
Supplementary Information

Enhancing Verbena officinalis L. antioxidant yield through natural 

deep eutectic solvents and MOF synergetic application

Haixiang Li a,b,c, Kunze Du b,c,#, Chong Liu d , Yumin Yang a,b,c, Cailin Ye a,b,c, 

Xiaoxia Li a,b,c,*, Yanxu Chang b,c,*

a School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 

301617, China

b State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional 

Chinese Medicine, Tianjin, 301617, China

c Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 

University of Traditional Chinese Medicine, Tianjin, 301617, China

d Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand

* Correspondence: 

Xiaoxia Li, School of Chinese Materia Medica, Tianjin University of Traditional 

Chinese Medicine, Tianjin 300193, China 
E-mail: lixx@tjutcm.edu.cn (X. Li)

Yanxu Chang, State Key Laboratory of Modern Chinese Medicine, Tianjin University 

of Traditional Chinese Medicine

E-mail: Tcmcyx@tjutcm.cn (Y. Chang)

# The authors contributed equally to the first author.

Supplementary Information (SI) for Green Chemistry.
This journal is © The Royal Society of Chemistry 2025

mailto:lixx@tjutcm.edu.cn
mailto:Tcmcyx@tjutcm.cn


2. Materials and methods

2.2. Preparation of NADES and MOF

2.2.1. Synthesis of MOF-199

A total of 2.200 g of copper nitrate hydrate was dissolved in 15.0 mL of ultra-pure 

water, and 1.100 g of trimeric acid was dissolved in 15.0 mL of ethanol. The two 

solutions were then mixed and stirred under magnetic agitation for 30 minutes. The 

mixture was transferred to an autoclave and heated in a drying oven at 110 °C for 20 

hours. After cooling, the product was filtered, collected, and washed three times each 

with ethanol and distilled water. Finally, the product was activated in a drying oven at 

170 °C for 48 hours, yielding the blue powder product.

2.2.2. Synthesis of MIL-101(Cr)

A total of 2.800 g of chromic nitrate nonahydrate and 1.100 g of p-phthalic acid 

were dissolved in 49.0 mL of ultra-pure water and 0.2 mL of hydrofluoric acid using 

ultrasound for 10 minutes. The resulting solution was then transferred to an autoclave 

and heated in a drying oven at 220 °C for 12 hours. After cooling, the product was 

filtered, collected, and sequentially washed with ethanol, DMF, and 

tetramethylammonium. Finally, the product was dried in a drying oven at 60 °C for 12 

hours, yielding the green powder product.

2.2.3. Synthesis of MIL-101(Fe)

A total of 3.300 g of p-phthalic acid and 5.400 g of ferric chloride hexahydrate 

were dissolved in 100.0 mL of DMF solution. The mixture was then transferred to an 

autoclave and heated in a drying oven at 110 °C for 20 hours. After cooling, the product 

was filtered and washed twice each with ethanol and DMF. Finally, the product was 

dried in a drying oven at 100 °C for 8 hours, yielding the brown powder product.

2.2.4. Synthesis of ZIF-67

A total of 2.000 g of 1,2-dimethylimidazole was dissolved in 20.0 mL of methanol, 

and 1.700 g of cobaltous nitrate hexahydrate was dissolved in 20.0 mL of ethanol. The 

two solutions were then mixed and stirred magnetically for 48 hours. Finally, the 

mixture was centrifuged and dried, yielding the purple powder product.

2.11. Characterization



Nile red was used as a probe to determine the polarity of DESs. A volume of 1.5 

mL of DES was mixed with 4.5 mL of Nile red solution at a concentration of 10 μg/mL 

and then vortexed in the dark for 5 min. A UV–vis spectrophotometer (Shanghai, 

China) was used to detect the maximum absorption wavelength within the range of 

350–800 nm. The polarity parameter, ENR (kJ/mol), was calculated using the following 

formula:

                                    (1)𝐸𝑁𝑅 =  ℎ𝑐𝑁𝐴/𝜆𝑚𝑎𝑥 =  28591/𝜆𝑚𝑎𝑥

In this equation, h, c, NA and λmax represent the Planck constant, the speed of light 

in a vacuum, the Avogadro constant, and the maximum absorption wavelength, 

respectively.

2.13. Theoretical computations

All structures were geometrically optimized, and frequency analyses were 

conducted prior to calculations to ensure that the structures represent true energy 

minimum, without any imaginary frequencies. For structural optimization, the 

Stuttgart-Dresden-Bonn (SDD) basis set was employed to describe the extranuclear 

electron distribution of the Cu atom, while the 6-31G (d) basis set was used for other 

elements, including C, H, O, and N. To accurately account for weak interaction forces, 

DFT-D3BJ empirical dispersion corrections and Basis Set Superposition Error (BSSE) 

were applied throughout the calculations. Given the large size of MOF-199, a cluster 

of MOF-199 was selected as the model for this study to reduce computational cost and 

improve computational efficiency.

During the computational process, the interaction Gibbs free energy of DES 

formation was calculated using the following formula:

                                       (2)                                                               
Δ𝐺𝐼𝑛𝑡 =  𝐺𝐷𝐸𝑆 – 𝑛𝐺𝐻𝐵𝐴 – 𝑛𝐺𝐻𝐵𝐷

In this equation, GDES, GHBA and GHBD represented the Gibbs free energy of DES, 

HBA and HBD, respectively. GInt value indicated the interaction Gibbs free energy of Δ

the selected DES, with n denoting the number of HBA and HBD molecules.



Table S1. 32 kinds of NADES and its molar ratio (corresponding picture from left to 

right).

Abbreviation HBA HBD Molar ratio

Bet-Lac betaine lactic acid 1:1 1:2 1:3 1:4

ChCl-Lac choline chloride lactic acid 1:1 1:2 1:3 1:4

Bet-Gl betaine glycerin 1:1 1:2 1:3 1:4

ChCl-Gl choline chloride glycerin 1:1 1:2 1:3 1:4

Bet-PG betaine propylene glycol 1:1 1:2 1:3 1:4

ChCl-PG choline chloride propylene glycol 1:1 1:2 1:3 1:4

ChCl-Vit C choline chloride ascorbic acid 3:1 2:1 1:1 1:2

ChCl-H2MA choline chloride malic acid 1:1 1:2 1:3 1:4



Table S2. Box-Benhnken design and experimental values of total contents of analytes.

Run A (mg) B (min) C (%) D (mL) E (min)

Total 
contents of 

analytes 
(mg/g)

1 10 2 1 2.5 7.5 20.3284
2 10 2 2 2 7.5 19.5654
3 10 2 0 2.5 10 14.7912
4 0 2 1 2 7.5 20.3173
5 20 3 1 2.5 7.5 18.5548
6 0 2 0 2.5 7.5 14.0253
7 10 2 1 2.5 7.5 19.8459
8 20 2 1 2.5 5 19.7431
9 0 2 2 2.5 7.5 20.6688
10 10 2 1 2.5 7.5 19.7373
11 10 2 1 2.5 7.5 19.9549
12 10 2 1 3 5 20.0365
13 0 2 1 2.5 5 20.474
14 10 2 0 2 7.5 13.3254
15 10 2 1 3 10 21.3799
16 10 3 1 2.5 10 19.8052
17 10 1 1 2 7.5 19.1908
18 10 2 2 3 7.5 19.7143
19 20 2 2 2.5 7.5 18.4608
20 10 1 2 2.5 7.5 20.0679
21 10 2 1 2 5 20.7116
22 20 2 0 2.5 7.5 13.1499
23 10 1 1 3 7.5 21.1428
24 20 2 1 2 7.5 19.5898
25 20 2 1 2.5 10 19.8563
26 10 1 0 2.5 7.5 13.4674
27 0 3 1 2.5 7.5 21.1949
28 20 1 1 2.5 7.5 19.5256
29 10 2 0 2.5 5 14.4679
30 10 2 0 3 7.5 14.1296
31 10 3 2 2.5 7.5 20.0926
32 10 1 1 2.5 10 21.4306
33 10 3 0 2.5 7.5 13.4851
34 10 1 1 2.5 5 19.1027
35 0 1 1 2.5 7.5 20.3681
36 10 2 1 2.5 7.5 20.1231
37 10 3 1 3 7.5 20.1449



38 20 2 1 3 7.5 18.3262
39 10 2 2 2.5 10 20.9271
40 10 2 1 2 10 20.88
41 10 3 1 2.5 5 21.1883
42 0 2 1 2.5 10 21.4351
43 0 2 1 3 7.5 21.7021
44 10 2 1 2.5 7.5 20.0504
45 10 2 2 2.5 5 19.9202
46 10 3 1 2 7.5 20.136

A: adsorbent dosage; B: grinding time; C: DES dosage; 

D: extractant volume; E: extraction time.



Table S3. Details of six machine learning models.

ML model ML principle Hyperparameters Best Hyperparameters

AdaBoost

The basic principle of AdaBoost is to 
iteratively train a series of weak 

classifiers, adjust sample weights 
based on previous classification 
results, and combine these weak 
classifiers into a strong classifier 

through weighted voting to improve 
overall performance.

'n_estimators': (50, 200)
'learning_rate': (0.01, 0.1)

'max_depth': (3, 10)
'min_samples_split': (5, 20)
'min_samples_leaf': (3, 15)

'n_estimators': 100
'learning_rate': 0.01

'max_depth': 6
'min_samples_split': 5
'min_samples_leaf': 3

CatBoost

The basic principle of CatBoost is to 
handle categorical features efficiently 

by applying an ordered boosting 
algorithm, which avoids data leakage, 

and to build a robust ensemble of 
decision trees by iteratively 

minimizing loss while preventing 
overfitting through techniques like 
gradient-based optimization and 

overfitting detectors.

'iterations': (100, 200)
'depth': (1, 16)

'learning_rate': (0.05, 0.2)
'subsample': (0.5, 0.9)

'colsample_bylevel': (0.5, 0.9)
'l2_leaf_reg': (1.0, 10.0)

'iterations': 189
'depth': 1

'learning_rate': 0.0900
'subsample': 0.8895

'colsample_bylevel': 0.8577
'l2_leaf_reg': 4.2707

GBDT

The basic principle of GBDT is to 
build an ensemble of decision trees 

sequentially, where each tree corrects 
the residual errors of the previous 

trees by minimizing a loss function 
through gradient descent, resulting in 

a strong predictive model.

'n_estimators': (100, 200)
'max_depth': (1, 20)

'learning_rate': (0.01, 0.1)
'subsample': (0.5, 0.9)

'min_samples_split': (2, 10)
'min_samples_leaf': (2, 10)
'max_features': (0.5, 0.9)

'n_estimators': 200
'max_depth': 1

'learning_rate': 0.05
'subsample': 0.9

'min_samples_split': 9
'min_samples_leaf': 3

'max_features': 0.9



HistGB

The basic principle of 
HistGradientBoosting is to speed up 

traditional gradient boosting by 
discretizing continuous features into 
bins (histograms), reducing memory 
usage and computation time, while 
iteratively building decision trees to 

minimize the loss function.

'learning_rate': (0.01, 0.1)
'max_iter': (50, 150)
'max_depth': (3, 10)

'min_samples_leaf': (5, 20)
'l2_regularization': (0.1, 1.0)

'learning_rate': 0.01
'max_iter': 150
'max_depth': 3

'min_samples_leaf': 5
'l2_regularization': 0.1

LightGBM

The basic principle of LightGBM is 
to improve the efficiency of gradient 
boosting by using histogram-based 

feature discretization, a leaf-wise tree 
growth strategy with depth 

constraints, and optimizations like 
Gradient-based One-Side Sampling 

(GOSS) and Exclusive Feature 
Bundling (EFB) to reduce 

computation time and memory usage 
while maintaining high predictive 

performance.

'n_estimators': (100, 200)
'max_depth': (1, 20)

'learning_rate': (0.05, 0.2)
'subsample': (0.5, 0.9)

'colsample_bytree': (0.5, 0.9)
'min_child_samples': (1, 10)

'reg_alpha': (0.0, 0.5)
'reg_lambda': (0.0, 0.5)

'n_estimators': 200
'max_depth': 20

'learning_rate': 0.05
'subsample': 0.9

'colsample_bytree': 0.9
'min_child_samples': 1

'reg_alpha': 0.0
'reg_lambda': 0.5

XGBoost

XGBoost enhances gradient boosting 
with regularization, tree pruning, and 

optimized parallel computation, 
achieving high efficiency and 

accuracy.

'n_estimators': (100, 200)
'max_depth': (1, 20)

'learning_rate': (0.05, 0.2)
'subsample': (0.5, 0.9)

'colsample_bytree': (0.5, 0.9)
'min_child_weight': (1, 10)

'gamma': (0.0, 0.5)

'n_estimators': 196
'max_depth': 1

'learning_rate': 0.2
'subsample': 0.7521

'colsample_bytree': 0.7973
'min_child_weight': 3

'gamma': 0.0



Table S4. Physicochemical properties of NADES.

NADES
Viscoity 
(mPa.S)

ENR 
(kJ/mol)

PH

Betaine: propylene glycol=1:4 98 53.74 7.75
Choline chloride: propylene glycol=1:3 109 52.65 5.42

Betaine: glycerol=1:2 3542 48.46 7.81
Choline chloride: glycerol=1:2 465 51.06 5.10

Choline chloride: ascorbic acid=2:1 54715 53.84 2.14
Choline chloride: malic acid=1:1 24798 55.95 0.26

Betaine: lactic acid=1:4 99 55.84 2.82
Choline chloride: lactic acid=1:4 46 53.95 0.74



Table S5. Assignment of characteristic FT-IR bands for the key functional groups.

Functional group
Vibration 

mode

Typical 

wavenumber 

range (cm-1)

Observed 

wavenumber 

(cm-1)

O-H stretch (lactic acid) Stretching 3200-3600 3380

O-H stretch (after DES 

formation)

Stretching 

(H-bonded)
3200-3600 3360

C=O stretch (lactic acid) Stretching 1700-1750 1702

C=O stretch (betaine) Stretching 1600-1650 1625

C=O stretch (after DES 

formation)

Stretching 

(H-bonded)
1700-1750 1720

C=N stretch (betaine) Stretching 1450-1550 1480



Table S6. ANOVA analysis of BBD-RSM regression model.

Source Sum of Squares df Mean Square F-Value p-value significant

Model 287 20 14.35 155.1 < 0.0001 **
A-A 10.53 1 10.53 113.8 < 0.0001 **
B-B 0.0058 1 0.0058 0.0632 0.8035
C-C 147.47 1 147.47 1593.93 < 0.0001 **
D-D 0.5112 1 0.5112 5.53 0.0269
E-E 1.48 1 1.48 15.96 0.0005 **
AB 0.8078 1 0.8078 8.73 0.0067 **
AC 0.444 1 0.444 4.8 0.038
AD 1.75 1 1.75 18.95 0.0002 **
AE 0.1797 1 0.1797 1.94 0.1757
BC 0 1 0 0.0001 0.9909
BD 0.9439 1 0.9439 10.2 0.0038 **
BE 3.44 1 3.44 37.21 < 0.0001 **
CD 0.1074 1 0.1074 1.16 0.2917
CE 0.1168 1 0.1168 1.26 0.2718
DE 0.3452 1 0.3452 3.73 0.0648 **
A2 0.1903 1 0.1903 2.06 0.164
B2 0.0043 1 0.0043 0.0464 0.8312
C2 91.73 1 91.73 991.48 < 0.0001 **
D2 0.0772 1 0.0772 0.8345 0.3697
E2 2.96 1 2.96 31.97 < 0.0001 **

Residual 2.31 25 0.0925
Lack of Fit 2.09 20 0.1046 2.38 0.1711 Not significant
Pure Error 0.2201 5 0.044
Cor Total 289.31 45

R2 0.9920
Adjusted R2 0.9856
Predicted R2 0.9700

CV % 1.60

Factor A: adsorbent dosage; B: grinding time; C: DES dosage; D: extractant volume; 

E: extraction time; ** indicate the level of significance at P < 0.01.



Table S7. Regressive equations, linearity, limits of detection (LOD) and limit of 

quantitation (LOQ) of five target analytes (n = 6).

Compound Regressive 
equation R2

Linear 
range 

(µg/mL) 

LOD
(μg/mL)

LOQ
(μg/mL)

Hastatoside y=16.709x-117.43 0.9952 5-100 0.235 0.783

Cornin y=11.347x-51.98 0.9953 7.5-150 0.363 1.210

Acteoside y=7.6143x-37.345 0.9945 5-100 0.600 2.000

Luteolin y=37.622x-9.2121 0.9982 2.5-100 0.088 0.292

Apigenin y=21.072x-1.1208 0.9958 2.5-100 0.151 0.503



Table S8. Precision, stability and repeatability of five target analytes (n = 6).

Compound Concentration
(μg/mL)

Intra-day precision 
RSD (%)

Inter-day precision 
RSD (%)

Stability
RSD (%)

Repeatability
RSD (%)

5 1.00 2.69 1.45
50 0.74 2.60 0.92Hastatoside
100 2.18 1.84 1.18

2.51

7.5 2.79 1.51 2.84
75 1.14 2.99 1.73Cornin
150 1.51 1.62 2.49

2.02

5 1.24 2.73 2.59
50 1.07 2.71 2.57Acteoside
100 2.46 2.46 1.46

2.75

2.5 2.02 1.88 2.93
10 0.73 2.69 1.08Luteolin
100 0.76 2.40 1.15

2.09

2.5 0.97 2.83 1.2
10 0.70 2.98 1.13Apigenin
100 0.40 2.96 1.12

2.48



Table S9. Recovery of five target analytes (n = 6).

Compound Sample (μg/mL) Spiked (μg/mL) Recovery (%) RSD (%)

Hastatoside 168.7 170 108.54 2.19

Cornin 142.3 150 98.80 2.33

Acteoside 166.35 100 101.82 2.24

Luteolin 3.22 5 105.73 1.14

Apigenin 4.42 5 105.01 0.90



Table S10. Results of UPLC-Q-TOF-MS compositional analysis.

Serial 
number

Compound name
Ion 

mode
Retention 

time
Molecular 
formula

m/z
Quality error

ppm
Secondary

fragment ion
category

1 Hastatoside + 6.47 C17H24O11 427.1207 7.13
405.1309, 243.0871, 225.0753, 207.0641, 

193.0506
b

2 Cornin + 7.03 C17H24O10 389.143 0.58 357.178, 195.0658, 177.0545 b

3 Acteoside - 9.34 C29H36O15 623.2004 0.23
461.1654, 315.1093, 179.0346, 161.0224, 

153.0523, 135.0434, 113.0227
c

4 Luteolin + 9.02 C15H10O6 287.054 8.09 133.0293, 151.0038 a

5 Apigenin - 13.26 C15H10O5 269.0459 8.34 197.0610, 224.1741, 225.0558, 269.0456 a

6 2'-Acetylverbascoside - 1.05 C31H38O16 665.2145 5.69 503.1590, 179.0550 c

7 Cistanoside F - 5.48 C21H28O13 487.147 -2.63 179.0346, 161.0233, 135.0433 c

8 Cistanoside C - 10.01 C30H38O15 637.2137 0.15 175.0378, 193.0464, 461.1588 c

9 Rehmannitin - 11.31 C31H40O15 651.2278 2.52 193.0505, 475.169, 651.2278 b

10 Quercetin - 7.46 C15H10O7 301.0372 -6.04 151.0066, 175.9871, 283.9995 a

a. Flavonoids; b. Iridoids; c. Phenylethanolic glycosides.



Table S11. Parameters of ESP.

Positive area 
(Å2)

Negative area 
(Å2)

Vmax
(kcal/mol)

Vmin 
(kcal/mol)

MPI 
(kcal/mol)

Betaine 103.89 52.62 43.84 -68.39 31.97

Lactic acid 73.4 49.78 48.55 -41.42 16.32

Hastatoside 246.47 140.65 59.89 -59.9 15.07

Cornin 215.54 162.13 57.58 -48.86 12.55

DES 196.77 253.04 47.06 -43.85 16.12

MOF 386.52 289.41 33.5 -21.48 10.57



Table S12. Comparison of various methods.

No.
Extracted 

compounds
Sample

Amount (g)
Type of
solvent

Solvent 
volume (mL)

Extracted 
method

Extracted 
time (min)

Analytical 
method

Estimated
energy

consumption
Ref.

1
Acteoside,

Isoverbascoside
0.3 Methanol 15 (total) Ultrasonic 150 HPLC

~2.5-3.0 
kWh/kg 
(high)

[88]

2
Hastatoside, 

Cornin, 
Acteoside

0.1
Ethanol：
water =1:1

1.0 Ultrasonic 10 UHPSFC
~2.5 kWh/kg 
(moderate)

[89]

3
Hastatoside, 

Cornin, 
Acteoside

100 Water
Excess
water

Boiled 55 HPLC
~5.0 kWh/kg 

(high)
[90]

4
Acteoside,
Geniposide

10 Water 200 Macerated 20 HPLC
~0.2 kWh/kg 

(very low)
[91]

5

Hastatoside, 
Cornin, 

Acteoside, 
Luteolin, 
Apigenin

0.02

Water with 
1.52 % DES 
(Bet:Lac = 

1:4)

2.9 UA-MSPD 9.6 HPLC
~0.8 kWh/kg 

(low)
This work



Fig. S1. Chromatogram of five target objects.



Fig. S2. The graphical user interface for predicting yield was based on the CatBoost 

model.



Fig. S3. Radar chart comparison of different extraction methods based on extraction 

time, solvent volume, and energy consumption.


