Electronic Supplementary Information (ESI)

MOF-derived Bi@NC electrocatalysts with heteroatomic engineering for high-efficiency CO₂-to-formate conversion

Jingxuan Song,^{‡a,} Yuexian Du,^{‡a} Lu Liu,^a Kunfan Dong,^a Ziyu Deng,^a Yanghe Fu,^{*a}

Yijing Gao,*^a Fumin Zhang,^a Fa Yang,*^a Weidong Zhu*^a and Maohong Fan^b

^{*a*} Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China ^{*b*} College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA

[‡] These authors contributed equally to this work.

^{*}Corresponding authors:

E-mail addresses: yhfu@zjnu.cn (Y. Fu), yijinggao@zjnu.edu.cn (Y. Gao), yangfa@zjnu.edu.cn (F. Yang), and weidongzhu@zjnu.cn (W. Zhu).

Table of contents entry

1. Experimental and computational methods	3
1.1. Reagents	3
1.2. Characterizations	3
1.3. Electrochemical measurements	4
1.4. Computational methods	5
2. Figures and tables	7
3. References	.31

1 Experimental and computational methods

1.1. Reagents

Ellagic acid (96 wt%) and bismuth acetate (99 wt%) were purchased from Shanghai Macklin Biochemical Technology Co., Ltd. Dicyandiamide was purchased from Shanghai Meryer Chemical Technology Co., Ltd. Potassium bicarbonate (KHCO₃), acetic acid, and ethanol were purchased from Sinopharm Chemical Reagent Co., Ltd. The carbon paper (TGP-H-060) was purchased from Toray. Nafion (5 wt%) and Nafion 117 membrane were purchased from Dupont. All reagents of analytical reagent grade were used as received without further purification.

1.2. Characterizations

Powder X-ray diffraction (XRD) measurements were performed using a Bruker D8 Advance X-ray diffractometer with Cu $K\alpha$ radiation. Scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX) was carried out by a GeminiSEM300. The morphology and internal structure were observed by JEM-2100F transmission electron microscope (TEM) with an accelerating voltage of 200 kV. The surface composition of the samples was determined by a ThermoFisher Scientific EscaLab 250 Xi X-ray photoelectron spectroscopy (XPS) using Al $K\alpha$ radiation. The N₂ adsorption-desorption isotherms at 77 K were performed to determine the Brunauer-Emmett-Teller (BET) surface area (S_{BET}) using an ASAP 2020 physical adsorption instrument (Micromeritics Instrument Corp.), which was also for CO₂ adsorption measurements at 298 K. Raman spectra of the as-prepared catalysts were determined by a Raman spectrometer (Horiba HR Evolution, 532 nm). Elemental analysis (EA) for C and N was performed on an Elementar Vario EL cube elemental analyzer. The amounts of Bi for the prepared samples were determined using a ThermoFisher iCAP 7400 inductive coupled plasma optical emission spectrometer (ICP-OES).

1.3. Electrochemical measurements

The electrochemical measurements were performed with a CHI 760E workstation (Shanghai Chenhua Instruments Co.) in a typical three-electrode system with a sample-coated carbon paper, Ag/AgCl electrode and Pt plate served as the working electrode, the reference electrode, and the counter electrode, respectively. The working electrode was prepared as follows: 5 mg of the prepared catalyst was added into the mixture of ethanol/H₂O (150 μ L, 1:2 in v/v) and Nafion solution (50 µL, 3 wt%). After sonicating for 30 min to get a uniform ink, 10 µL of the obtained ink was evenly dropped on carbon paper with an area of 0.5 cm \times 0.5 cm, and the loading density of the catalyst was about 1.0 mg cm⁻². A standard H-type cell was used as the electrolyzer using Nafion 117 membrane as the separator, in which KHCO₃ aqueous solution (0.5 M) was used as the electrolyte. Before performing electrochemical measurements, the electrolyte was purged with N₂ to remove the dissolved O₂, and then flowed with CO₂ till saturation. 20 cycles of cyclic voltammetry (CV) sweeps were conducted before linear sweep voltammetry (LSV) curves were collected at a scanning rate of 10 mV s⁻¹ with CO₂ bubbling. During the constant voltage test, CO₂ was delivered into the

chamber of the working electrode with a flow rate of 10 mL min⁻¹. All the potentials were calibrated to the reversible hydrogen electrode (RHE) by the equation: $E_{\text{RHE}} = E_{\text{Ag/AgCl}} + 0.0592 \times \text{pH} + 0.197 \text{ V}.$

The electrochemical active surface area (ECSA) of the prepared catalyst was approximately estimated through the electrochemical double-layer capacitance (C_{dl}). In a non-Faradaic potential range, the CV curves were separately recorded in a single cell with a scan rate of 20, 40, 60, 80, 100, or 120 mV s⁻¹. A fitted linear line was then obtained by plotting the difference in current density between anodic and cathodic sweeps against the scan rate, and the slope of the fitting line represented C_{dl}. ECSA was estimated using the equation: ECSA = C_{dl}/C_s, where C_s represented the average specific capacitance and the value was 20 μ F cm⁻². The electrochemical impedance spectroscopy (EIS) was performed in the frequency range of 10⁻¹-10⁵ Hz at a voltage of -0.8 V vs. RHE with an amplitude of 5.0 mV. *1.4. Computational methods*

The Vienna *ab*-initio Simulation Package (VASP) was used for density functional theory (DFT) calculations.¹ The Perdew-Burke-Ernzerhof (PBE) functional of generalized gradient approximation (GGA) was used to describe the electron exchange correlation energy,² and the Projector Augmented Wave (PAW) method was used to describe the interaction between electrons and ions.³ The cutoff energy was set to 450 eV. The K-point used in optimization was $3 \times 3 \times 1.^4$ The convergence criteria for energy and force were 1×10^{-5} eV and -0.01 eV/Å, respectively. The van der Waals (vdW) interaction was described by using DFT-D3 method.⁵ To prevent interaction

between adjacent layers, the height of the vacuum layer along the z direction was set as

15 Å. The charge density difference was analyzed using VESTA software.⁶

The adsorption energy (E_{ad}) of CO₂ was calculated as follows:

$$E_{\rm ad} = E_{\rm total} - E_{\rm gas} - E_{\rm catal}$$

where E_{total} is the total energy of CO₂ adsorbed on the catalyst, E_{gas} is the gaseous energy of CO₂, and E_{catal} is the energy of Bi@NC or Bi@C.

Based on the computational hydrogen electrode (CHE) model proposed by Nørskov et al.,⁷ the change of free energy (ΔG) for each elementary reaction step in the CO₂RR process was calculated by follow equation:⁸

$$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S$$

where ΔE is the total energy, ΔE_{ZPE} is the zero-point energy (ZPE) correction based on the calculated vibrational frequency, $T\Delta S$ is the entropy contribution at T = 298.15 K. In addition, the free energy of H⁺ + e⁻ is equal to 1/2 H₂.

2 Figures and tables

Fig. S1. SEM image of Bi-MOF.

Fig. S2. XRD patterns of the as-synthesized and the simulated Bi-MOF.

Fig. S3. LSV curves (a) and FE_{HCOOH} (b) of Bi@NC-0.5 at pyrolysis temperatures of 773, 873, and 973 K.

Fig. S4. SEM images of Bi@C (a) and Bi@NC-x (x = 0.3, 0.5, and 0.7) (b-d).

Sample	Bi (wt%) ^a	C (wt%) ^b	N (wt%) ^b	O (wt%) ^b
Bi@C	52.7	40.1	-	6.8
Bi@NC-0.3	52.4	25.0	15.7	4.9
Bi@NC-0.5	53.3	25.0	16.9	4.5
Bi@NC-0.7	52.2	25.7	17.4	4.1

Table S1. Elemental contents of Bi, C, N, and O in Bi@C and Bi@NC

^a Detected by ICP-OES; ^b detected by EA.

Fig. S5. Pore size distributions of Bi@C and Bi@NC.

Fig. S6. Adsorption of CO₂ on Bi@C and Bi@NC at 298 K.

Fig. S7. Analytical chromatograms of generated products: H_2 (a) and CO (b) via gas chromatography, and HCOOH (c) via ion chromatography.

Fig. S8. Standard calibrated curves for determining the amounts of the yielded HCOOH (a), H₂ (b), and CO (c).

Fig. S9. FEs of HCOOH, H_2 and CO towards Bi-MOF for eCO_2R reaction in an H-cell electrolyzer.

Fig. S10. FEs of HCOOH, H_2 and CO in eCO₂R reaction using NC as the catalyst in an

H-cell.

Fig. S11. FEs of HCOOH and H_2 CO under Ar atmosphere using Bi@NC-0.5 as the catalyst in an H-cell.

Fig. S12. Long-term stability of Bi@NC-0.5 for eCO_2R in an H-cell electrolyzer: current density, FE (a), and production rate (b) of HCOOH.

Fig. S13. XRD patterns of Bi@NC-0.5 before and after eCO₂R.

Fig. S14. SEM image of the used Bi@NC-0.5 after eCO₂R.

Fig. S15. XPS spectrum of the used Bi@NC-0.5 after eCO₂R.

Fig. S16. eCO₂R reaction in a flow-cell setup.

Fig. S17. eCO_2R performance of Bi@NC-0.5 in a flow cell setup: LSV curves in N₂ (yellow) and CO₂ (red), and FEs for H₂, CO, and HCOOH.

Catalyat	Electrolyte	FE _{HCOOH}	<i>J</i> _{НСООН}	Dof	
Catalyst	Electrolyte	(%)	$(mA cm^{-2})$	Kel.	
D: ONC 05	0.5 M	96.0	-16.4	The seconds	
B1@NC-0.5	KHCO ₃	(-1.1 V)	(-1.1 V)	This work	
	0.5 M	95.0	-10.5	9	
SOR B1@C NPs	KHCO ₃	(-1.0 V)	(-1.0 V)		
DNCD	0.5 M	94.8	-22.0	10	
PNCB	KHCO ₃	(-1.05 V)	(-1.05V)	10	
	0.5 M	93.9	-10.0	11	
B1–D	KHCO ₃	(-0.9 V)	(-1.0 V)	11	
	0.5 M	90.0	-100.0	10	
CI–nBiOBr	KHCO ₃	(-0.7 V)	(-0.7 V)	12	
	0.1 M	91.1	16.1	12	
CeOx/Bi	KHCO ₃	(-0.9 V)	(-0.9 V)	13	
וית כות	0.5 M	91.4	-6.5	14	
PD–Bil	KHCO ₃	(-0.9 V)	(-0.9 V)	14	
	0.5 M	90	-18.7		
2D Bi	KHCO ₃	(-0.84 V)	(-0.84 V)	15	
D: 01	0.5 M	88.3	-8.52	16	
B1–Sb	KHCO ₃	(-0.9 V)	(-0.9 V)	16	
D. I. NG	1 M	94.3	-31	17	
Bi LNSs	KHCO ₃	(-0.76 V)	(-0.76 V)	17	
Bi NPs–C60 NS	0.5 M	94.31	-88.29	10	
	KHCO ₃	(-1.0 V)	(-1.0 V)	18	
	0.1 M	88	-12	10	
SAC Bi@C–600	KHCO ₃	(-1.5 V)	(-1.5 V)	19	
D. MOL	0.5 M	94.3	-20	20	
B1-MOF	KHCO ₃	(-1.08 V)	(-1.08 V)	20	

Table S2. Performance comparison of Bi-based catalysts for eCO_2R in an H-type cell

25 / 35

BiMOF-NC	0.1 M	~100	-27.9	21
	KHCO ₃	(-1.2 V)	(-1.2 V)	21
Bi–MOF derived	0.1 M	~100	~4	22
CPBC	KHCO ₃	(-0.7 V)	(-0.7 V)	22
Bi–NFs	0.1 M	92.3	28.5	23
	KHCO ₃	(-0.9 V)	(-1.05 V)	25
Bi-ZMOF	0.1 M	91	15	24
	KHCO ₃	(-1.1 V)	(-1.3 V)	<i>2</i> 1

Fig. S18. Full XPS spectra of Bi@C and Bi@NC.

Fig. S19. Contents of pyridinic, pyrrolic, and graphitic N in Bi@NC.

Fig. S20. CV curves at different scan rates of Bi@C (a), Bi@NC-0.3 (b), Bi@NC-0.5

(c), and Bi@NC-0.7 (d).

Fig. S21. Optimal structures and E_{ad} of CO₂ adsorbed on Bi@C and Bi@NC.

	*COOH	*H ₂ O+*CO	*HCOOH	
CONTCAR				
E	-918.12 eV	-921.74 eV	-920.79 eV	
O Bi O N O C O O H				

Fig. S22. Optimized intermediates of Bi@NC for eCO₂R.

Fig. S23. Optimized intermediates of Bi@C for eCO₂R.

3 References

- 1 G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- 2 J.P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 3 P.E. Blöchl, *Phys. Rev. B*, 1994, **50**, 17953-17979.
- 4 H.J. Monkhorst and J.D. Pack, *Phys. Rev. B*, 1976, 13, 5188-5192.
- 5 S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 6 K. Momma and F. Izumi, J. Appl. Cryst., 2011, 44, 1272-1276.
- 7 J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin, T. Bligaard and H. Jonsson, *J. Phys. Chem. B*, 2004, **108**, 17886-17892.
- 8 Z. Wu, H. Wu, W. Cai, Z. Wen, B. Jia, L. Wang, W. Jin and T. Ma, *Angew. Chem. Int. Ed.*, 2021, **133**, 12662-12667.
- 9 S. Liu, Y.P. Fan, Y. Wang, S. Jin, M.C. Hou, W.J. Zeng, K. Li, T.L. Jiang, L. Qin, Z.H. Yan, Z.L. Tao, X.H. Zheng, C.Y. Shen, Z.C. Liu, T. Ahmad, K. Zhang and W. Chen, *Nano Lett.*, 2022, **22**, 9107-9114.
- 10 Y. Wang, L. Xu, L. Zhan, P. Yang, S. Tang, M. Liu, X. Zhao, Y. Xiong, Z. Chen and Y. Lei, *Nano Energy*, 2022, **92**, 106780.
- 11 Y. Wang, Z. Huang, Y. Lei, J. Wu, Y. Bai, X. Zhao, M. Liu, L. Zhan, S. Tang and X. Zhang, *Chem. Commun.*, 2022, **58**, 3621-3624.
- 12 Y. Chen, Y. Zhang, Z. Li, M. Liu, Q. Wu, T.W.B. Lo, Z. Hu and L.Y.S. Lee, ACS Nano, 2024, 18, 19345-19353.

- 13 Y. Guan, S.Q. Wu, H.Z. Huang, Z. Zhu, W. Tian and A.X. Yin, *Chem. Asian J.*, 2024, **19**, e202400296.
- 14 Y. Wang, Y. Li, J. Liu, C. Dong, C. Xiao, L. Cheng, H. Jiang, H. Jiang and C. Li, Angew. Chem. Int. Ed., 2021, 133, 7759-7763.
- 15 S. Mandal and P. Kumar, Sustain. Energy Fuels, 2023, 7, 4630-4637.
- 16 C. Yang, Y. Hu, S. Li, Q. Huang and J. Peng, ACS Appl. Mater. Interfaces, 2023, 15, 6942-6950.
- 17 D. Wang, C. Liu, Y. Zhang, Y. Wang, Z. Wang, D. Ding, Y. Cui, X. Zhu, C. Pan and Y. Lou, *Small*, 2021, 17, 2100602.
- 18 L. Zhang, T. Wang, X. Zhang and P. Du, ACS Sustain. Chem. Eng., 2024, 12, 14070-14076.
- 19 S. Santra, V. Streibel, L.I. Wagner, N.Y. Cheng, P. Ding, G.D. Zhou, E. Sirotti,
 R. Kisslinger, T. Rieth, S.Y. Zhang and I.D. Sharp, *ChemSusChem*, 2024, 17, e202301452.
- 20 C. Liu, Z. Wu, Y. Li, H. Yu, S. Chen, W. Hong, S. Deng and J. Wang, New J. Chem., 2024, 48, 15112-15119.
- 21 Z. Liu, Q. Fan, H. Huo, F. Yao, X. Gao, and J. Wang, *Sci. China Chem.*, 2024, 67, 2190-2198.
- 22 Y. Wang, R. Yang, Y. Chen, G. Gao, Y. Wang, S. Li and Y. Lan, *Sci. Bull.*, 2020,65, 1635-1642.
- 23 S. Yang, M. Jiang, W. Zhang, Y. Hu, J. Liang, Y. Wang, Z. Tie and Z. Jin, *Adv. Funct. Mater.*, 2023, **33**, 2301984.

24 Z. Jiang, M. Zhang, X. Chen, B. Wang, W. Fan, C. Yang, X. Yang, Z. Zhang, X.

Yang, C. Li and T. Zhou, Angew. Chem. Int. Ed., 2023, 62, e202311223.