Supporting Information:

Overcoming the Conversion Reaction Limitation with Dual-phase Sulfide-

based Cathode for All-Solid-State Lithium-Sulfur Batteries

Ruojian Ma,[†]^a Yingzuo He,[†]^a Minghao Ruan,[†]^a Ruyi Fang,^{*}^a Xinxu Wang,^a Jun Zhang,^a Yongping

Gan,^a Xinping He,^a Hui Huang,^a Xinhui Xia,^a Wenkui Zhang,^a Xinyong Tao,^a Min Fan^a and Yang

Xia*ª

^{*a*} College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou

310014, China.

† These authors contributed equally to this work.

* Corresponding Authors: friesfang@zjut.edu.cn (R.Y. Fang); nanoshine@zjut.edu.cn (Y. Xia)

The electron conductivity was calculated by the equation:

$$\sigma_{e^{-}} = \frac{d}{S \times R_{i}}$$

where R_i is the total resistance of the electrode when the current is stable under the external voltage, d is the sample thickness, and S is the area of the electrode.

Fig. S1. SEM image of rGO.

Fig. S2. SEM image of CoS₂@rGO.

Fig. S3. XRD pattern of CoS₂@rGO.

Fig. S4. SEM image of S/CoS₂@rGO.

Fig. S5. The TG curves of the S@rGO, and S/CoS₂@rGO cathode material.

Fig. S6. XRD pattern of S/CoS₂@rGO.

Fig. S7. (a) Digital photographs on the micrometer caliper results. (b) DC polarization curves and (c) the Nyquist plots of the S@rGO and S/CoS₂@rGO at room temperature.

Fig. S8. Comparison between S@rGO and S/CoS₂@rGO on the Nyquist plot before cycling.

Fig. S9. Charge-discharge curve of CoS₂@rGO in the initial cycle.

Fig. S10. The cycling performance of the ASSLSBs with $S/CoS_2@rGO$ cathode at 1 A g⁻¹.

Fig. S11. Comparison between S@rGO and S/CoS₂@rGO on the 1^{st} and 50^{th} charge-discharge curves at 0.5 A g⁻¹.

Fig. S12. The CV curves of the ASSLSBs with S@rGO cathode materials.

Fig. S13. *In-situ* EIS plots of S@rGO during (a) the initial discharge, (b) the initial charge, and S/CoS₂@rGO during (c) the initial discharge, (d) the initial charge.

Fig. S14. DRT curves based on the *in-situ* EIS plots of S@rGO during (a) the initial discharge, (b) the initial charge, and S/CoS₂@rGO during (c) the initial discharge, (d) the initial charge.

Fig. S15. (a) The Nyquist of the S@rGO and S/CoS₂@rGO after 200 cycles, (b) corresponding DRT curves.

Fig. S16. The post-mortem morphology of (a, c) the S@rGO and (b, d) S/CoS₂@rGO cathode.

Fig. S17. Ex-situ S 2p spectra of S@rGO cathode during the initial cycle.

Fig. S18. The S 2p of the S@rGO and S/CoS₂@rGO after the 200^{th} discharge.

Fig. S19. Configurations of the (a) S, (b) Li_2S_4 , (c) Li_2S_2 , (d) Li_2S .

Element	Wt%
С	29.03
S	67.35
Со	3.62
Total:	100.00

 Table S1.
 Element content of S/CoS2@rGO based on EDX detection.

Table S2 Comparisons to the current state of the art in the electrochemical characteristics and green nature of sulfur cathode

Composite Opera Cathode condi	Operation	Sulfur loading $({\rm mg}{\rm cm}^{-2})$	Cathode utilization	Capacity	Cycles@	Rate property	Key Green indicator	
				(mA h g ⁻¹) @	capacity	(mA h g ⁻¹) @		Ref.
	condition			current density	retention	current density		
CNT-COPS@S	30 °C	1.79 ± 0.39	67%	1128@0.1C	100@47%	_	Toxic liquid	1
	1.6~2.9 V						Low cycling stability	
S/C/LPSC	60 °C	1	55%	932@0.05C	50@62%	665@0.3C	Limited efficiency	2
	1.5~2.8V						Low rate capability	
SVD-5S@CNT	60 °C	_	76%	1275@0.1C	100@78%	870@1C	Limited efficiency	3
	0.8~2.4 V						Low cycling stability	
10%rGO-VS ₄	25 °C	2.5-3.0	73%	1229@0.06C	100@93%	473@0.6C	Limited efficiency	4
$@Li_7P_3S_{11}$	1.5~3.0 V						Low rate capability	
S/Li₃YCl₅I/CNT	45 °C	1.125	65%	1084@0.01C	200@70%	477@0.5C	Limited efficiency	5
	1.6~3.1V						Low rate capability	
S-In/LPSC/KB	30 °C	3.5	74%	1233@0.05C	1500@50%	885@0.5C	Limited efficiency	6
	0.8~2.4V						Low rate capability	
CNTs@S/AB/	60 °C	0.4-0.5	71%	1193@0.1C	20@82%	960@0.5C	Limited efficiency	7
LGPS	1.5~2.8V						Low cycling stability	
S/CoS₂@rGO	30 °C	2.15	98%	1547@0.06C	200@60%	1065@0.3C	Ultra-high efficiency	This
	1.5~3.0 V						High cycling stability	work

Reference

- 1. R. I. Anayah, I. J. Dillingham and V. S. Thoi, ACS Applied Energy Materials, 2025, DOI: 10.1021/acsaem.5c00725.
- 2. J.-K. Hu, H. Yuan, S.-J. Yang, Y. Lu, S. Sun, J. Liu, Y.-L. Liao, S. Li, C.-Z. Zhao and J.-Q. Huang, *Journal of Energy Chemistry*, 2022, **71**, 612-618.
- 3. W. Si, J. Gao, Y. Gao, F. Zhao, Y. Zhang, X. Sun and J. Wu, *Journal of Energy Storage*, 2024, **97**, 112829.
- 4. Q. Zhang, H. Wan, G. Liu, Z. Ding, J. P. Mwizerwa and X. Yao, *Nano Energy*, 2019, **57**, 771-782.
- 5. X. Fang, Y. Fu, S. Sun, R. Zhang, P. Guo, K. Sun, D. Liu, K. Wang and D. He, *Nano Letters*, 2025, **25**, 3843-3850.
- 6. P. Chen, H. Qu, D. Zheng, X. Zhang and D. Qu, *Advanced Functional Materials*, 2025, DOI: 10.1002/adfm.202423633.
- 7. Q. Zhang, N. Huang, Z. Huang, L. Cai, J. Wu and X. Yao, *Journal of Energy Chemistry*, 2020, 40, 151-155.