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The electron conductivity was calculated by the equation:

𝜎
𝑒 ‒

=
𝑑

𝑆 × 𝑅𝑖

where Ri is the total resistance of the electrode when the current is stable under the 

external voltage, d is the sample thickness, and S is the area of the electrode.

Fig. S1. SEM image of rGO.



Fig. S2. SEM image of CoS2@rGO.



Fig. S3. XRD pattern of CoS2@rGO.



Fig. S4. SEM image of S/CoS2@rGO.



Fig. S5. The TG curves of the S@rGO, and S/CoS2@rGO cathode material.



Fig. S6. XRD pattern of S/CoS2@rGO.



Fig. S7. (a) Digital photographs on the micrometer caliper results. (b) DC polarization curves and (c) the 

Nyquist plots of the S@rGO and S/CoS2@rGO at room temperature. 



Fig. S8. Comparison between S@rGO and S/CoS2@rGO on the Nyquist plot before cycling.



 
Fig. S9. Charge-discharge curve of CoS2@rGO in the initial cycle.



Fig. S10. The cycling performance of the ASSLSBs with S/CoS2@rGO cathode at 1 A g−1.



Fig. S11. Comparison between S@rGO and S/CoS2@rGO on the 1st and 50th charge-discharge curves at 0.5 

A g−1.



Fig. S12. The CV curves of the ASSLSBs with S@rGO cathode materials.



Fig. S13. In-situ EIS plots of S@rGO during (a) the initial discharge, (b) the initial charge, and S/CoS2@rGO 

during (c) the initial discharge, (d) the initial charge.



Fig. S14. DRT curves based on the in-situ EIS plots of S@rGO during (a) the initial discharge, (b) the initial 

charge, and S/CoS2@rGO during (c) the initial discharge, (d) the initial charge.



Fig. S15. (a) The Nyquist of the S@rGO and S/CoS2@rGO after 200 cycles, (b) corresponding DRT curves.



Fig. S16. The post-mortem morphology of (a, c) the S@rGO and (b, d) S/CoS₂@rGO cathode.



Fig. S17. Ex-situ S 2p spectra of S@rGO cathode during the initial cycle.



Fig. S18. The S 2p of the S@rGO and S/CoS2@rGO after the 200th discharge.



Fig. S19. Configurations of the (a) S, (b) Li2S4, (c) Li2S2, (d) Li2S.



Table S1. Element content of S/CoS2@rGO based on EDX detection.

Element Wt%

C 29.03

S 67.35

Co 3.62

Total： 100.00



Table S2 Comparisons to the current state of the art in the electrochemical characteristics and green nature 

of sulfur cathode

Composite 

Cathode

Operation

condition

Sulfur loading

（mg cm−2）

Cathode 

utilization

Capacity 

(mA h g−1) @

current density

Cycles@ 

capacity 

retention

Rate property 

(mA h g−1) @

current density

Key 

Green indicator
Ref.

CNT-COPS@S
30 oC

1.6~2.9 V
1.79 ± 0.39 67% 1128@0.1C 100@47% —

Toxic liquid

Low cycling stability
1

S/C/LPSC
60 oC

1.5~2.8V
1 55% 932@0.05C 50@62% 665@0.3C

Limited efficiency

Low rate capability
2

SVD-5S@CNT
60 oC

0.8~2.4 V
— 76% 1275@0.1C 100@78% 870@1C

Limited efficiency

Low cycling stability
3

10%rGO-VS4

@Li7P3S11

25 oC

1.5~3.0 V
2.5−3.0 73% 1229@0.06C 100@93% 473@0.6C

Limited efficiency

Low rate capability
4

S/Li3YCl5I/CNT
45 oC

1.6~3.1V
1.125 65% 1084@0.01C 200@70% 477@0.5C

Limited efficiency

Low rate capability
5

S-In/LPSC/KB
30 oC

0.8~2.4V
3.5 74% 1233@0.05C 1500@50% 885@0.5C

Limited efficiency

Low rate capability
6

CNTs@S/AB/

LGPS

60 oC

1.5~2.8V
0.4-0.5 71% 1193@0.1C 20@82% 960@0.5C

Limited efficiency

Low cycling stability
7

S/CoS2@rGO
30 oC

1.5~3.0 V
2.15 98% 1547@0.06C 200@60% 1065@0.3C

Ultra-high efficiency

High cycling stability
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