# **Supplementary Information**

# Enhancing Verbena officinalis L. antioxidant yield through natural deep eutectic solvents and MOF synergetic application

Haixiang Li <sup>a,b,c</sup>, Kunze Du <sup>b,c,#</sup>, Chong Liu <sup>d</sup>, Yumin Yang <sup>a,b,c</sup>, Cailin Ye <sup>a,b,c</sup>, Xiaoxia Li <sup>a,b,c,\*</sup>, Yanxu Chang <sup>b,c,\*</sup>

- <sup>a</sup> School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- <sup>b</sup> State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- c Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
- <sup>d</sup> Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand

# \* Correspondence:

Xiaoxia Li, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China E-mail: <a href="mailto:lixx@tjutcm.edu.cn">lixx@tjutcm.edu.cn</a> (X. Li)

Yanxu Chang, State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine

E-mail: Temeyx@tjutem.en (Y. Chang)

# The authors contributed equally to the first author.

#### 2. Materials and methods

## 2.2. Preparation of NADES and MOF

#### **2.2.1. Synthesis of MOF-199**

A total of 2.200 g of copper nitrate hydrate was dissolved in 15.0 mL of ultra-pure water, and 1.100 g of trimeric acid was dissolved in 15.0 mL of ethanol. The two solutions were then mixed and stirred under magnetic agitation for 30 minutes. The mixture was transferred to an autoclave and heated in a drying oven at 110 °C for 20 hours. After cooling, the product was filtered, collected, and washed three times each with ethanol and distilled water. Finally, the product was activated in a drying oven at 170 °C for 48 hours, yielding the blue powder product.

# 2.2.2. Synthesis of MIL-101(Cr)

A total of 2.800 g of chromic nitrate nonahydrate and 1.100 g of p-phthalic acid were dissolved in 49.0 mL of ultra-pure water and 0.2 mL of hydrofluoric acid using ultrasound for 10 minutes. The resulting solution was then transferred to an autoclave and heated in a drying oven at 220 °C for 12 hours. After cooling, the product was filtered, collected, and sequentially washed with ethanol, DMF, and tetramethylammonium. Finally, the product was dried in a drying oven at 60 °C for 12 hours, yielding the green powder product.

#### **2.2.3.** Synthesis of MIL-101(Fe)

A total of 3.300 g of *p*-phthalic acid and 5.400 g of ferric chloride hexahydrate were dissolved in 100.0 mL of DMF solution. The mixture was then transferred to an autoclave and heated in a drying oven at 110 °C for 20 hours. After cooling, the product was filtered and washed twice each with ethanol and DMF. Finally, the product was dried in a drying oven at 100 °C for 8 hours, yielding the brown powder product.

# 2.2.4. Synthesis of ZIF-67

A total of 2.000 g of 1,2-dimethylimidazole was dissolved in 20.0 mL of methanol, and 1.700 g of cobaltous nitrate hexahydrate was dissolved in 20.0 mL of ethanol. The two solutions were then mixed and stirred magnetically for 48 hours. Finally, the mixture was centrifuged and dried, yielding the purple powder product.

### 2.11. Characterization

Nile red was used as a probe to determine the polarity of DESs. A volume of 1.5 mL of DES was mixed with 4.5 mL of Nile red solution at a concentration of 10  $\mu$ g/mL and then vortexed in the dark for 5 min. A UV–vis spectrophotometer (Shanghai, China) was used to detect the maximum absorption wavelength within the range of 350–800 nm. The polarity parameter,  $E_{NR}$  (kJ/mol), was calculated using the following formula:

$$E_{NR} = hcN_A/\lambda_{max} = 28591/\lambda_{max} \tag{1}$$

In this equation, h, c,  $N_A$  and  $\lambda_{max}$  represent the Planck constant, the speed of light in a vacuum, the Avogadro constant, and the maximum absorption wavelength, respectively.

#### 2.13. Theoretical computations

All structures were geometrically optimized, and frequency analyses were conducted prior to calculations to ensure that the structures represent true energy minimum, without any imaginary frequencies. For structural optimization, the Stuttgart-Dresden-Bonn (SDD) basis set was employed to describe the extranuclear electron distribution of the Cu atom, while the 6-31G (d) basis set was used for other elements, including C, H, O, and N. To accurately account for weak interaction forces, DFT-D3BJ empirical dispersion corrections and Basis Set Superposition Error (BSSE) were applied throughout the calculations. Given the large size of MOF-199, a cluster of MOF-199 was selected as the model for this study to reduce computational cost and improve computational efficiency.

During the computational process, the interaction Gibbs free energy of DES formation was calculated using the following formula:

$$\Delta G_{Int} = G_{DES} - nG_{HBA} - nG_{HBD} \tag{2}$$

In this equation,  $G_{DES}$ ,  $G_{HBA}$  and  $G_{HBD}$  represented the Gibbs free energy of DES, HBA and HBD, respectively.  $\Delta G_{Int}$  value indicated the interaction Gibbs free energy of the selected DES, with n denoting the number of HBA and HBD molecules.

**Table S1.** 32 kinds of NADES and its molar ratio (corresponding picture from left to right).

| Abbreviation           | НВА              | HBD              | Molar ratio |     |     | )   |
|------------------------|------------------|------------------|-------------|-----|-----|-----|
| Bet-Lac                | betaine          | lactic acid      | 1:1         | 1:2 | 1:3 | 1:4 |
| ChCl-Lac               | choline chloride | lactic acid      | 1:1         | 1:2 | 1:3 | 1:4 |
| Bet-Gl                 | betaine          | glycerin         | 1:1         | 1:2 | 1:3 | 1:4 |
| ChCl-Gl                | choline chloride | glycerin         | 1:1         | 1:2 | 1:3 | 1:4 |
| Bet-PG                 | betaine          | propylene glycol | 1:1         | 1:2 | 1:3 | 1:4 |
| ChCl-PG                | choline chloride | propylene glycol | 1:1         | 1:2 | 1:3 | 1:4 |
| ChCl-Vit C             | choline chloride | ascorbic acid    | 3:1         | 2:1 | 1:1 | 1:2 |
| ChCl-H <sub>2</sub> MA | choline chloride | malic acid       | 1:1         | 1:2 | 1:3 | 1:4 |

Table S2. Box-Benhnken design and experimental values of total contents of analytes.

|       |           |         |        |          |           | Total       |
|-------|-----------|---------|--------|----------|-----------|-------------|
| Run   | A (mg)    | B (min) | C (%)  | D (mL)   | E (min)   | contents of |
| Ituli | ri (ilig) | D (mm)  | C (70) | D (IIIL) | L (IIIII) | analytes    |
|       |           |         |        |          |           | (mg/g)      |
| 1     | 10        | 2       | 1      | 2.5      | 7.5       | 20.3284     |
| 2     | 10        | 2       | 2      | 2        | 7.5       | 19.5654     |
| 3     | 10        | 2       | 0      | 2.5      | 10        | 14.7912     |
| 4     | 0         | 2       | 1      | 2        | 7.5       | 20.3173     |
| 5     | 20        | 3       | 1      | 2.5      | 7.5       | 18.5548     |
| 6     | 0         | 2       | 0      | 2.5      | 7.5       | 14.0253     |
| 7     | 10        | 2       | 1      | 2.5      | 7.5       | 19.8459     |
| 8     | 20        | 2       | 1      | 2.5      | 5         | 19.7431     |
| 9     | 0         | 2       | 2      | 2.5      | 7.5       | 20.6688     |
| 10    | 10        | 2       | 1      | 2.5      | 7.5       | 19.7373     |
| 11    | 10        | 2       | 1      | 2.5      | 7.5       | 19.9549     |
| 12    | 10        | 2       | 1      | 3        | 5         | 20.0365     |
| 13    | 0         | 2       | 1      | 2.5      | 5         | 20.474      |
| 14    | 10        | 2       | 0      | 2        | 7.5       | 13.3254     |
| 15    | 10        | 2       | 1      | 3        | 10        | 21.3799     |
| 16    | 10        | 3       | 1      | 2.5      | 10        | 19.8052     |
| 17    | 10        | 1       | 1      | 2        | 7.5       | 19.1908     |
| 18    | 10        | 2       | 2      | 3        | 7.5       | 19.7143     |
| 19    | 20        | 2       | 2      | 2.5      | 7.5       | 18.4608     |
| 20    | 10        | 1       | 2      | 2.5      | 7.5       | 20.0679     |
| 21    | 10        | 2       | 1      | 2        | 5         | 20.7116     |
| 22    | 20        | 2       | 0      | 2.5      | 7.5       | 13.1499     |
| 23    | 10        | 1       | 1      | 3        | 7.5       | 21.1428     |
| 24    | 20        | 2       | 1      | 2        | 7.5       | 19.5898     |
| 25    | 20        | 2       | 1      | 2.5      | 10        | 19.8563     |
| 26    | 10        | 1       | 0      | 2.5      | 7.5       | 13.4674     |
| 27    | 0         | 3       | 1      | 2.5      | 7.5       | 21.1949     |
| 28    | 20        | 1       | 1      | 2.5      | 7.5       | 19.5256     |
| 29    | 10        | 2       | 0      | 2.5      | 5         | 14.4679     |
| 30    | 10        | 2       | 0      | 3        | 7.5       | 14.1296     |
| 31    | 10        | 3       | 2      | 2.5      | 7.5       | 20.0926     |
| 32    | 10        | 1       | 1      | 2.5      | 10        | 21.4306     |
| 33    | 10        | 3       | 0      | 2.5      | 7.5       | 13.4851     |
| 34    | 10        | 1       | 1      | 2.5      | 5         | 19.1027     |
| 35    | 0         | 1       | 1      | 2.5      | 7.5       | 20.3681     |
| 36    | 10        | 2       | 1      | 2.5      | 7.5       | 20.1231     |
| 37    | 10        | 3       | 1      | 3        | 7.5       | 20.1449     |

| 38 | 20 | 2 | 1 | 3   | 7.5 | 18.3262 |
|----|----|---|---|-----|-----|---------|
| 39 | 10 | 2 | 2 | 2.5 | 10  | 20.9271 |
| 40 | 10 | 2 | 1 | 2   | 10  | 20.88   |
| 41 | 10 | 3 | 1 | 2.5 | 5   | 21.1883 |
| 42 | 0  | 2 | 1 | 2.5 | 10  | 21.4351 |
| 43 | 0  | 2 | 1 | 3   | 7.5 | 21.7021 |
| 44 | 10 | 2 | 1 | 2.5 | 7.5 | 20.0504 |
| 45 | 10 | 2 | 2 | 2.5 | 5   | 19.9202 |
| 46 | 10 | 3 | 1 | 2   | 7.5 | 20.136  |

A: adsorbent dosage; B: grinding time; C: DES dosage;

D: extractant volume; E: extraction time.

 Table S3. Details of six machine learning models.

| ML model | ML principle                                                                                                                                                                                                                                                                                                                                    | Hyperparameters                                                                                                                                                                                | Best Hyperparameters                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| AdaBoost | The basic principle of AdaBoost is to iteratively train a series of weak classifiers, adjust sample weights based on previous classification results, and combine these weak classifiers into a strong classifier through weighted voting to improve overall performance.                                                                       | 'n_estimators': (50, 200)  'learning_rate': (0.01, 0.1)  'max_depth': (3, 10)  'min_samples_split': (5, 20)  'min_samples_leaf': (3, 15)                                                       | 'n_estimators': 100 'learning_rate': 0.01     'max_depth': 6 'min_samples_split': 5 'min_samples_leaf': 3                                        |
| CatBoost | The basic principle of CatBoost is to handle categorical features efficiently by applying an ordered boosting algorithm, which avoids data leakage, and to build a robust ensemble of decision trees by iteratively minimizing loss while preventing overfitting through techniques like gradient-based optimization and overfitting detectors. | 'iterations': (100, 200)                                                                                                                                                                       | 'iterations': 189         'depth': 1  'learning_rate': 0.0900         'subsample': 0.8895  'colsample_bylevel': 0.8577  '12_leaf_reg': 4.2707    |
| GBDT     | The basic principle of GBDT is to build an ensemble of decision trees sequentially, where each tree corrects the residual errors of the previous trees by minimizing a loss function through gradient descent, resulting in a strong predictive model.                                                                                          | 'n_estimators': (100, 200)  'max_depth': (1, 20)  'learning_rate': (0.01, 0.1)  'subsample': (0.5, 0.9)  'min_samples_split': (2, 10)  'min_samples_leaf': (2, 10)  'max_features': (0.5, 0.9) | 'n_estimators': 200  'max_depth': 1  'learning_rate': 0.05  'subsample': 0.9  'min_samples_split': 9  'min_samples_leaf': 3  'max_features': 0.9 |

| HistGB   | The basic principle of HistGradientBoosting is to speed up traditional gradient boosting by discretizing continuous features into bins (histograms), reducing memory usage and computation time, while iteratively building decision trees to minimize the loss function.                                                                                                                  | 'learning_rate': (0.01, 0.1)  'max_iter': (50, 150)  'max_depth': (3, 10)  'min_samples_leaf': (5, 20)  'l2_regularization': (0.1, 1.0)                                                                                  | 'learning_rate': 0.01  'max_iter': 150  'max_depth': 3  'min_samples_leaf': 5  '12_regularization': 0.1                                                             |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LightGBM | The basic principle of LightGBM is to improve the efficiency of gradient boosting by using histogram-based feature discretization, a leaf-wise tree growth strategy with depth constraints, and optimizations like Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) to reduce computation time and memory usage while maintaining high predictive performance. | 'n_estimators': (100, 200)  'max_depth': (1, 20)  'learning_rate': (0.05, 0.2)  'subsample': (0.5, 0.9)  'colsample_bytree': (0.5, 0.9)  'min_child_samples': (1, 10)  'reg_alpha': (0.0, 0.5)  'reg_lambda': (0.0, 0.5) | 'n_estimators': 200  'max_depth': 20  'learning_rate': 0.05  'subsample': 0.9  'colsample_bytree': 0.9  'min_child_samples': 1  'reg_alpha': 0.0  'reg_lambda': 0.5 |
| XGBoost  | XGBoost enhances gradient boosting with regularization, tree pruning, and optimized parallel computation, achieving high efficiency and accuracy.                                                                                                                                                                                                                                          | 'n_estimators': (100, 200)  'max_depth': (1, 20)  'learning_rate': (0.05, 0.2)  'subsample': (0.5, 0.9)  'colsample_bytree': (0.5, 0.9)  'min_child_weight': (1, 10)  'gamma': (0.0, 0.5)                                | 'n_estimators': 196     'max_depth': 1     'learning_rate': 0.2     'subsample': 0.7521 'colsample_bytree': 0.7973     'min_child_weight': 3     'gamma': 0.0       |

**Table S4.** Physicochemical properties of NADES.

| NADES                                  | Viscoity (mPa.S) | E <sub>NR</sub> (kJ/mol) | РН   |
|----------------------------------------|------------------|--------------------------|------|
| Betaine: propylene glycol=1:4          | 98               | 53.74                    | 7.75 |
| Choline chloride: propylene glycol=1:3 | 109              | 52.65                    | 5.42 |
| Betaine: glycerol=1:2                  | 3542             | 48.46                    | 7.81 |
| Choline chloride: glycerol=1:2         | 465              | 51.06                    | 5.10 |
| Choline chloride: ascorbic acid=2:1    | 54715            | 53.84                    | 2.14 |
| Choline chloride: malic acid=1:1       | 24798            | 55.95                    | 0.26 |
| Betaine: lactic acid=1:4               | 99               | 55.84                    | 2.82 |
| Choline chloride: lactic acid=1:4      | 46               | 53.95                    | 0.74 |

**Table S5.** Assignment of characteristic FT-IR bands for the key functional groups.

|                           | Vibration     | Typical                   | Observed            |
|---------------------------|---------------|---------------------------|---------------------|
| Functional group          | , 191 <b></b> | wavenumber                | wavenumber          |
|                           | mode          | range (cm <sup>-1</sup> ) | (cm <sup>-1</sup> ) |
| O-H stretch (lactic acid) | Stretching    | 3200-3600                 | 3380                |
| O-H stretch (after DES    | Stretching    | 2200 2600                 | 2260                |
| formation)                | (H-bonded)    | 3200-3600                 | 3360                |
| C=O stretch (lactic acid) | Stretching    | 1700-1750                 | 1702                |
| C=O stretch (betaine)     | Stretching    | 1600-1650                 | 1625                |
| C=O stretch (after DES    | Stretching    | 1700 1750                 | 1720                |
| formation)                | (H-bonded)    | 1700-1750                 | 1720                |
| C=N stretch (betaine)     | Stretching    | 1450-1550                 | 1480                |

Table S6. ANOVA analysis of BBD-RSM regression model.

| Source                   | Sum of Squares | df | Mean Square | F-Value | <i>p</i> -value | significant     |
|--------------------------|----------------|----|-------------|---------|-----------------|-----------------|
| Model                    | 287            | 20 | 14.35       | 155.1   | < 0.0001        | **              |
| A-A                      | 10.53          | 1  | 10.53       | 113.8   | < 0.0001        | **              |
| В-В                      | 0.0058         | 1  | 0.0058      | 0.0632  | 0.8035          |                 |
| C-C                      | 147.47         | 1  | 147.47      | 1593.93 | < 0.0001        | **              |
| D-D                      | 0.5112         | 1  | 0.5112      | 5.53    | 0.0269          |                 |
| E-E                      | 1.48           | 1  | 1.48        | 15.96   | 0.0005          | **              |
| AB                       | 0.8078         | 1  | 0.8078      | 8.73    | 0.0067          | **              |
| AC                       | 0.444          | 1  | 0.444       | 4.8     | 0.038           |                 |
| AD                       | 1.75           | 1  | 1.75        | 18.95   | 0.0002          | **              |
| AE                       | 0.1797         | 1  | 0.1797      | 1.94    | 0.1757          |                 |
| BC                       | 0              | 1  | 0           | 0.0001  | 0.9909          |                 |
| BD                       | 0.9439         | 1  | 0.9439      | 10.2    | 0.0038          | **              |
| BE                       | 3.44           | 1  | 3.44        | 37.21   | < 0.0001        | **              |
| CD                       | 0.1074         | 1  | 0.1074      | 1.16    | 0.2917          |                 |
| CE                       | 0.1168         | 1  | 0.1168      | 1.26    | 0.2718          |                 |
| DE                       | 0.3452         | 1  | 0.3452      | 3.73    | 0.0648          | **              |
| $A^2$                    | 0.1903         | 1  | 0.1903      | 2.06    | 0.164           |                 |
| $\mathbf{B}^2$           | 0.0043         | 1  | 0.0043      | 0.0464  | 0.8312          |                 |
| $C^2$                    | 91.73          | 1  | 91.73       | 991.48  | < 0.0001        | **              |
| $D^2$                    | 0.0772         | 1  | 0.0772      | 0.8345  | 0.3697          |                 |
| $E^2$                    | 2.96           | 1  | 2.96        | 31.97   | < 0.0001        | **              |
| Residual                 | 2.31           | 25 | 0.0925      |         |                 |                 |
| Lack of Fit              | 2.09           | 20 | 0.1046      | 2.38    | 0.1711          | Not significant |
| Pure Error               | 0.2201         | 5  | 0.044       |         |                 |                 |
| Cor Total                | 289.31         | 45 |             |         |                 |                 |
| $\mathbb{R}^2$           | 0.9920         |    |             |         |                 |                 |
| Adjusted R <sup>2</sup>  | 0.9856         |    |             |         |                 |                 |
| Predicted R <sup>2</sup> | 0.9700         |    |             |         |                 |                 |
| CV %                     | 1.60           |    |             |         |                 |                 |

Factor A: adsorbent dosage; B: grinding time; C: DES dosage; D: extractant volume;

E: extraction time; \*\* indicate the level of significance at P < 0.01.

**Table S7.** Regressive equations, linearity, limits of detection (LOD) and limit of quantitation (LOQ) of five target analytes (n = 6).

| Compound    | Regressive equation | $\mathbb{R}^2$ | Linear<br>range<br>(µg/mL) | LOD<br>(µg/mL) | LOQ<br>(µg/mL) |
|-------------|---------------------|----------------|----------------------------|----------------|----------------|
| Hastatoside | y=16.709x-117.43    | 0.9952         | 5-100                      | 0.235          | 0.783          |
| Cornin      | y=11.347x-51.98     | 0.9953         | 7.5-150                    | 0.363          | 1.210          |
| Acteoside   | y=7.6143x-37.345    | 0.9945         | 5-100                      | 0.600          | 2.000          |
| Luteolin    | y=37.622x-9.2121    | 0.9982         | 2.5-100                    | 0.088          | 0.292          |
| Apigenin    | y=21.072x-1.1208    | 0.9958         | 2.5-100                    | 0.151          | 0.503          |

**Table S8.** Precision, stability and repeatability of five target analytes (n = 6).

| Compound    | Concentration (µg/mL) | Intra-day precision<br>RSD (%) | Inter-day precision<br>RSD (%) | Stability<br>RSD (%) | Repeatability<br>RSD (%) |
|-------------|-----------------------|--------------------------------|--------------------------------|----------------------|--------------------------|
|             | 5                     | 1.00                           | 2.69                           | 1.45                 |                          |
| Hastatoside | 50                    | 0.74                           | 2.60                           | 0.92                 | 2.51                     |
|             | 100                   | 2.18                           | 1.84                           | 1.18                 |                          |
|             | 7.5                   | 2.79                           | 1.51                           | 2.84                 |                          |
| Cornin      | 75                    | 1.14                           | 2.99                           | 1.73                 | 2.02                     |
|             | 150                   | 1.51                           | 1.62                           | 2.49                 |                          |
|             | 5                     | 1.24                           | 2.73                           | 2.59                 |                          |
| Acteoside   | 50                    | 1.07                           | 2.71                           | 2.57                 | 2.75                     |
|             | 100                   | 2.46                           | 2.46                           | 1.46                 |                          |
|             | 2.5                   | 2.02                           | 1.88                           | 2.93                 |                          |
| Luteolin    | 10                    | 0.73                           | 2.69                           | 1.08                 | 2.09                     |
|             | 100                   | 0.76                           | 2.40                           | 1.15                 |                          |
|             | 2.5                   | 0.97                           | 2.83                           | 1.2                  |                          |
| Apigenin    | 10                    | 0.70                           | 2.98                           | 1.13                 | 2.48                     |
|             | 100                   | 0.40                           | 2.96                           | 1.12                 |                          |

**Table S9.** Recovery of five target analytes (n = 6).

| Compound    | Sample (µg/mL) | Spiked (μg/mL) | Recovery (%) | RSD (%) |
|-------------|----------------|----------------|--------------|---------|
| Hastatoside | 168.7          | 170            | 108.54       | 2.19    |
| Cornin      | 142.3          | 150            | 98.80        | 2.33    |
| Acteoside   | 166.35         | 100            | 101.82       | 2.24    |
| Luteolin    | 3.22           | 5              | 105.73       | 1.14    |
| Apigenin    | 4.42           | 5              | 105.01       | 0.90    |

 Table \$10.
 Results of UPLC-Q-TOF-MS compositional analysis.

|               |                       |             |                |                      | ~        |                   | •                                                                    |          |
|---------------|-----------------------|-------------|----------------|----------------------|----------|-------------------|----------------------------------------------------------------------|----------|
| Serial number | Compound name         | Ion<br>mode | Retention time | Molecular<br>formula | m/z      | Quality error ppm | Secondary<br>fragment ion                                            | category |
| 1             | Hastatoside           | +           | 6.47           | $C_{17}H_{24}O_{11}$ | 427.1207 | 7.13              | 405.1309, 243.0871, 225.0753, 207.0641,<br>193.0506                  | b        |
| 2             | Cornin                | +           | 7.03           | $C_{17}H_{24}O_{10}$ | 389.143  | 0.58              | 357.178, 195.0658, 177.0545                                          | b        |
| 3             | Acteoside             | -           | 9.34           | $C_{29}H_{36}O_{15}$ | 623.2004 | 0.23              | 461.1654, 315.1093, 179.0346, 161.0224, 153.0523, 135.0434, 113.0227 | c        |
| 4             | Luteolin              | +           | 9.02           | $C_{15}H_{10}O_6$    | 287.054  | 8.09              | 133.0293, 151.0038                                                   | a        |
| 5             | Apigenin              | -           | 13.26          | $C_{15}H_{10}O_5$    | 269.0459 | 8.34              | 197.0610, 224.1741, 225.0558, 269.0456                               | a        |
| 6             | 2'-Acetylverbascoside | -           | 1.05           | $C_{31}H_{38}O_{16}$ | 665.2145 | 5.69              | 503.1590, 179.0550                                                   | c        |
| 7             | Cistanoside F         | -           | 5.48           | $C_{21}H_{28}O_{13}$ | 487.147  | -2.63             | 179.0346, 161.0233, 135.0433                                         | c        |
| 8             | Cistanoside C         | -           | 10.01          | $C_{30}H_{38}O_{15}$ | 637.2137 | 0.15              | 175.0378, 193.0464, 461.1588                                         | c        |
| 9             | Rehmannitin           | -           | 11.31          | $C_{31}H_{40}O_{15}$ | 651.2278 | 2.52              | 193.0505, 475.169, 651.2278                                          | b        |
| 10            | Quercetin             | -           | 7.46           | $C_{15}H_{10}O_7$    | 301.0372 | -6.04             | 151.0066, 175.9871, 283.9995                                         | a        |

a. Flavonoids; b. Iridoids; c. Phenylethanolic glycosides.

Table S11. Parameters of ESP.

|             | Positive area (Ų) | Negative area (Ų) | Vmax<br>(kcal/mol) | Vmin<br>(kcal/mol) | MPI<br>(kcal/mol) |
|-------------|-------------------|-------------------|--------------------|--------------------|-------------------|
| Betaine     | 103.89            | 52.62             | 43.84              | -68.39             | 31.97             |
| Lactic acid | 73.4              | 49.78             | 48.55              | -41.42             | 16.32             |
| Hastatoside | 246.47            | 140.65            | 59.89              | -59.9              | 15.07             |
| Cornin      | 215.54            | 162.13            | 57.58              | -48.86             | 12.55             |
| DES         | 196.77            | 253.04            | 47.06              | -43.85             | 16.12             |
| MOF         | 386.52            | 289.41            | 33.5               | -21.48             | 10.57             |

Table S12. Comparison of various methods.

| No. | Extracted compounds                                            | Sample<br>Amount (g) | Type of solvent                                | Solvent<br>volume (mL) | Extracted method | Extracted time (min) | Analytical<br>method | Estimated energy consumption | Ref.      |
|-----|----------------------------------------------------------------|----------------------|------------------------------------------------|------------------------|------------------|----------------------|----------------------|------------------------------|-----------|
| 1   | Acteoside,<br>Isoverbascoside                                  | 0.3                  | Methanol                                       | 15 (total)             | Ultrasonic       | 150                  | HPLC                 | ~2.5-3.0<br>kWh/kg<br>(high) | [88]      |
| 2   | Hastatoside,<br>Cornin,<br>Acteoside                           | 0.1                  | Ethanol:<br>water =1:1                         | 1.0                    | Ultrasonic       | 10                   | UHPSFC               | ~2.5 kWh/kg<br>(moderate)    | [89]      |
| 3   | Hastatoside,<br>Cornin,<br>Acteoside                           | 100                  | Water                                          | Excess<br>water        | Boiled           | 55                   | HPLC                 | ~5.0 kWh/kg<br>(high)        | [90]      |
| 4   | Acteoside,<br>Geniposide                                       | 10                   | Water                                          | 200                    | Macerated        | 20                   | HPLC                 | ~0.2 kWh/kg<br>(very low)    | [91]      |
| 5   | Hastatoside,<br>Cornin,<br>Acteoside,<br>Luteolin,<br>Apigenin | 0.02                 | Water with<br>1.52 % DES<br>(Bet:Lac =<br>1:4) | 2.9                    | UA-MSPD          | 9.6                  | HPLC                 | ~0.8 kWh/kg<br>(low)         | This work |

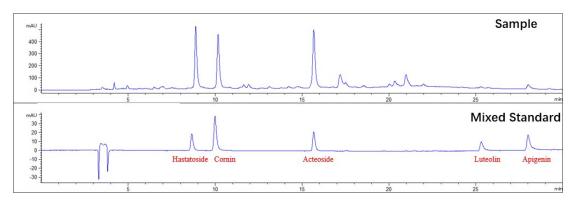
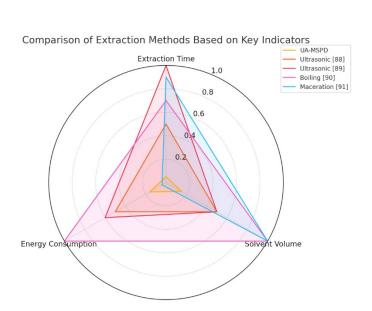




Fig. S1. Chromatogram of five target objects.

| ML Prediction for Extraction Yield     |         |  |  | × |  |  |
|----------------------------------------|---------|--|--|---|--|--|
| ML Prediction for Extraction Yield     |         |  |  |   |  |  |
| Adsorbent dosage (mg):                 | 10.0    |  |  |   |  |  |
| Grinding time (min):                   | 2.0     |  |  |   |  |  |
| DES dosage (%):                        | 1.0     |  |  |   |  |  |
| Extractant volume (mL):                | 2.5     |  |  |   |  |  |
| Extraction time (min):                 | 7.5     |  |  |   |  |  |
|                                        | Predict |  |  |   |  |  |
| Predicted Extraction Yield: 19.98 mg/g |         |  |  |   |  |  |

**Fig. S2.** The graphical user interface for predicting yield was based on the CatBoost model.



**Fig. S3.** Radar chart comparison of different extraction methods based on extraction time, solvent volume, and energy consumption.