Supplementary Information (SI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2025

Continuous Nitration of Solid Aromatic Compounds with HNO₃ via Mechanochemistry

Arshad Hussain^{1, 2†}, Vishnu Ganthimeri^{1†} and Amol A. Kulkarni^{1, 2*}

¹Chemical Engineering & Process Development Division, CSIR-National Chemical Laboratory, Pashan, Pune 411008, India.

²Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.

*Correspondence: Dr. Amol A. Kulkarni (aa.kulkarni@ncl.res.in)

†Equal contribution

Supporting Information

S1: GC-Mass method for the analysis of all the organic mass and calculations.

S2: MS identification for the nitrated products.

S3: 1H, 13C NMR of the products.

S4: Images taken during the experiments.

S1: GC-Mass analysis conditions:

GC Model: Agilent 7890 B GC coupled with 5977A MSD (mass selective detector)

Column: HP-5 MS column (0.5 μm X 0.32 mm X 10 m)

Solvent: Ethyl acetate (Density = 0.9 g/cc)

Method:

Inltet Temperature : 250 °C Spit ratio: 50:50 Inlet Volume: 1 μL Column: HP-5 Flow-rate: 1. ml/min

Oven Temperature: Ramping

Rate °C /min	Value (°C)	Hold Time (min)	Run time (min)
	50	1	
20	280	5	16

Agilent GC-MS

The retention time of every reaction component under the analysis condition are shown in the table 1.

S.No.	Compound Name	Retention Time (mins)	Molecular Weight (g/mol) from GC-Mass	<u>% Yield</u>
1	Naphthalene	4.53	128.1	(referred in
2	1-Nitronaphthalene	7.521	173.1	<u>the</u>
3	2-Nitronaphthalene	7.647	173.1	manuscript
4	Anthracene	8.372	178.1	as % GC
5	9-Nitroanthracene	10.186	223.1	
6	Anthraquinone	9.401	208	<u>yield):</u>
7	Salicylic Acid	4.585	138	The internal
8	5-Nitrosalicylic Acid	5.04	183	response
9	3-Nitrosalicylic Acid	5.055	183	factor was
10	3-Hydroxybenzaldehyde	5.497	122.1	used to do
11	3-Hydroxy-2-nitrobenzaldehyde	5.84	167	the GC
12	3-Hydroxy-4-nitrobenzaldehyde	5.361	167	analysis of

Method for calculation of %GC Yield and Isolated Yield.

reactants and products. The values of response factor for an internal standard and the calibrated mass of isomers on GC were used for estimating the % yield as the ratio of mass of specific isomer and the overall conversion of the limiting substrate.

%Isolated Yield:

Upon separating the isomers from the product mixture using column chromatography, the actual mass of the individual product isomers was used for estimating the isolated yield as follows.

 $\begin{bmatrix} \% \text{ Isolated Yield} \\ of \text{ isomer } A \end{bmatrix} = \begin{bmatrix} \frac{Mass \text{ of Isomer } A \text{ in hand after purification}}{Mass \text{ of isomer } A \text{ based on } GC \text{ analysis}} \end{bmatrix} * 100$

13	2,6-ditertbutylphenol	6.217	206.2
Table S	2;6-ditert-4-hitrobutyphenol	s and products	251.2
15	2,5-dimethylphenol	4.189	122.1
16	2,5-dimethyl-4-nitrophenol	7.593	167.1
17	P-methoxyphenol	4.804	124.1
18	2-Nitro-p-methoxyphenol	5.71	169
19	p-Bromophenol	5.26	172
20	p-bromo-2-nitrophenol	5.877	216.8
21	p-Aminophenol	5.25	109.1
22	p-amino-2-nitrophenol	5.85	154

S2: The GC-mass identification are shown below

Nitro- Naphthalene

9-Nitroanthracene

Anthraquinone

Nitro-salicylic acid

3-Hydroxynitrobenzaldehyde

2,5-dimethyl-4-nitrophenol

2-Nitro-p-methoxyphenol

p-bromo-2-nitrophenol

Figure S 8: MS spectrum of p-bromo-2-nitrophenol

S3: 1H, 13C NMR of the products.

<u>1-Nitronaphthalene</u>

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 7.70 - 7.77 (m, 2 H) 7.82 (ddd, *J*=8.57, 7.00, 1.31 Hz, 1 H) 8.17 - 8.20 (m, 1 H) 8.32 - 8.41 (m, 3 H)

¹³C NMR (101 MHz, DMSO-*d*₆) δ ppm 122.64 (s) 124.53 (s) 125.26 (s) 127.97 (s) 129.31 (s) 130.09 (s) 135.27 (s)

9-Nitroanthracene

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 7.68 - 7.73 (m, 2 H) 7.77 - 7.83 (m, 2 H) 7.87 - 7.93 (m, 2 H) 8.30 (d, *J*=8.50 Hz, 2 H) 9.01 (s, 1 H)

¹³C NMR (101 MHz, DMSO-*d*₆) δ ppm 95 (s) 122.12 (s) 127.06 (s) 129.21 (s) 130.23 (s) 130.74 (s) 131.53 (s) 143.79 (s)

5-Nitro-salicylic acid

¹H NMR (500 MHz, DMSO-*d*₆) d ppm 7.14 (d, *J*=9.16 Hz, 1 H) 8.32 (dd, *J*=9.31, 2.90 Hz, 1 H) 8.54 (d, *J*=3.05 Hz, 1 H) 12.54 (br. s., 1 H)

¹³C NMR (126 MHz, DMSO-*d*₆) d ppm 114.38, 118.92, 126.92, 130.53, 139.60, 166.32, 170.41.

3-Nitro-salicylic acid

¹H NMR (400 MHz, DMSO-*d*₆) d ppm 7.06 (t, *J*=8.00 Hz, 1 H) 8.10 - 8.18 (m, 2 H)

¹³C NMR (101 MHz, DMSO-d₆) d ppm 117.00, 118.61, 131.13, 136.02, 138.64, 155.73, 171.50

3-Hydroxy-4-nitrobenzaldehyde

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 7.49 (dd, *J*=8.25, 1.63 Hz, 1 H) 7.59 (d, *J*=1.63 Hz, 1 H) 8.03 (d, *J*=8.25 Hz, 1 H) 10.01 (s, 1 H) 11.56 (br. s., 1 H)

¹³C NMR (101 MHz, DMSO-*d*₆) δ ppm 39.36 (s) 39.56 (s) 39.77 (s) 39.98 (s) 40.19 (s) 40.39 (s) 40.61 (s) 119.39 (s) 120.20 (s) 126.32 (s) 140.27 (s) 141.42 (s) 152.09 (s) 192.77 (s)

2,6-Ditertbutyl-4-nitrophenol

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 1.42 (s, 18 H) 8.01 (s, 2 H)

¹³C NMR (101 MHz, DMSO-*d*₆) δ ppm 30.06 (s) 35.15 (s) 120.98 (s) 139.61 (s) 140.16 (s) 160.98 (s)

2,5-dimethyl-4-nitrophenol

¹³C NMR (101 MHz, DMSO-*d*₆) δ ppm 15.64 (s) 21.20 (s) 118.00 (s) 123.71 (s) 128.25 (s) 134.38 (s) 140.26 (s) 160.94 (s)

4-Methoxy-2-nitrophenol

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 3.33 (br. s., 2 H) 7.09 (d, *J*=9.13 Hz, 1 H) 7.21 (dd, *J*=9.13, 3.13 Hz, 1 H) 7.40 (d, *J*=3.13 Hz, 1 H) 10.46 (br. s., 1 H)

4_Methoxy_2_Nitrophenol_INPROTICS-AV NEO 400-20241213-123807-2373.001.

¹³C NMR (101 MHz, DMSO-*d*₆) δ ppm 56.34 (s) 108.22 (s) 120.71 (s) 123.79 (s) 136.55 (s) 146.93 (s) 151.93 (s)

4-Bromo-2-nitrophenol

¹H NMR (400 MHz, DMSO-*d*₆) δ ppm 7.09 (d, *J*=8.88 Hz, 1 H) 7.70 (dd, *J*=8.94, 2.56 Hz, 1 H) 8.05 (d, *J*=2.50 Hz, 1 H) 11.31 (br. s., 1 H)

4Bromo_2_Nitrophenol_INPROTICS-AV NEO 400-20241211-131954-2373.001.001.1r.esp DMSO

¹³C NMR (101 MHz, DMSO-*d*₆) δ ppm) 109.70 (s) 121.50 (s) 127.70 (s) 137.87 (s) 138.35 (s) 151.60 (s)

4-Amino-2-nitrophenol

¹H NMR (400 MHz, DMSO-*d*₆) d ppm 5.11 (br. s., 2 H) 6.83 - 6.93 (m, 2 H) 7.10 (dd, *J*=1.94, 1.06 Hz, 1 H) 9.82 (s, 1 H)

¹³C NMR (101 MHz, DMSO-*d*₆) d ppm 107.53 (s, 1 C) 120.43 (s, 1 C) 123.99 (s, 1 C) 136.14 (s, 1 C) 142.22 (s, 1 C) 144.27 (s, 1 C)

S4: Images taken during the experiments.

The nitrating agent is pumped using syringe pump and solid substrate was added from the other side. In addition, the colour change was observed and confirmed the reactions.

Figure S 10: Images taken during the reaction (a) Naphthalene Nitration, (b) Anthracene Nitration, (c) Salicylic acid Nitratin, (d) 4-Methoxyphenol Nitration, (e) 2,5-dimethylphenol, (f) 3-Hydroxybenzaldehyde, (g) 4-Aminophenol and (h) 4-Bromophenol