. Sample legends: (a) C-BP; (b) Re/C-BP (4 wt%); (c) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.25); (d) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5); (e) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 1.0); (f) Ir/C-BP (Ir 4 wt%). Measurement conditions: 10 vol% H₂/Ar (30 mL min⁻¹); 353–973 K; ramp rate 10 K min⁻¹. TCD signals were normalized by the mass of catalysts used for each measurement. Quantitative data are summarized in Table S12.

Fig. S7 (A) Re L_3 -edge XANES spectra of catalysts after reduction/reaction and authentic samples and (B) parametric plot of white line area of Re L_3 -edge XANES spectra *vs.* valence of Re.

Sample legends: (a) Re powder; (b) ReO₂; (c) ReS₂; (d) ReO₃; (e) NH₄ReO₄; (f) Re/C-BP (Re 4 wt%, reduction); (g) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.13, reduction); (h) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.25, reduction); (i) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (j) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reaction); (k) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 1.0, reduction); (l) Re-Ir/C-BP (deS-973) (Re 4 wt%, Ir/Re = 0.5, reduction). Reduction conditions: H₂ flow 30 mL min⁻¹; 773 K; 1 h.

Reaction conditions: EDA 4.0 mmol; catalyst (reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 16 h.

The values of average valence of Re species in each sample determined from these data are summarized in Table 5.

Fig. S8 Re L_3 -edge EXAFS spectra of catalysts after reduction/reaction and authentic samples: (A) k^3 -weighted EXAFS oscillations; (B) Fourier transform of k^3 -weighted EXAFS oscillations; (C) inverse Fourier-filtered EXAFS data (black solid lines) and fitted data (red dotted lines).

Sample legends: (a) Re powder; (b) ReO₂; (c) ReS₂; (d) ReO₃; (e) NH₄ReO₄; (f) Re/C-BP (Re 4 wt%, reduction); (g) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.13, reduction); (h) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.25, reduction); (i) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (j) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reaction); (k) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 1.0, reduction); (l) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (l) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (l) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (l) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (l) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (l) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (l) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (l) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction). Reduction conditions: H₂ flow 30 mL min⁻¹; 773 K; 1 h.

Reaction conditions: EDA 4.0 mmol; catalyst (reduced in H₂ at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H₂ 4.0 MPa (r.t.); 413 K; 16 h.

The curve fitting results of EXAFS are listed in Table 5.

Fig. S9 (A) Ir L_3 -edge XANES spectra of catalysts after reduction/reaction and authentic samples and (B) parametric plot of white line area of Ir L_3 -edge XANES spectra *vs.* valence of Ir.

Sample legends: (a) Ir powder; (b) IrO_2 ; (c) Ir/C-BP (Ir 4 wt%, reduction); (d) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.13, reduction); (e) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.25, reduction); (f) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (g) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reaction); (h) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 1.0, reduction); (i) Re-Ir/C-BP (deS-973) (Re 4 wt%, Ir/Re = 0.5, reduction).

Reduction conditions: H₂ flow 30 mL min⁻¹; 773 K; 1 h.

Reaction conditions: EDA 4.0 mmol; catalyst (reduced in H_2 at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H_2 4.0 MPa (r.t.); 413 K; 16 h.

The values of average valence of Re species in each sample determined from these data are summarized in Table 6.

Fig. S10 Ir L_3 -edge EXAFS spectra of catalysts after reduction/reaction and authentic samples: (A) k^3 -weighted EXAFS oscillations; (B) Fourier transform of k^3 -weighted EXAFS oscillations; (C) inverse Fourier-filtered EXAFS data (black solid lines) and fitted data (red dotted lines).

Sample legends: (a) Ir powder; (b) IrO_2 ; (c) Ir/C-BP (Ir 4 wt%, reduction); (d) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.13, reduction); (e) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.25, reduction); (f) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reduction); (g) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 0.5, reaction); (h) Re-Ir/C-BP (Re 4 wt%, Ir/Re = 1.0, reduction); (i) Re-Ir/C-BP (deS-973) (Re 4 wt%, Ir/Re = 0.5, reduction).

Reduction conditions: H₂ flow 30 mL min⁻¹; 773 K; 1 h.

Reaction conditions: EDA 4.0 mmol; catalyst (reduced in H_2 at 773 K) 0.10 g; water 5.0 g; CO₂ 1.0 MPa + H_2 4.0 MPa (r.t.); 413 K; 16 h.

The curve fitting results of EXAFS are listed in Table 6.

Supplementary references

- S1 K. Beydoun, T. vom Stein, J. Klankermayer and W. Leitner, Angew. Chem. Int. Ed., 2013, 52, 9554–9557.
- S2 Y. Li, I. Sorribes, T. Yan, K. Junge and M. Beller, Angew. Chem. Int. Ed., 2013, 52, 12156–12160.
- S3 Z. Ke, Y. Zhao, R. Li, H. Wang, W. Zeng, M. Tang, B. Han and Z. Liu, *Green Chem.*, 2021, 23, 9147–9153.
- S4 X. Cui, X. Dai, Y. Zhang, Y. Deng and F. Shi, *Chem. Sci.*, 2014, 5, 649–655.
- S5 X. Cui, Y. Zhang, Y. Deng and F. Shi, *Chem. Commun.*, 2014, **50**, 13521–13524.
- S6 X.-L. Du, G. Tang, H.-L. Bao, Z. Jiang, X.-H. Zhong, D. S. Su and J.-Q. Wang, *ChemSusChem*, 2015, 8, 3489–3496.
- S7 Z. Ran, J. Liu, M. A. Mushtaq, X. Shao, H. Liu, X. Du, S. Hou and S. Ji, *Catal. Today*, 2022, 405–406, 309–320.
- S8 M. Wang, D. Kanemaru, M. Yabushita, K. Okuma, T. Shono, Y. Nakagawa and K. Tomishige, *ChemCatChem*, 2025, 17, e202401803.
- S9 M. Wang, Q. Liu, H. Sun, N. Ogbeifun, F. Xu, E. A. Stach and J. Xie, *Mater. Chem. Phys.*, 2010, **123**, 761–766.