Supporting Information

Radical Click Reaction to Construct C–S Bond via

Reductive Coupling of Phthalimide Derivatives

Jia-Fan Qiao, Tian-Zhang Wang, Peng-Hui Shen, Yu-Qiu Guan, Ya-Xin Yu, and Yu-Feng Liang*

School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China

Table of Contents

1. General remarks	S-2
2. General procedures	S-2
3. Optimization of conditions	S-3
4. Characterization data	S-9
5. Applications	S-35
6. Kinetic studies	S-41
7. Mechanistic studies	S-46
8. References	S-51
9. NMR spectra	S-52

1. General remarks

¹H NMR, ¹³C NMR data were obtained on AVANCE III Bruker 400 or 500 MHz nuclear resonance spectrometers unless otherwise noted. Chemical shifts (in ppm) were referenced to tetramethylsilane (TMS) ($\delta = 0.00$ ppm) in CDCl₃ or dimethyl sulfoxide ($\delta = 2.50$ ppm) in DMSO-d₆ as an internal standard. The data of ¹H NMR was reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = doublet) triplet, q = quartet, m = multiplet, p = pentet and br = broad), coupling constant (J values) in Hz and integration. ¹³C NMR spectra were obtained by the same NMR spectrometers and were calibrated with CDCl₃ (δ = 77.00 ppm) or DMSO-d₆ (δ = 39.50 ppm). Flash chromatography was performed using 300-400 mesh silica gel with the indicated eluent according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on pre-coated, glassbacked silica gel plates. Analysis of crude reaction mixture was done on an Agilent 7890 GC System with an Agilent 5975 Mass Selective Detector. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) unless otherwise noted. High-resolution mass spectral (HRMS) data were recorded on Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer using electrospray ionization (ESI) mode. Unless specified, all the materials and ligands are commercially available and used as received.

2. General procedures

2.1 General procedure for synthesis of *N*-hydroxyphthalimide Esters (NHPI esters)¹:

NHPI esters were prepared according to the previously reported procedures. A 100 mL round-bottom flask, equipped with a stir bar, was charged with carboxylic acid (1.0 equiv), *N*-hydroxyphthalimide(1.1 equiv), and DMAP (0.1 equiv).

Dichloromethane was added (0.2 M), and the mixture was stirred. DCC (1.1 equiv) was then added and the mixture allowed to stir until the acid was consumed (determined by TLC). The reaction mixture was filtered and rinsed with additional dichloromethane. The solvent was removed from the filtrate under reduced pressure, and the resulting residue was purified by flash chromatography to afford the desired NHPI ester.

2.2 General procedure for synthesis of xanthate-derived reagents²:

$$R-OH + CS_2 \xrightarrow{KO'Bu (1.0 equiv)}_{Et_2O, r.t., 3 h} R_O S_K \xrightarrow{O}_{MeCN, r.t., 15 h} O_{O S} R_{RO}$$

Xanthate-derived reagents were prepared according to literature methods. An ovendried 50 mL round-bottom flask equipped with a magnetic stir bar was charged sequentially with alcohol (2.0 mmol), KO'Bu (1.0 equiv), and dry Et₂O (20 mL). The reaction mixture was stirred at room temperature for 30 minutes, followed by the addition of CS₂ (1.5 equiv) and continued to be stirred for 3 hours at room temperature. The precipitate formed was collected by filtration, washed with Et₂O (2 × 10 mL), and dried in vacuo to afford the desired carbonodithioate salt product. No further purification is required and can be used directly for the next step.

In a 500 mL round-bottom flask, carbonodithioate salt (30.0 mmol) was suspended in MeCN (150 mL). To this suspension was added a solution of *N*-bromophthalimide (1.0 equiv) in MeCN (150 mL) *via* constant pressure funnel over 20 min. The reaction mixture was stirred for 15 h and the suspension was concentrated in vacuo. The resultant solid was purified by flash column chromatography to afford the desired xanthate-derived reagent.

2.3 General procedure for decarboxylative reductive cross-coupling of products 3:

N-hydroxyphthalimide esters **1** (0.20 mmol), *N*-ethylxanthylphthalimides **2** (0.40 mmol, 2.0 equiv), Mn power (22.0 mg, 0.40 mmol) were placed into an oven-dried 10 mL Schlenk tube that was equipped with a stirring bar. The vessel was evacuated and filled with N₂ (three times), The chlorotrimethylsilane (43.5 mg, 50.7 μ L, 0.40 mmol) was added, followed by the addition of DMF (0.50 mL) *via* syringe. The reaction mixture was stirred at room temperature for 2 min. After this time, the crude reaction mixture was diluted with ethyl acetate (5.0 mL) and washed with water (3.0 mL). The aqueous layer was then extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The solvent was removed under vacuum and the residue was purified by flask column chromatography to afford the pure products **3**.

3. Optimization of the reaction conditions

	h + $N-S$ O N-S O Mn (2.0 equiv) TMSCI (2.0 equiv) $DMA, r.t., 2 min, N_2$	
1a	2a	3aa
Entry	variation from standard conditions	yield /%
1	none	85%
2	Fe instead of Mn	n.d.
3	Zn instead of Mn	17%
4	B_2Pin_2 instead of Mn	n.d.
5 ^a	B_2Pin_2 instead of Mn	n.d.
6	TDAE instead of Mn	n.d.
7	$(Et_2O)_2MeSiH$ instead of Mn	n.d.
8	Et ₃ N instead of Mn	2%
9	Cu instead of Mn	n.d.
10	Mg instead of Mn	n.d.

3.1 Table S1. Optimization of the reductant

^aadd K₃PO₄ (2.0 equiv)

Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), reductant (2.0 equiv), TMSCl (2.0 equiv) and DMA (0.5 mL), at RT for 2 min under N_2 . Isolated yields.

	$\begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\$	Ph S O
	1a 2a	3aa
Entry	variation from standard conditions	yield /%
1	none	85%
2	TMSBr instead of TMSCI	72%
3	TESCI instead of TMSCI	55%
4	DMPSCI instead of TMSCI	57%
5	TBSCI instead of TMSCI	32%
6	TBDPSCI instead of TBDPCI	25%
7	Me ₂ SiCl ₂ instead of TMSCI	56%
8	<i>i</i> -Pr ₂ SiCl ₂ instead of TMSCI	14%
9	MeSiCl ₃ instead of TMSCI	49%
10	PhSiCl ₃ instead of TMSCI	53%

3.2 Table S2. Optimization of the additive

Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Mn (2.0 equiv), additive (2.0 equiv) and DMA (0.5 mL), at RT for 2 min under N_2 . Isolated yields.

	$\begin{array}{c} O \\ Ph \end{array} + \begin{array}{c} O \\ N-S \\ O \\ S \end{array} + \begin{array}{c} Mn (2.0 \text{ equiv}) \\ TMSCI (2.0 \text{ equiv}) \\ DMA, r.t., 2 \text{ min, } N_2 \end{array}$	Ph~_s ^S
1a	2a	3aa
Entry	variation from standard conditions	yield /%
1	none	85%
2	DMSO instead of DMA	46%
3	NMP instead of DMA	53%
4	MeCN instead of DMA	28%
5	DMF instead of DMA	51%
6	THF instead of DMA	14%
7	DCE instead of DMA	n.d.
8	Dioxane instead of DMA	n.d.
9	DMA (1.0 mL)	73%
10	DMA (2.0 mL)	71%

3.3 Table S3. Optimization of the solvent and concentration

Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Mn (2.0 equiv), TMSCl (2.0 equiv) and solvent, at RT for 2 min under N_2 . Isolated yields.

3.4 Table S4. Optimization of the ratio

	$N_{O} \rightarrow Ph$ +	₩ ₩-S ₩_S 	Mn (2.0 equiv) TMSCI (2.0 equiv) DMA, r.t., 2 min, N ₂	Ph s 0
	1a	2a		3aa
Entry	variati	on from standard co	onditions	yield /%
1		none		85%
2	2a (1.5	equiv) instead of 2a (2	2.0 equiv)	58%
3 2a (1.0 equiv) instead of 2a (2.0 equiv)				54%

Reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol), Mn (2.0 equiv), TMSCl (2.0 equiv) and DMA (0.5 mL), at RT for 2 min under N_2 . Isolated yields.

	$+$ (N, \downarrow)	Mn (2.0 equiv) TMSCI (2.0 equiv)	R.
1	2	DMA, r.t., 2 min	3
Entry	1	2	yield of 3
1			85% (standard)
2			4%
3			65%
4			trace
5			n.d.

3.5 Table S5. Optimization of the substrates

Reaction conditions: **1** (0.2 mmol), **2** (0.4 mmol), Mn (2.0 equiv), TMSCl (2.0 equiv) and DMA (0.5 mL), at RT for 2 min under N_2 . Isolated yields.

3.6 Table S6. Sensitivity assessment

	N ₀ +	Mn (2.0 equiv) TMSCI (2.0 equiv) TMSCI (2.0 equiv) DMA(0.5 mL), r.t., 2 m	$\stackrel{)}{\longrightarrow}$ Ph_	∽ _s ^S → _o へ
	1a	2a		3aa
Entry	experiment	variation from standard conditions	yield /%	deviation /%
1	standard	none	85%	-
2	Low concentration (-10%)	DMA (0.75 mL)	82%	-4%
3	High concentration (+10%)	DMA (0.25 mL)	83%	-2%
4	High H ₂ O	+H ₂ Ο (10 μL)	71%	-16%
5	High O ₂	air environment	68%	-20%
6	Low temperature	0 °C	80%	-6%
7	High temperature	50 °C	78%	-8%

Reaction conditions: **1** (0.2 mmol), **2** (0.4 mmol), Mn (2.0 equiv), TMSCl (2.0 equiv) and DMA, at T for 2 min under N_2 . Isolated yields.

3.7	Table S7.	Reaction	attempts	with	electroc	hemical	strategy

	+ N-S Ph O S O O O O O O O O O O O O O O O O O	PhSO
Entry	M(+) / M(-)	yield
1	CF(+) / CF(-)	n.d.
2	Zn(+) / Ni(-)	n.d.
3	Al(+) / Ni(-)	n.d.
4	CF(+) / Ni(-)	n.d.
5	CF(+) / Pt(-)	trace
6	Zn(+) / CF(-)	trace

Reaction conditions: undivided cell, constant current = 6 mA, **1a** (0.2 mmol), **2a** (0.4 mmol), TMSCl (2.0 equiv), TBAI (1.5 mmol) in DMA (3.0 mL), at RT for 12 h under N₂. GC yields.

4. Characterization data

O-Ethyl *S*-phenethyl carbonodithioate $(3aa)^3$: The representative procedure was followed using phenethyl 1,3-dioxoisoindoline-2-carboxylate (1a) (59.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3aa (38.3 mg, 85%) as yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.36 – 7.16 (m, 5H), 4.65 (q, J = 7.0 Hz, 2H), 3.35 (t, J = 8.0 Hz, 2H), 2.99 (t, J = 8.0 Hz, 2H), 1.43 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 214.7, 139.8, 128.6, 128.5, 126.6, 69.9, 37.0, 34.8, 13.8; MS (EI) m/z (relative intensity): 226 (M, 20), 104 (100), 91 (20).

O-Ethyl *S*-methyl carbonodithioate (3ba)⁴: The representative procedure was followed using methyl 1,3-dioxoisoindoline-2-carboxylate (1b) (41.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ba (19.7 mg, 72%) as yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 4.58 (q, *J* = 7.5 Hz, 2H), 2.48 (s, 3H), 1.35 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 215.7, 69.8, 18.8, 13.7; HRMS (ESI): m/z for C₄H₈OS₂ [M+ H]⁺ calcd 137.0089, found 137.0091.

S-Dodecyl *O*-ethyl carbonodithioate (3ca)⁵: The representative procedure was followed using dodecyl 1,3-dioxoisoindoline-2-carboxylate (1c) (71.8 mg, 0.20 mmol)

and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (**2a**) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded **3ca** (38.0 mg, 66%) as yellow oil; ¹**H NMR (400 MHz, CDCl3)** δ 4.58 (q, *J* = 7.2 Hz, 2H), 3.04 (t, *J* = 7.6 Hz, 2H), 1.61 (p, *J* = 7.6 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.31 – 1.18 (m, 18H), 0.81 (t, *J* = 6.4 Hz, 3H); ¹³**C NMR (100 MHz, CDCl3)** δ 215.2, 69.7, 35.9, 31.9, 29.6, 29.6, 29.5, 29.4, 29.3, 29.1, 28.9, 28.3, 22.7, 14.1, 13.8; **HRMS (ESI)**: m/z for C₁₅H₃₀OS₂ [M+Na]⁺ calcd 313.1630, found 313.1634.

S-Allyl *O*-ethyl carbonodithioate (3da)⁴: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl but-3-enoate (1d) (46.2 mg, 0.20 mmol) and S-(1,3-dioxoisoindolin-2-yl) O-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3da (28.1 mg, 87%) as yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 5.86 – 5.77 (m, 1H), 5.23 (d, J = 17.0 Hz, 1H), 5.10 (d, J = 10.0 Hz, 1H), 4.60 – 4.56 (m, 2H), 3.71 (d, J = 7.0 Hz, 2H), 1.36 (d, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 213.9, 131.7, 118.8, 70.0, 38.7, 13.8; HRMS (ESI): m/z for C₆H₁₀OS₂ [M+H]⁺ calcd 163.0246, found 163.0245.

S-(**But-3-yn-1-yl**) *O*-ethyl carbonodithioate (3ea): The representative procedure was followed using but-3-yn-1-yl 1,3-dioxoisoindoline-2-carboxylate (1e) (48.6 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ea (30.3 mg, 87%) as yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 4.59 (q, *J* = 7.0 Hz, 2H), 3.22 (t, *J* = 7.0 Hz, 2H), 2.58 – 2.52 (m, 2H), 1.99 – 1.96 (m, 1H), 1.36 (t, *J* = 7.0 Hz, 3H); S-10

¹³C NMR (125 MHz, CDCl₃) δ 214.0, 81.8, 70.1, 69.8, 34.4, 18.5, 13.7; HRMS (ESI): m/z for C₇H₁₀OS₂ [M+Na]⁺ calcd 197.0065, found 197.0061.

S-(4-Chlorobutyl) *O*-ethyl carbonodithioate (3fa): The representative procedure was followed using 4-chlorobutyl 1,3-dioxoisoindoline-2-carboxylate (1f) (56.2 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3fa (31.2 mg, 73%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.58 (q, *J* = 7.2 Hz, 2H), 3.50 (t, *J* = 6.0 Hz, 2H), 3.09 (t, *J* = 6.8 Hz, 2H), 1.89 – 1.72 (m, 4H), 1.36 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.7, 69.9, 44.3, 35.0, 31.5, 25.8, 13.8; HRMS (ESI): m/z for C₇H₁₃ClOS₂ [M+Na] ⁺ calcd 234.9989, found 234.9992.

O-Ethyl *S*-(3-methoxypropyl) carbonodithioate (3ga): The representative procedure was followed using 3-methoxypropyl 1,3-dioxoisoindoline-2-carboxylate (1g) (52.6 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 100:1) yielded 3ga (31.2 mg, 71%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.58 (q, *J* = 7.2 Hz, 2H), 3.39 (t, *J* = 6.4 Hz, 2H), 3.27 (s, 3H), 3.13 (t, *J* = 7.2 Hz, 2H), 1.90 (p, *J* = 6.4 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.8, 70.9, 69.8, 58.6, 32.6, 28.4, 13.7; HRMS (ESI): m/z for C₇H₁₄O₂S₂ [M+Na]⁺ calcd 217.0327, found 217.0323.

S-[4-(Benzyloxy)butyl] *O*-ethyl carbonodithioate (3ha): The representative procedure was followed using 4-(benzyloxy)butyl 1,3-dioxoisoindoline-2-carboxylate (1h) (70.6 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 100:1) yielded 3ha (50.7 mg, 89%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.14 (m, 5H), 4.55 (q, *J* = 7.2 Hz, 2H), 4.41 (s, 2H), 3.41 (t, *J* = 6.4 Hz, 2H), 3.06 (t, *J* = 7.2 Hz, 2H), 1.80 – 1.58 (m, 4H), 1.32 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.9, 138.4, 128.3, 127.5, 127.5, 72.8, 69.7, 69.5, 35.6, 28.8, 25.3, 13.7; HRMS (ESI): m/z for C₁₄H₂₀O₂S₂ [M+Na]⁺ calcd 307.0797, found 307.0794.

Ethyl 4-[(ethoxycarbonothioyl)thio] butanoate (3ia): The representative procedure was followed using 4-ethoxy-4-oxobutyl 1,3-dioxoisoindoline-2-carboxylate (**1i**) (52.6 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (**2a**) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded **3ia** (39.0 mg, 82%) as yellow oil; ¹H NMR (**500 MHz, CDCl**₃) δ 4.64 (q, *J* = 7.0 Hz, 2H), 4.13 (q, *J* = 7.0 Hz, 2H), 3.17 (t, *J* = 7.0 Hz, 2H), 2.42 (t, *J* = 7.5 Hz, 2H), 2.02 (p, *J* = 7.5 Hz, 2H), 1.42 (t, *J* = 7.0 Hz, 3H), 1.26 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (**125 MHz, CDCl**₃) δ 214.5, 172.7, 70.0, 60.5, 34.9, 33.0, 23.9, 14.2, 13.8; HRMS (ESI): m/z for C₉H₁₆O₃S₂ [M+Na] ⁺ calcd 259.0433, found 259.0437.

S-(2-Cyanomethyl) *O*-ethyl carbonodithioate (3ja): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 2-cyanoacetate (1j) (46.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 5:1) yielded 3ja (20.3 mg, 63%) as yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 4.65 (q, *J* = 7.0 Hz, 2H), 3.83 (s, 2H), 1.40 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 208.8, 115.2, 71.4, 21.2, 13.5; HRMS (ESI): m/z for C₅H₇NOS₂ [M+Na] ⁺ calcd 183.9861, found 183.9864.

O-Ethyl *S*-(3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl) carbonodithioate (3ka): The representative procedure was followed using 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)propyl 1,3-dioxoisoindoline-2-carboxylate (1k) (71.8 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 3ka (45.9 mg, 79%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.57 (q, *J* = 7.2 Hz, 2H), 3.06 (t, *J* = 7.6 Hz, 2H), 1.73 (p, *J* = 7.6 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.18 (s, 12H), 0.83 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 215.2, 83.1, 69.7, 38.0, 24.8, 23.1, 13.8; ¹¹B NMR (160 MHz, CDCl₃) δ 33.84; HRMS (ESI): m/z for C₁₂H₂₃BO₃S₂ [M+Na]⁺ calcd 313.1074, found 313.1071.

S-[(1,3-Dioxolan-2-yl)methyl] *O*-ethyl carbonodithioate (3la): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 2-(1,3-dioxolan-2-yl)acetate (1l) (55.5 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 50:1) yielded 3la (24.4 mg, 59%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 5.10 (t, *J* = 4.4 Hz, 1H), 4.59 (q, *J* = 7.2 Hz, 2H), 3.98 – 3.93 (m, 2H), 3.86 – 3.82 (m, 2H), 3.38 (d, *J* = 4.4 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.1, 101.8, 70.4, 65.4, 39.0, 13.8; HRMS (ESI): m/z for C₇H₁₂O₃S₂ [M+Na]⁺ calcd 231.0120, found 231.0124.

S-[5-(1,3-Dioxoisoindolin-2-yl)pentyl] *O*-ethyl carbonodithioate (3ma): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 6-(1,3-dioxoisoindolin-2-yl)hexanoate (1m) (81.3 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 10:1) yielded **3ma** (57.1 mg, 85%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.74 (m, 2H), 7.66 – 7.62 (m, 2H), 4.56 (q, *J* = 7.2 Hz, 2H), 3.61 (t, *J* = 7.2 Hz, 2H), 3.03 (t, *J* = 7.2 Hz, 2H), 1.72 – 1.58 (m, 4H), 1.42 – 1.35 (m, 2H), 1.33 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.8, 168.3, 133.8, 132.0, 123.1, 69.7, 37.6, 35.5, 28.0, 27.9, 26.0, 13.7; HRMS (ESI): m/z for C₁₆H₁₉NO₃S₂ [M+Na]⁺ calcd 360.0699, found 360.0702.

S-(2-Cyclohexylethyl) *O*-ethyl carbonodithioate (3na): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-cyclohexylpropanoate (1n) (60.3 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded **3na** (36.7 mg, 79%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.57 (q, *J* = 7.2 Hz, 2H), 3.06 (t, *J* = 7.6 Hz, 2H), 1.69 – 1.57 (m, 5H), 1.54 – 1.45 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.31 – 1.03 (m, 4H), 0.92 – 0.76 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 215.2, 69.7, 37.0, 35.7, 33.6, 32.9, 26.4, 26.1, 13.8; HRMS (ESI): m/z for C₁₁H₂₀OS₂ [M+Na] ⁺ calcd 255.0848, found 255.0845.

S-(3,3-Dimethylbutyl) *O*-ethyl carbonodithioate (3oa): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 4,4-dimethylpentanoate (1o) (55.1 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3oa (34.5 mg, 84%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.58 (q, *J* = 7.2 Hz, 2H), 3.06 – 2.95 (m, 2H), 1.54 – 1.44 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H), 0.89 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 215.1, 69.7, 42.4, 31.8, 30.9, 29.1, 13.8; HRMS (ESI): m/z for C₉H₁₈OS₂ [M+Na]⁺ calcd 229.0691, found 229.0694.

O-Ethyl S-(4-methoxyphenethyl) carbonodithioate $(3pa)^3$: The representative

procedure was followed using 1,3-dioxoisoindolin-2-yl 3-(4-methoxyphenyl) propanoate (**1p**) (65.1 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (**2a**) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded **3pa** (40.6 mg, 79%) as yellow oil; ¹H NMR (**400 MHz**, **CDCl**₃) δ 7.09 (d, *J* = 8.4 Hz, 2H), 6.78 (d, *J* = 8.4 Hz, 2H), 4.58 (q, *J* = 7.2 Hz, 2H), 3.72 (s, 3H), 3.25 (t, *J* = 7.6 Hz, 2H), 2.85 (t, *J* = 7.6 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (**100 MHz, CDCl**₃) δ 214.8, 158.3, 131.9, 129.5, 113.9, 69.9, 55.2, 37.3, 33.9, 13.8; HRMS (ESI): m/z for C₁₂H₁₆O₂S₂ [M+Na]⁺ calcd 279.0484, found 279.0480.

O-Ethyl *S*-(4-nitrophenethyl) carbonodithioate (3qa)⁸: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-(4-nitrophenyl) propanoate (1q) (68.1 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 5:1) yielded 3qa (41.7 mg, 77%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.8 Hz, 2H), 7.34 (d, *J* = 8.8 Hz, 2H), 4.58 (q, *J* = 7.2 Hz, 2H), 3.31 (t, *J* = 7.2 Hz, 2H), 3.04 (t, *J* = 7.2 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.1, 147.3, 146.7, 129.5, 123.7, 70.2, 36.2, 34.6, 13.7; HRMS (ESI): m/z for C₁₁H₁₃NO₃S₂ [M+Na]⁺ calcd 294.0229, found 294.0231.

S-(2-Bromophenethyl) *O*-ethyl carbonodithioate (3ra): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-(2-bromophenyl) propanoate (1r) (74.8 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl

carbonodithioate (**2a**) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded **3ra** (44.0 mg, 72%) as yellow oil; ¹H NMR (**400 MHz**, **CDCl₃**) δ 7.49 – 7.41 (m, 1H), 7.25 – 7.12 (m, 2H), 7.03 – 6.99 (m, 1H), 4.56 (q, *J* = 7.2 Hz, 2H), 3.33 – 3.24 (m, 2H), 3.06 – 3.03 (m, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (**100 MHz, CDCl₃**) δ 214.3, 138.9, 132.8, 130.9, 128.3, 127.5, 124.3, 69.9, 35.1, 35.1, 13.8; HRMS (ESI): m/z for C₁₁H₁₃⁷⁹BrOS₂ [M+Na]⁺ calcd 326.9483, found 326.9480.

O-Ethyl *S*-(4-fluorobenzyl) carbonodithioate (3sa) ⁴: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 2-(4-fluorophenyl) acetate (1s) (59.8 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3sa (36.4 mg, 79%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.19 (m, 2H), 6.95 – 6.86 (m, 2H), 4.57 (q, *J* = 7.2 Hz, 2H), 4.25 (s, 2H), 1.33 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.7, 162.1 (d, ¹*J* = 244.9 Hz), 131.5 (d, ⁴*J* = 3.3 Hz), 130.6 (d, ³*J* = 8.0 Hz), 115.4 (d, ²*J* = 21.2 Hz), 70.1, 39.6, 13.7; HRMS (ESI): m/z for C₁₀H₁₁FOS₂ [M+Na]⁺ calcd 253.0128, found 253.0125.

S-(4-Chlorobenzyl) *O*-ethyl carbonodithioate (3ta)³: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 2-(4-chlorophenyl) acetate (1t) (63.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ta (41.7 mg, 85%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.22 – 7.18 (m, 4H), 4.56 (q,

J = 7.2 Hz, 2H), 4.24 (s, 2H), 1.33 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.5, 134.4, 133.3, 130.3, 128.7, 70.2, 39.6, 13.7; HRMS (ESI): m/z for C₁₀H₁₁ClOS₂ [M+Na]⁺ calcd 268.9832, found 268.9830.

S-(4-Bromobenzyl) *O*-ethyl carbonodithioate (3ua)⁴: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 2-(4-bromophenyl) acetate (1u) (71.8 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ua (44.0 mg, 76%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 4.57 (q, *J* = 7.2 Hz, 2H), 4.23 (s, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.5, 134.9, 131.7, 130.7, 121.4, 70.2, 39.6, 13.8; HRMS (ESI): m/z for C₁₀H₁₁⁷⁹BrOS₂ [M+Na]⁺ calcd 312.9327, found 312.9324.

O-Ethyl *S*-(2-(thiophen-3-yl)ethyl) carbonodithioate (3va)³: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-(thiophen-3-yl)propanoate (1v) (60.3 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3va (26.8 mg, 58%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.21 – 7.19 (m, 1H), 6.97 (d, *J* = 2.8 Hz, 1H), 6.93 – 6.92 (m, 1H), 4.58 (q, *J* = 7.2 Hz, 2H), 3.29 (t, *J* = 7.6 Hz, 2H), 2.95 (t, *J* = 7.6 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.7, 140.0, 128.0, 125.8, 121.4, 69.9, 36.4, 29.3, 13.8; HRMS (ESI): m/z for C₉H₁₂OS₃ [M+Na]⁺ calcd 254.9942, found 254.9934.

S-Cyclohexyl *O*-ethyl carbonodithioate (**3wa**)³: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl cyclohexanecarboxylate (**1w**) (54.6 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (**2a**) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded **3wa** (27.7 mg, 68%) as yellow oil;¹H NMR (**400 MHz, CDCl**₃) δ 4.57 (q, *J* = 7.2 Hz, 2H), 3.62 – 3.56 (m, 1H), 2.04 – 1.95 (m, 2H), 1.69 – 1.65 (m, 2H), 1.58 – 1.37 (m, 4H), 1.35 (t, *J* = 7.2 Hz, 3H), 1.28 – 1.16 (m, 2H);¹³C NMR (**100 MHz, CDCl**₃) δ 214.5, 69.4, 48.7, 32.3, 25.9, 25.5, 13.8; HRMS (ESI): m/z for C₉H₁₆OS₂ [M+Na]⁺ calcd 227.0535, found 227.0532.

S-(**Bicyclo**[2.2.1]heptan-2-yl) *O*-ethyl carbonodithioate (3xa)⁴: The representative procedure was followed using 11,3-dioxoisoindolin-2-yl bicyclo[2.2.1]heptane-2-carboxylate (1x) (57.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3xa (29.8 mg, 69%) as yellow oil;¹H NMR (400 MHz, CDCl₃) δ 4.56 (q, J = 7.2 Hz, 2H), 3.48 – 3.44 (m, 1H), 2.34 – 2.28 (m, 2H), 1.79 – 1.73 (m, 1H), 1.64 – 1.47 (m, 2H), 1.44 – 1.37 (m, 2H), 1.35 (t, J = 7.2 Hz, 3H), 1.23 – 1.09 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 215.0, 69.3, 50.8, 42.8, 37.1, 36.4, 36.2, 28.9, 28.4, 13.8; HRMS (ESI): m/z for C₁₀H₁₆OS₂ [M+Na]⁺ calcd 239.0540, found 239.1271.

S-(2,3-Dihydro-1H-inden-2-yl) *O*-ethyl carbonodithioate (3ya)⁶: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 2,3-dihydro-1H-indene-2-carboxylate (1y) (61.4 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ya (29.6 mg, 62%) as yellow oil;¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.07 (m, 4H), 4.59 (q, *J* = 7.2 Hz, 2H), 4.39 – 4.32 (m, 1H), 3.48 – 3.42 (m, 2H), 2.99 – 2.94 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.6, 141.1, 126.8, 124.4, 69.7, 47.5, 39.2, 13.8; HRMS (ESI): m/z for C₁₂H₁₄OS₂ [M+Na]⁺ calcd 261.0378, found 261.0374.

S-(Cyclohex-3-en-1-yl) *O*-ethyl carbonodithioate (3za): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl cyclohex-3-ene-1-carboxylate (1z) (54.2 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3za (24.2 mg, 60%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 5.69 – 5.54 (m, 2H), 4.58 (q, *J* = 7.2 Hz, 2H), 3.91 – 3.79 (m, 1H), 2.50 – 2.43 (m, 1H), 2.15 – 2.02 (m, 4H), 1.76 – 1.67 (m, 1H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.5, 127.0, 125.0, 69.5, 45.0, 30.64, 27.9, 24.5, 13.8; HRMS (ESI): m/z for C₉H₁₄OS₂ [M+Na]⁺ calcd 225.0378, found 225.0375.

O-Ethyl *S*-(4-oxocyclohexyl) carbonodithioate (3a'a): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 4-oxocyclohexane-1-carboxylate (1a') (57.4 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 3a'a (28.6 mg, 66%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.61 (q, *J* = 7.2 Hz, 2H), 4.02 – 3.96 (m, 1H), 2.49 – 2.38 (m, 4H), 2.37 – 2.29 (m, 2H), 2.01 – 1.91 (m, 2H), 1.37 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.2, 209.2, 70.0, 46.1, 40.1, 31.4, 13.8; HRMS (ESI): m/z for C₉H₁₄O₂S₂ [M+Na]⁺ calcd 241.0327, found 241.0330.

S-(4,4-Difluorocyclohexyl) *O*-ethyl carbonodithioate (3b'a): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 4,4-difluorocyclohexane-1-carboxylate (1b') (61.8 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3b'a (28.7 mg, 60%) as yellow oil;¹H NMR (400 MHz, CDCl₃) δ 4.57 (q, *J* = 7.2 Hz, 2H), 3.70 – 3.63 (m, 1H), 2.12 – 2.00 (m, 4H), 1.92 – 1.72 (m, 4H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.5, 69.9, 45.9, 32.9 (t, ²*J* = 24.6 Hz), 28.0 (t, ³*J* = 4.9 Hz), 13.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -95.98, -98.86; HRMS (ESI): m/z for C₉H₁₄F₂OS₂ [M+Na]⁺ calcd 263.0346, found 263.0344.

O-Ethyl *S*-(tetrahydro-2H-pyran-4-yl) carbonodithioate (3c'a)⁷: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl tetrahydro-2H-

pyran-4-carboxylate (1c') (55.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 50:1) yielded 3c'a (23.7 mg, 58%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.58 (q, *J* = 7.2 Hz, 2H), 3.90 – 3.85 (m, 2H), 3.83 – 3.75 (m, 1H), 3.53 – 3.45 (m, 2H), 2.04 – 1.96 (m, 2H), 1.74 – 1.64 (m, 2H), 1.35 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.5, 69.7, 67.3, 45.3, 32.0, 13.8; MS (EI) *m/z* (relative intensity): 206 (M, 20), 123 (25), 84 (80), 55 (100).

O-Ethyl *S*-(1-methylcyclohexyl) carbonodithioate $(3d'a)^7$: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 1-methylcyclohexane-1-carboxylate (1d') (57.4 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3d'a (29.0 mg, 67%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 4.60 (q, *J* = 7.2 Hz, 2H), 2.02 – 1.95 (m, 2H), 1.58 – 1.55 (m, 2H), 1.52 (s, 3H), 1.52 – 1.47 (m, 2H), 1.47 – 1.45 (s, 2H), 1.45 – 1.41 (m, 2H), 1.39 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.4, 69.2, 56.6, 37.6, 25.6, 22.4, 13.7; MS (EI) *m/z* (relative intensity): 218 (M, 20), 123 (30), 97 (100), 55 (90).

Methyl 4-[(ethoxycarbonothioyl)thio] bicyclo[2.2.2]octane-1-carboxylate (**3e'a**)⁷: The representative procedure was followed using 1-(1,3-dioxoisoindolin-2-yl) 4methyl bicyclo[2.2.2]octane-1,4-dicarboxylate (**1e'**) (71.4 mg, 0.20 mmol) and *S*-(1,3dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (**2a**) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded **3e'a** (34.5 mg, 60%) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 4.59 (q, *J* = 7.2 Hz, 2H), 3.58 (s, 3H), 2.00 – 1.96 (m, 6H), 1.85 – 1.81 (m, 6H), 1.39 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.3, 177.2, 69.3, 51.8, 51.0, 37.8, 30.1, 28.9, 13.7; HRMS (ESI): m/z for C₁₃H₂₁O₃S₂ [M+H]⁺ calcd 289.0932, found 289.0931.

S-(Adamantan-1-yl) *O*-ethyl carbonodithioate $(3f'a)^6$: The representative procedure was followed using 1,3-dioxoisoindolin-2-yl adamantane-1-carboxylate (1f') (65.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3f'a (29.5 mg, 58%) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 4.59 (q, *J* = 7.2 Hz, 2H), 2.07 (d, *J* = 2.4 Hz, 6H), 2.01 (s, 3H), 1.65 (s, 6H), 1.42 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.3, 69.2, 54.5, 41.8, 36.2, 29.8, 13.7; HRMS (ESI): m/z for C₁₃H₂₁OS₂ [M+H]⁺ calcd 257.1028, found 257.1036.

S-(-3-Bromoadamantan-1-yl) *O*-ethyl carbonodithioate (3g'a): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-bromoadamantane-1-carboxylate (1g') (80.6 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3g'a (45.3 mg, 68%) as white solid; ¹H NMR (400 MHz, CDCl₃) δ 4.61 (q, J = 7.2 Hz, 2H), 2.69 (s, 2H), 2.24 (s, 4H), 2.21 – 2.18 (m, 2H), 2.10 – 2.06 (m, 2H), 2.00 – 1.97 (m, 2H), 1.64 (s, 2H), 1.43 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 212.5, 69.4, 63.0, 55.2, 52.4, 47.7, 39.9, 34.2, 33.0, 13.7; HRMS (ESI): m/z for C₁₃H₁₉⁷⁹BrOS₂ [M+Na]⁺ calcd 356.9953, found 356.9957.

S-(2-(((Dodecylthio) carbonothioyl) thio) propan-2-yl) *O*-ethyl carbonodithioate (3h'a): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 2-(((dodecylthio)carbonothioyl)thio)-2-methylpropanoate (1h') (101.8 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3h'a (40.0 mg, 45%) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 4.72 (q, *J* = 7.2 Hz, 2H), 2.87 – 2.78 (m, 2H), 1.69 – 1.64 (m, 2H), 1.57 (s, 6H), 1.48 (t, *J* = 7.2 Hz, 3H), 1.45 – 1.35 (m, 6H), 1.33 – 1.26 (m, 12H), 0.88 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 220.1, 213.4, 71.3, 39.3, 31.9, 29.7, 29.6, 29.6, 29.6, 29.5, 29.3, 29.2, 29.1, 28.4, 22.7, 14.1, 13.7; HRMS (ESI): m/z for C₁₉H₃₆OS₅ [M+Na]⁺ calcd 463.1262, found 463.1266.

O-Methyl *S*-phenethyl carbonodithioate (3ab): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-phenylpropanoate (1a) (59.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-methyl carbonodithioate (2b) (101.2 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ab (36.8 mg, 87%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.20 (m, 2H), 7.18 – 7.13 (m, 3H), 4.10 (s, 3H), 3.30 (t, *J* = 7.6 Hz, 2H), 2.92 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 215.6, 140.0, 139.7, 128.6, 128.5, 126.6, 60.1, 37.3, 34.7; HRMS (ESI): m/z for C₁₀H₁₂OS₂ [M+Na]⁺ calcd 235.0222, found 235.0220.

S-Phenethyl O-(3-phenylpropyl) carbonodithioate (3ac): The representative S-24

procedure was followed using 1,3-dioxoisoindolin-2-yl 3-phenylpropanoate (**1a**) (59.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-(3-phenylpropyl) carbonodithioate (**2c**) (142.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded **3ac** (48.6 mg, 77%) as yellow oil; ¹H NMR (**400 MHz, CDCl**₃) δ 7.27 – 7.10 (m, 10H), 4.53 (t, *J* = 6.4 Hz, 2H), 3.28 (t, *J* = 7.6 Hz, 2H), 2.92 (t, *J* = 6.4 Hz, 2H), 2.67 (t, *J* = 7.6 Hz, 2H), 2.05 (p, *J* = 6.6 Hz, 2H); ¹³C NMR (**100 MHz, CDCl**₃) δ 214.7, 140.8, 139.7, 128.6, 128.5, 128.4, 126.6, 126.1, 73.1, 37.1, 34.8, 32.1, 29.8; HRMS (ESI): m/z for C₁₈H₂₀OS₂ [M+Na]⁺ calcd 339.0848, found 339.0852.

O-(Pent-4-en-1-yl) *S*-phenethyl carbonodithioate (3ad): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-phenylpropanoate (1a) (59.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-(pent-4-en-1-yl) carbonodithioate (2d) (122.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ad (37.3 mg, 70%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 2H), 7.18 – 7.16 (m, 3H), 5.80 – 5.70 (m, 1H), 5.03 – 4.92 (m, 2H), 4.53 (t, J = 6.6 Hz, 2H), 3.31 – 3.26 (m, 2H), 2.94 – 2.90 (m, 2H), 2.15 – 2.09 (m, 2H), 1.84 (p, J = 6.7 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 214.8, 139.7, 137.1, 128.6, 128.6, 126.6, 115.6, 73.3, 37.1, 34.9, 30.0, 27.4; HRMS (ESI): m/z for C₁₄H₁₈OS₂ [M+Na]⁺ calcd 289.0691, found 289.0690.

O-(**Pent-4-yn-1-yl**) *S*-**phenethyl carbonodithioate** (**3ae**): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-phenylpropanoate (**1a**) (59.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-(pent-4-yn-1-yl) carbonodithioate

(2e) (122.0 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ae (35.3 mg, 67%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.22 (m, 2H), 7.18 – 7.13 (m, 3H), 4.61 (t, *J* = 6.4 Hz, 2H), 3.31 – 3.26 (m, 2H), 2.94 – 2.88 (m, 2H), 2.29 – 2.24 (m, 2H), 1.99 – 1.89 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.7, 139.6, 128.5, 128.5, 126.6, 82.6, 72.1, 69.3, 37.2, 34.7, 27.2, 15.3; HRMS (ESI): m/z for C₁₄H₁₆OS₂ [M+Na]⁺ calcd 287.0535, found 287.0530.

O-[3-(Methylthio)propyl] *S*-phenethyl carbonodithioate (3af): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-phenylpropanoate (1a) (59.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-(3-(methylthio)propyl) carbonodithioate (2f) (130.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 200:1) yielded 3af (47.2 mg, 82%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.21 (m, 2H), 7.16 (d, *J* = 7.2 Hz, 3H), 4.62 (t, *J* = 6.3 Hz, 2H), 3.31 – 3.26 (m, 2H), 2.94 – 2.89 (m, 2H), 2.53 (t, *J* = 7.2 Hz, 2H), 2.05 – 1.98 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 214.6, 139.6, 128.5, 128.5, 126.6, 72.2, 37.1, 34.7, 30.50, 27.8, 15.5; HRMS (ESI): m/z for C₁₃H₁₈OS₃ [M+Na]⁺ calcd 309.0412, found 309.0414.

S-Phenethyl *O*-[2-(thiophen-2-yl)ethyl] carbonodithioate (3ag): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-phenylpropanoate (1a) (59.0 mg, 0.20 mmol) and S-(1,3-dioxoisoindolin-2-yl) *O*-(2-(thiophen-2-yl)ethyl) carbonodithioate (2g) (139.6 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ag (43.8 mg, 71%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.24 (t, *J* = 7.6 Hz, 2H), 7.16 (t, *J* = 6.8 Hz, 3H), 7.10 (d, *J* = 4.8 Hz, 1H),

6.89 – 6.86 (m, 1H), 6.82 (d, J = 3.2 Hz, 1H), 4.73 (t, J = 6.8 Hz, 2H), 3.30 – 3.23 (m, 4H), 2.93 – 2.86 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 214.5, 139.7, 139.2, 128.6, 128.6, 127.0, 126.6, 125.8, 124.1, 73.4, 37.1, 34.7, 28.8; HRMS (ESI): m/z for C₁₅H₁₆OS₃ [M+Na]⁺ calcd 331.0255, found 331.0258.

O-Isopropyl *S*-phenethyl carbonodithioate (3ah): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-phenylpropanoate (1a) (59.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-isopropyl carbonodithioate (2h) (112.4 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ah (39.6 mg, 82%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.21 (m, 2H), 7.16 (d, J = 7.7 Hz, 3H), 5.71 (hept, J = 6.4 Hz, 1H), 3.27 – 3.22 (m, 2H), 2.92 – 2.88 (m, 2H), 1.32 (d, J = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 213.8, 139.8, 128.5, 128.5, 126.5, 77.7, 36.8, 34.9, 21.3; HRMS (ESI): m/z for C₁₂H₁₆OS₂ [M+Na]⁺ calcd 263.0535, found 263.0534.

O-(Pent-4-yn-1-yl) *S*-phenethyl carbonodithioate (3ai): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 3-phenylpropanoate (1a) (59.0 mg, 0.20 mmol) and *O*-cyclohexyl *S*-(1,3-dioxoisoindolin-2-yl) carbonodithioate (2i) (128.4 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 3ai (36.0 mg, 64%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.21 (m, 2H), 7.17 (d, *J* = 7.2 Hz, 3H), 5.54 – 5.48 (m, 1H), 3.28 – 3.23 (m, 2H), 2.94 – 2.89 (m, 2H), 1.97 – 1.89 (m, 2H), 1.71 – 1.67 (m, 2H), 1.58 – 1.47 (m, 3H), 1.41 – 1.23 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 213.7, 139.8, 128.6, 128.53, 126.6, 82.4, 36.8, 35.0, 30.9, 25.2, 23.6; HRMS (ESI): m/z for C₁₅H₂₀OS₂ [M+Na]⁺ calcd

S-[5-(2,5-Dimethylphenoxy)-2-methylpentan-2-yl] *O*-ethyl carbonodithioate (7aa): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 5-(2,5dimethylphenoxy)-2,2-dimethylpentanoate (7a) (79.0 mg, 0.20 mmol) and *S*-(1,3dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 50:1) yielded 7aa (35.4 mg, 54%) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 6.97 – 6.88 (m, 1H), 6.63 – 6.49 (m, 2H), 4.68 – 4.49 (m, 2H), 3.92 – 3.82 (m, 2H), 2.28 – 2.20 (m, 3H), 2.13 – 2.06 (m, 3H), 1.94 – 1.78 (m, 4H), 1.46 – 1.35 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 213.9, 156.8, 136.5, 130.3, 123.4, 120.7, 111.9, 69.3, 67.7, 55.0, 38.1, 27.9, 25.2, 21.4, 15.7, 13.7; HRMS (ESI): m/z for C₁₇H₂₆O₂S₂ [M+Na]⁺ calcd 349.1266, found 349.1264.

O-Ethyl *S*-(7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenant hren -1-yl) carbonodithioate (7ba): The representative procedure was followed using 1,3-dioxoisoindolin-2-yl 7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,4b,5,6,10,10a-decahydrophenanthrene-1-carboxylate (7b) (89.4 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether) yielded 7ba (34.2 mg, 45%) as yellow

solid; ¹H NMR (400 MHz, CDCl₃) δ 5.68 (s, 1H), 5.33 – 5.29 (m, 1H), 4.57 – 4.54 (m, 2H), 2.19 – 2.06 (m, 4H), 1.99 – 1.98 (m, 4H), 1.84 – 1.68 (m, 4H), 1.50 – 1.48 (m, 3H), 1.38 – 1.35 (m, 6H), 0.92 (d, *J* = 3.2 Hz, 3H), 0.91 (d, *J* = 3.2 Hz, 3H), 0.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.2, 145.3, 135.2, 122.3, 120.7, 69.3, 61.9, 51.0, 46.6, 39.3, 38.1, 36.9, 34.8, 27.4, 25.0, 22.6, 21.4, 21.0, 20.8, 19.4, 14.2, 13.8; HRMS (ESI): m/z for C₂₂H₃₄OS₂ [M+Na]⁺ calcd 401.1943, found 401.1940.

5-[(Ethoxycarbonothioyl)thio]pentyl benzo[d][1,3]dioxole-5-carboxylate (7ca): The representative procedure was followed using 6-((1,3-dioxoisoindolin-2-yl)oxy)-6oxohexyl benzo[d][1,3]dioxole-5-carboxylate (7c) (85.0 mg, 0.20 mmol) and *S*-(1,3dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 7ca (33.0 mg, 46%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.4 Hz, 1H), 7.38 (s, 1H), 6.76 (d, *J* = 8.4 Hz, 1H), 5.96 (s, 2H), 4.57 (q, *J* = 7.2 Hz, 2H), 4.21 (t, *J* = 6.4 Hz, 2H), 3.07 (t, *J* = 7.2 Hz, 2H), 1.70 (q, *J* = 8.0 Hz, 4H), 1.51 – 1.46 (m, 2H), 1.34 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.9, 165.9, 151.5, 147.6, 125.2, 124.3, 109.4, 107.9, 101.7, 69.8, 64.5, 35.6, 28.2, 28.0, 25.3, 13.7; HRMS (ESI): m/z for C₁₆H₂₀O₅S₂ [M+Na]⁺ calcd 379.0644, found 379.0640.

5-[(Ethoxycarbonothioyl)thio]pentyl 2-((3-(trifluoromethyl)phenyl) amino) benzo

ate (7da): The representative procedure was followed using 6-((1,3-dioxoisoindolin-2-yl)oxy)-6-oxohexyl 2-((3-(trifluoromethyl)phenyl)amino)benzoate (7d) (108.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 7da (44.7 mg, 47%) as yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 9.55 (s, 1H), 7.92 – 7.90 (m, 1H), 7.41 (s, 1H), 7.35 – 7.27 (m, 3H), 7.21 – 7.20 (m, 2H), 6.80 – 6.73 (m, 1H), 4.56 (q, *J* = 7.0 Hz, 2H), 4.24 (t, *J* = 6.5 Hz, 2H), 3.10 – 3.06 (m, 2H), 1.78 – 1.68 (m, 4H), 1.55 – 1.49 (m, 2H), 1.33 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 214.9, 168.3, 146.7, 141.6, 134.2, 131.8 (q, ²*J* = 32.0 Hz), 131.7, 129.8, 124.4, 121.2 (q, ¹*J* = 270.6 Hz), 119.4 (q, ⁴*J* = 3.9 Hz), 118.3, 117.9 (q, ⁴*J* = 3.9 Hz), 114.3, 113.1, 69.8, 64.5, 35.6, 28.2, 28.1, 25.4, 13.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -62.79; HRMS (ESI): m/z for C₂₂H₂₄F₃NO₃S₂ [M+Na]⁺ calcd 494.1042, found 494.1040.

5-[(Ethoxycarbonothioyl)thio]pentyl 2-((3,5,6-trichloropyridin-2-yl)oxy)acetate (7ea): The representative procedure was followed using 11,3-dioxoisoindolin-2-yl 6-(2-((3,5,6-trichloropyridin-2-yl)oxy)acetoxy)hexanoate (7e) (102.8 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 7ea (44.3 mg, 50%) as yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (s, 1H), 4.86 (s, 2H), 4.58 (q, *J* = 7.2 Hz, 2H), 4.13 (t, *J* = 6.4 Hz, 2H), 3.04 (t, *J* = 7.2 Hz, 2H), 1.66 – 1.59 (m, 4H), 1.37 – 1.33 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 214.9, 167.7, 155.6, 143.1, 140.5, 122.8, 117.1, 69.8, 65.1, 63.8, 35.6, 28.1, 27.9, 25.1, 13.8; HRMS (ESI): m/z for C₁₅H₁₈Cl₃NO₄S₂ [M+Na]⁺ calcd 467.9635, found 467.9631.

5-[(Ethoxycarbonothioyl)thio]pentyl 4-((5,5,8,8-tetramethyl-5,6,7,8-tetrahydrona phthalen-2-yl)carbamoyl)benzoate (7fa): The representative procedure was followed using 6-((1,3-dioxoisoindolin-2-yl)oxy)-6-oxohexyl 4-((5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)carbamoyl)benzoate (7f) (122.1 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 7fa (46.4 mg, 43%) as yellow oil; ¹H NMR (400 MHz, CDCI₃) δ 8.02 (d, *J* = 8.4 Hz, 2H), 7.90 (s, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.47 (s, 1H), 7.38 (d, *J* = 8.4 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 4.57 (q, *J* = 7.2 Hz, 2H), 4.28 (t, *J* = 6.4 Hz, 2H), 3.08 (t, *J* = 7.2 Hz, 2H), 1.21 (d, *J* = 4.8 Hz, 12H); ¹³C NMR (100 MHz, CDCI₃) δ 214.9, 165.7, 145.8, 141.7, 139.0, 135.0, 129.9, 127.2, 127.1, 118.2, 69.9, 65.1, 35.6, 35.0, 35.0, 34.4, 34.0, 31.8, 31.8, 28.2, 28.0, 25.3, 13.8; HRMS (ESI): m/z for C₃₀H₃₉NO₄S₂ [M+Na]⁺ calcd 564.2213, found 564.2218.

5-[(Ethoxycarbonothioyl)thio]pentyl 2-ethoxy-4-(2-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)amino)-2-oxoethyl)benzoate (7ga): The representative procedure was followed using 6-((1,3-dioxoisoindolin-2-yl)oxy)-6-oxohexyl 2-ethoxy-4-(2-((3-methyl-1-(2-(piperidin-1-yl)phenyl)butyl)amino)-2-oxoethyl)benzoate (7g) (142.3 mg,

0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (**2a**) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded **7ga** (65.3 mg, 51%) as yellow solid; ¹**H NMR (500 MHz, CDCl**₃) δ 7.66 (d, *J* = 7.5 Hz, 1H), 7.14 – 7.11 (m, 2H), 7.00 – 6.97 (m, 2H), 6.78 – 6.75 (m, 2H), 6.65 (d, *J* = 7.5 Hz, 1H), 5.33 – 5.28 (m, 1H), 4.57 (q, *J* = 7.0 Hz, 2H), 4.21 (t, *J* = 6.5 Hz, 2H), 3.97 – 3.90 (m, 2H), 3.46 (s, 2H), 3.10 – 3.03 (m, 2H), 2.86 (s, 2H), 2.54 (s, 2H), 1.73 – 1.67 (m, 4H), 1.65 – 1.63 (m, 2H), 1.53 (s, 2H), 1.52 – 1.50 (m, 2H), 1.50 – 1.48 (m, 2H), 1.46 – 1.42 (m, 2H), 1.33 (d, *J* = 7.0 Hz, 6H), 1.04 – 0.94 (m, 1H), 0.84 (d, *J* = 6.5 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 214.9, 168.7, 166.3, 158.8, 152.5, 141.1, 138.6, 132.1, 127.9, 127.6, 125.0, 122.7, 120.7, 119.2, 113.7, 69.8, 64.4, 60.7, 49.7, 46.6, 44.2, 35.6, 33.9, 29.6, 28.2, 28.1, 26.7, 25.4, 25.3, 24.1, 22.7, 22.5, 14.7, 13.7; HRMS (ESI): m/z for C₃₅H₅₀N₂O₅S₂ [M+Na]⁺ calcd 665.3053, found 665.3057.

5-[(Ethoxycarbonothioyl)thio]pentyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthia zole-5-carboxylate (7ha): The representative procedure was followed using 6-((1,3dioxoisoindolin-2-yl)oxy)-6-oxohexyl 2-(3-cyano-4-isobutoxyphenyl)-4-methylthia zole-5-carboxylate (7h) (115.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 7ha (50.3 mg, 50%) as yellow solid; ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 1.5 Hz, 1H), 8.02 – 8.00 (m, 1H), 6.95 (s, 1H), 4.57 (q, *J* = 7.0 Hz, 2H), 4.27 (t, *J* = 7.0 Hz, 2H), 3.83 (s, 2H), 3.13 – 3.06 (m, 2H), 2.69 (s, 3H), 2.14 (d, *J* = 7.0 Hz, 1H), 1.75 – 1.68 (m, 4H), 1.53 – 1.48 (m, 2H), 1.32 (d, *J* = 4.0 Hz, 3H), 1.02 (d, *J* = 6.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 214.9, 167.1, 162.4, 162.0, 161.0, 132.5, 132.5, 132.0, 126.0, 121.9, 115.3, 112.6, 102.9, 75.7, 69.8, 65.0, 61.3, 35.6, 28.1, 25.3, 19.0, 17.4, 14.3, 13.8; HRMS (ESI): m/z for C₂₄H₃₀N₂O₄S₃ [M+Na]⁺ calcd 529.1260, found 529.1267.

3-[5-(2-fluorophenyl)-1,2,4-oxadiazol-3-5-[(Ethoxycarbonothioyl)thio]pentyl yl]benzoate (7ia): The representative procedure was followed using 6-((1,3dioxoisoindolin-2-yl)oxy)-6-oxohexyl 3-(5-(2-fluorophenyl)-1,2,4-oxadiazol-3yl)benzoate (7i) (108.6 mg, 0.20 mmol) and S-(1,3-dioxoisoindolin-2-yl) O-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded **7ia** (51.4 mg, 54%) as yellow oil; ¹H NMR (**500 MHz, CDCl**₃) δ 8.76 (s, 1H), 8.30 (d, J = 8.0 Hz, 1H), 8.19 – 8.12 (m, 2H), 7.54 (t, J = 8.0 Hz, 2H), 7.30 - 7.22 (m, 2H), 4.57 (q, J = 7.0 Hz, 2H), 4.31 (t, J = 6.5 Hz,2H), 3.09 (t, J = 7.5 Hz, 2H), 1.82 – 1.70 (m, 4H), 1.55 – 1.51 (m, 2H), 1.34 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 215.0, 168.1, 165.9, 160.8(d, ¹J = 260.0 Hz), 134.7 (d, ${}^{3}J = 8.8$ Hz), 132.2, 131.7, 131.2, 131.0, 129.0, 128.7, 127.2, 124.7(d, ${}^{4}J =$ 3.8 Hz), $117.2(d, {}^{2}J = 20.0 \text{ Hz})$, $112.7(d, {}^{2}J = 11.3 \text{ Hz})$, 100.0, 69.8, 65.0, 35.6, 28.3, 28.1, 25.3, 13.8; ¹⁹F NMR (471 MHz, CDCl₃) δ -108.17; HRMS (ESI): m/z for C₂₃H₂₃FN₂O₄S₂ [M+Na]⁺ calcd 497.0975, found 497.0982.

5-[(Ethoxycarbonothioyl)thio]pentyl 3,4,5-trimethoxybenzoate (7ja): The representative procedure was followed using 6-((1,3-dioxoisoindolin-2-yl)oxy)-6-oxohexyl 3,4,5-trimethoxybenzoate (7j) (94.2 mg, 0.20 mmol) and S-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 7ja (48.1 mg, 60%) as yellow oill; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (s, 2H), 4.63 (q, *J* = 7.0 Hz,

2H), 4.32 (t, J = 6.5 Hz, 2H), 3.91 (s, 9H), 3.15 (t, J = 7.0 Hz, 2H), 1.84 – 1.75 (m, 4H), 1.57 (q, J = 8.0 Hz, 2H), 1.40 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 214.8, 166.1, 152.8, 152.8, 142.1, 125.4, 125.3, 106.7, 69.7, 64.7, 61.0, 60.8, 56.1, 56.1, 35.6, 28.2, 27.9, 25.2, 14.3, 13.7; HRMS (ESI): m/z for C₁₈H₂₆O₆S₂ [M+Na]⁺ calcd 425.1063, found 425.1061.

5-[(Ethoxycarbonothioyl)thio]pentyl 2-((2,3-dimethylphenyl)amino)benzoate (**7ka):** The representative procedure was followed using 6-((1,3-dioxoisoindolin-2-yl)oxy)-6-oxohexyl 2-((2,3-dimethylphenyl)amino)benzoate (**7k**) (100.0 mg, 0.20 mmol) and *S*-(1,3-dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (**2a**) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded **7ka** (55.6 mg, 64%) as yellow oill; ¹H NMR (**500** MHz, CDCl₃) δ 9.18 (s, 1H), 7.90 – 7.86 (m, 1H), 7.18 – 7.13 (m, 1H), 7.08 (d, *J* = 7.5 Hz, 1H), 7.02 (t, *J* = 7.5 Hz, 1H), 6.93 (d, *J* = 7.5 Hz, 1H), 6.68 (d, *J* = 8.0 Hz, 1H), 6.61 – 6.55 (m, 1H), 4.57 (q, *J* = 7.0 Hz, 2H), 4.23 (t, *J* = 6.5 Hz, 2H), 3.08 (t, *J* = 7.5 Hz, 2H), 2.25 (s, 3H), 2.10 (s, 3H), 1.77 – 1.69 (m, 4H), 1.54 – 1.50 (m, 2H), 1.34 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 215.0, 168.6, 149.4, 138.7, 138.1, 134.1, 132.3, 131.4, 126.7, 125.9, 122.9, 116.0, 113.6, 110.9, 69.8, 64.2, 35.6, 28.3, 28.1, 25.4, 20.6, 14.0, 13.8; HRMS (ESI): m/z for C₂₃H₂₉NO₃S₂ [M+Na]⁺ calcd 454.1481, found 454.1478.

5-[(Ethoxycarbonothioyl)thio]pentyl 4-(*N*,*N*-dipropylsulfamoyl)benzoate (7la): The representative procedure was followed using 6-((1,3-dioxoisoindolin-2-yl)oxy)-6oxohexyl 4-(N,N-dipropylsulfamoyl)benzoate (7l) (108.8 mg, 0.20 mmol) and *S*-(1,3dioxoisoindolin-2-yl) *O*-ethyl carbonodithioate (2a) (106.8 mg, 0.40 mmol). Isolation by column chromatography (petroleum ether : EtOAc = 20:1) yielded 7la (45.1 mg, 47%) as yellow oill; ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.80 (d, *J* = 8.0 Hz, 2H), 4.56 (q, *J* = 7.2 Hz, 2H), 4.28 (t, *J* = 6.4 Hz, 2H), 3.10 – 3.00 (m, 6H), 1.81 – 1.65 (m, 4H), 1.54 – 1.42 (m, 6H), 1.33 (t, *J* = 7.2 Hz, 3H), 0.79 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 214.7, 165.0, 144.0, 133.5, 130.0, 126.8, 69.7, 65.1, 49.8, 35.4, 28.0, 27.9, 25.1, 21.8, 13.6, 11.0; HRMS (ESI): m/z for C₂₁H₃₃NO₅S₃ [M+Na]⁺ calcd 498.1413, found 498.1410.

5. Applications

Gram Scale Synthesis:

N-Hydroxyphthalimide ester **1a** (2.95 g, 10.0 mmol), *N*-ethylxanthylphthalimide **2a** (5.34 g, 20.0 mmol), Mn power (11.0 g, 20.0 mmol) were placed into an oven-dried flask vial that was equipped with a stirring bar. The vessel was evacuated and filled with N_2 (three times). The chlorotrimethylsilane (2.17 g, 2.5 mL, 20.0 mmol) was added, followed by the addition of DMF (25.0 mL) *via* syringe. The reaction mixture

was stirred at r.t. for 2 min. After this time, the crude reaction mixture was diluted with ethyl acetate and washed with water. The aqueous layer was then extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 , filtered and concentrated. The solvent was removed under vacuum and the residue was purified by flask column chromatography to afford the pure product **3aa** as yellow oil (1.81 g, 8.0 mmol, 80% yield) and isoindoline-1,3-dione **8** as white solid (3.26 g, 22.2 mmol, 74% yield).

One-pot synthesis:

An oven-dried 10 mL Schlenk tube with a magnetic stir bar charged with benzenepropionic acid (0.5 mmol), *N*-hydroxyphthalimide(1.1 equiv), and DMAP (0.1 equiv). Dichloromethane was added (0.2 M), and the mixture was stirred. DCC (1.1 equiv) was then added and the mixture allowed to stir until the acid was consumed (determined by TLC). Then, the reaction mixture was filtered add added water, and organics were extracted in DCM. After drying with Na₂SO₄, the organics were evaporated, and a solid product was obtained. Then, the solid product, *N*-ethylxanthylphthalimide **2a** (1.0 mmol, 2.0 equiv), Mn power (1.0 mmol) were placed into an oven-dried 10 mL Schlenk tube that was equipped with a stirring bar. The vessel was evacuated and filled with N₂ (three times). The chlorotrimethylsilane (1.0 mmol) was added, followed by the addition of DMF (1.50 mL) *via* syringe. The reaction mixture was stirred at r.t. for 2 min. After this time, the crude reaction mixture was diluted with ethyl acetate (5.0 mL) and washed with water (3.0 mL). The aqueous layer was then extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The
solvent was removed under vacuum and the residue was purified by flask column chromatography to afford the product **3aa** as yellow oil (89.3 mg, 0.40 mmol, 79% yield).

Adapted from the literature procedure.⁹ MeSC(S)OEt (**3ba**; 136.0 mg, 1.0 mmol) was heated to 50 °C in an oil bath and a mixture of neat Et₂NH (80.4 mg, 1.1 mmol) and Et₃N (30.3 mg, 0.3 mmol) was added dropwise over 8–10 min with stirring. The reaction was complete after 30 min when **3ba** had disappeared. After this time, the crude reaction mixture was diluted with DCM and water. The aqueous layer was then extracted with DCM, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The solvent was removed under vacuum and the residue was purified by flask column chromatography (petroleum ether : EtOAc = 30:1) yielded **9** (145.0 mg, 90%) as yellow oil; ¹H NMR (**500 MHz**, **CDCl**₃) δ 4.43 (q, *J* = 7.0 Hz, 2H), 3.75 (q, *J* = 7.0 Hz, 2H), 3.40 (q, *J* = 7.0 Hz, 2H), 1.26 (t, *J* = 7.0 Hz, 3H), 1.16 (t, *J* = 7.0 Hz, 3H), 1.09 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 186.9, 66.5, 47.1, 42.8, 14.0, 12.8, 11.6.

Adapted from the literature procedure.¹⁰ To a stirred suspension of NaH (60% suspension in mineral oil) (67 mg, 2 mmol, 2.0 equiv) in dry DMF (3 mL, 0.33M), benzimidamide (1 mmol, 1.0 equiv) was added at room temperature under N_2 atmosphere. After stirring for 5-10 min, a solution of **3ba** (1 mmol, 1.0 equiv) in DMF (3 mL, 0.33M) was added dropwise and stirring was continued at room temperature

for 4-6 h (monitored by TLC). The reaction mixture was quenched with saturated aqueous NH₄Cl solution, extracted with EtOAc, the combined organic layer was washed with water, and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The solvent was removed under vacuum and the residue was purified by flask column chromatography (petroleum ether : EtOAc = 5:1) yielded **10** (113.3 mg, 55%) as yellow oil; ¹H NMR (**500** MHz, CDCl₃) δ 7.77 (d, *J* = 7.5 Hz, 2H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 4.42 (q, *J* = 7.0 Hz, 2H), 1.32 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (**125** MHz, CDCl₃) δ 199.3, 166.6, 134.6, 132.4, 128.7, 127.2, 65.9, 14.1.

Adapted from the literature procedure.¹¹ An oven-dried 100 x 16 mm screw-capped vial with a magnetic stir bar was transferred to an N₂-filled glovebox. First, bpy (6.6 mg, 0.036 mmol, 12 mol%), NiCl₂(PCy₃)₂ (41.4 mg, 0.060 mmol, 20 mol%), Zn (117.9 mg, 0.90 mmol, 3.0 equiv), and DMF (1.50 mL, 0.20 M) were added to the vial sequentially. Next, methyl 3-iodobenzoate (0.48 mmol, 1.6 equiv) and *S*-(cyanomethyl) *O*-ethyl carbonodithioate (0.30 mmol, 1.0 equiv) were added. The vial was sealed with a Teflon-lined screw cap and removed from the glovebox. The reaction was stirred at 65 °C for 24 h, then quenched upon the addition of H₂O. The aqueous layer was extracted with EtOAc, and the combined organic layers were extracted with H₂O. The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flask column chromatography (petroleum ether : EtOAc = 5:1) yielded **11** (24.8 mg, 40%) as yellow oil; ¹H NMR (**500 MHz, CDCl**₃) δ 8.12 (s, 1H), 7.96 (d, *J* = 8.0 Hz, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 3.87 (s, 3H), 3.56 (s, 2H); ¹³C NMR (**125 MHz, CDCl**₃) δ 166.0, 136.4, 133.0, 132.7, 131.6, 129.9, 129.6, 116.0, 52.4, 21.1.

Adapted from the literature procedure.¹¹ An oven-dried 100 x 16 mm screw-capped vial with a magnetic stir bar was transferred to an N₂-filled glovebox. First, 6,6'-Dimethyl-2,2'-dipyridyl (6.6 mg, 0.036 mmol, 12 mol%), NiCl₂(DME) (9.3 mg, 0.030 mmol, 10 mol%), KI (24.9 mg, 0.15 mmol, 50 mol%), Zn (58.9 mg, 0.90 mmol, 3.0 equiv) and DMPU (1.5 mL, 0.20 M) were added to the vial sequentially. Next, 4methylbenzoyl chloride (47.6 µL, 0.36 mmol, 1.2 equiv) and S-(cyanomethyl) O-ethyl carbonodithioate (0.30 mmol, 1.0 equiv) were added. The vial was sealed with a Teflon-lined screw cap and removed from the glovebox. The reaction was stirred at 40 °C for 12 h, then quenched upon the addition of H₂O. The aqueous layer was extracted with EtOAc, and the combined organic layers were extracted with H₂O. The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flask column chromatography (petroleum ether : EtOAc = 5:1) yielded 12 (44.7 mg, 78%) as yellow oil; ¹H NMR (500 MHz, CDCl₃) δ 7.75 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 3.77 (s, 2H), 2.35 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 187.3, 145.6, 132.6, 129.5, 127.5, 115.9, 21.7, 14.2.

Adapted from the literature procedure.¹² To a 1-dram vial with a magnetic stir bar was added *S*-(cyanomethyl) *O*-ethyl carbonodithioate (1.0 mmol, 1 equiv) and dilauroyl peroxide (0.05 equiv). The vial was brought into the glovebox, and allyl acetate (2.0 mmol, 2 equiv) was added, followed by 1,2- dichloroethane (1 M). The vial was placed under a balloon of argon and heated at 85 °C for 2 h. If tertiary xanthate $_{S-39}$

remained by TLC (generally a spot with a higher Rf than the desired addition product), the vial was cooled to rt and brought back into the glovebox. Additional DLP (0.1 equiv) was added, and the reaction was stirred at 84 °C for 4 h, then quenched upon the addition of H₂O. The aqueous layer was extracted with EtOAc, and the combined organic layers were extracted with H₂O. The combined organic layers were dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the residue was purified by flask column chromatography (petroleum ether : EtOAc = 5:1) yielded **13** (214.1 mg, 82%) as yellow oil; ¹H NMR (**500** MHz, CDCl₃) δ 4.66 (q, *J* = 7.0 Hz, 2H), 4.38 – 4.30 (m, 1H), 4.27 – 4.19 (m, 1H), 4.09 – 4.03 (m, 1H), 2.63 – 2.48 (m, 2H), 2.23 – 2.16 (m, 1H), 2.08 (s, 3H), 2.03 – 1.95 (m, 1H), 1.43 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (**125** MHz, CDCl₃) δ 211.4, 170.3, 118.5, 70.6, 64.8, 48.0, 27.0, 20.6, 14.9, 13.6.

6. Kinetic studies

6.1 Time-yield curve

The reaction was performed with **1a** (0.30 mmol), **2a** (0.60 mmol, 2.0 equiv), Mn power (33.0 mg, 0.60 mmol) and chlorotrimethylsilane (0.60 mmol) in DMA. The reaction tube was rapidly placed on a stir plate (stirring at 450 rpm) which signified time = 0. Aliquots (~20 μ L) were removed from the reaction at the indicated times, directly injected into 1.0 mL ethyl acetate: H₂O (1:1) in a vial and subjected to analysis. Time-yield curve indicated that the reaction started up very fleetly and was completely finished within two minutes.

6.2 Order in the N-Hydroxyphthalimide ester 1a

The reaction was performed with 2a (0.60 mmol, 2.0 equiv), Mn power (33.0 mg, 0.60 mmol) and chlorotrimethylsilane (0.60 mmol) in DMA in the presence of 0.05 mmol, 0.10 mmol, 0.15 mmol, 0.20 mmol, 0.30 mmol *N*-Hydroxyphthalimide ester **1a** with the reaction time of 2 min. The initial rates at various **1a** were different, showing a negative order (ca. -0.5-order) dependency on the initial concentration of *N*-Hydroxyphthalimide ester **1a**.

6.3 Order in the N-ethylxanthyl phthalimide 2a

The reaction was performed with 1a (0.30 mmol), Mn power (33.0 mg, 0.60 mmol) and chlorotrimethylsilane (0.60 mmol) in DMA in the presence of 0.05 mmol, 0.10 mmol, 0.15 mmol, 0.20 mmol, 0.30 mmol *N*-ethylxanthyl phthalimide 2a with the reaction time of 2 min. The almost unchanged initial rates for different 2a suggested that the reaction is zero-order in the component.

6.4 Effect of reductant input

The reaction was performed with 1a (0.30 mmol), 2a (0.60 mmol, 2.0 equiv) and chlorotrimethylsilane (0.60 mmol) in DMA in the presence of 0.30 mmol, 0.45 mmol, 0.60 mmol, 0.90 mmol Mn power with the reaction time of 2 min. The crude reaction mixture was diluted with ethyl acetate and washed with water. The yield was confirmed by GC-MS.

6.5 Effect of additive input

The reaction was performed with **1a** (0.30 mmol), **2a** (0.60 mmol, 2.0 equiv) and Mn power (33.0 mg, 0.60 mmol) in DMA in the presence of 0.15 mmol, 0.30 mmol, 0.60 mmol, 0.90 mmol, 1.20 mmol chlorotrimethylsilane with the reaction time of 2 min. The crude reaction mixture was diluted with ethyl acetate and washed with water. The yield was confirmed by GC-MS.

6.6 Effect of halosilane additives size

The reaction was performed with **1a** (0.30 mmol), **2a** (0.60 mmol, 2.0 equiv) and Mn power (33.0 mg, 0.60 mmol) in DMA in the presence of 0.60 mmol different halosilane additives with the reaction time of 2 min. The crude reaction mixture was diluted with ethyl acetate and washed with water. The yield was confirmed by GC-MS.

6.7 Cyclic voltammetry experiments

General Details: Cyclic voltammograms were obtained in a N2-filled glovebox using a standard three electrode cell: A glassy-carbon electrode (3mm-diameter, discelectrode) was used as the working electrode, a Pt plate was used as the auxiliary electrode and an Ag/Ag + electrode was used as a reference electrode. The measurements were carried out at a scan rate of 100 mV/s^{-1} in MeCN/ ⁿBu₄NPF₄ (0.1 M).

6.8 Time-yield curve at 50 °C

The reaction was performed with **1a** (0.30 mmol), **2a** (0.60 mmol, 2.0 equiv), Mn power (33.0 mg, 0.60 mmol) and chlorotrimethylsilane (0.60 mmol) in DMA at 50 °C. The reaction tube was rapidly placed on a stir plate (stirring at 450 rpm) which signified time = 0. Aliquots (~20 μ L) were removed from the reaction at the indicated times, directly injected into 1.0 mL ethyl acetate: H₂O (1:1) in a vial and subjected to analysis. Time-yield curve indicated that the reaction started up very fleetly and was finished completely within 70 seconds accompanied by a slightly reduced yield (77%).

7. Mechanistic studies

7.1 Sequential experiment

To a 10 ml Schlenk tube was added sequentially Mn (22.0 mg, 0.40 mmol, 2.0 equiv), **1a** (59.0 mg, 0.20 mmol, 1.0 equiv), the chlorotrimethylsilane (43.5 mg, 50.7 μ L, 0.40 mmol) was added, followed by the addition of DMA *via* syringe. The resulting solution was stirred for 30 s at r.t. under N₂. Then **2a** (53.4 mg, 0.20 mmol, 1.0 equiv) was added reverse nitrogen flow. The resulting solution was stirred for another 2 min at room temperature. The crude reaction mixture was diluted with ethyl acetate and washed with water. The yield was confirmed by GC-MS.

To a 10 ml Schlenk tube was added sequentially Mn (22.0 mg, 0.40 mmol, 2.0 equiv), **2a** (53.4 mg, 0.20 mmol, 1.0 equiv), the chlorotrimethylsilane (43.5 mg, 50.7 μ L, 0.40 mmol) was added, followed by the addition of DMA *via* syringe. The resulting solution was stirred for 30 s at r.t. under N₂. Then **1a** (59.0 mg, 0.20 mmol, 1.0 equiv) was added reverse nitrogen flow. The resulting solution was stirred for another 2 min at room temperature. The crude reaction mixture was diluted with ethyl acetate and washed with water. The yield was confirmed by GC-MS.

7.2 Radical clock experiment

To a 10 ml Schlenk tube was added sequentially **1i'** (54.6 mg, 0.20 mmol, 1.0 equiv), **2a** (106.8 mg, 0.40 mmol, 2.0 equiv), Mn power (22.0 mg, 0.40 mmol, 2.0 equiv). Then chlorotrimethylsilane (43.5 mg, 50.7 μ L, 0.40 mmol) was added, followed by the addition of DMA *via* syringe. The reaction mixture was stirred at r.t. for 2 min. After this time, the crude reaction mixture was diluted with ethyl acetate (5.0 mL) and washed with water (3.0 mL). The aqueous layer was then extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The mixture of **14** and **15** was separated by column chromatography (petroleum ether) in the overall yield of 81% as yellow oil.

7.3 Free radical capture experiments

To a 10 ml Schlenk tube was added sequentially tetramethylpiperidinooxy (62.4 mg, 0.40 mmol, 2.0 equiv), **1a** (59.0 mg, 0.20 mmol, 1.0 equiv), Mn power (33.0 mg, 0.60 mmol, 3.0 equiv). The chlorotrimethylsilane (43.5 mg, 50.7 µL, 0.40 mmol) was added, followed by the addition of DMA *via* syringe. The resulting solution was stirred for 2 min at r.t. under N₂. After this time, the crude reaction mixture was diluted with ethyl acetate (5.0 mL) and washed with water (3.0 mL). The aqueous layer was then extracted with ethyl acetate, and the combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The solvent was removed under vacuum and the residue was purified by flask column chromatography to afford the pure product **16**. ¹**H NMR (400 MHz, CDCl₃)** δ 7.23 – 7.09 (m, 5H), 3.87 (t, *J* = 7.2 Hz, 2H), 2.75 (t, *J* = 7.2 Hz, 2H), 1.34 – 1.33 (m, 4H), 1.31 – 1.11 (m, 2H), 0.99 (s, 12H); ¹³**C NMR (100 MHz, CDCl₃)** δ 139.6, 129.1, 128.1, 125.9, 77.5, 59.7, 39.6, 35.4, 32.9, 20.1, 17.1, 1.0.

To a 10 ml Schlenk tube was added sequentially **2a** (53.4 mg, 0.20 mmol, 1.0 equiv), Mn power (33.0 mg, 0.60 mmol, 3.0 equiv). The chlorotrimethylsilane (43.5 mg, 50.7 μ L, 0.40 mmol) and ethene-1,1-diyldibenzene (72.0 mg, 0.40 mmol, 2.0 equiv) were added, followed by the addition of DMA *via* syringe. The resulting solution was stirred for 2 min at r.t. under N₂. After this time, the crude reaction mixture was diluted with ethyl acetate (5.0 mL) and washed with water (3.0 mL). The existence of **17** was confirmed by HRMS.

8. References

- 1) L. Huang, A. M. Olivares and D. J. Weix, *Angew. Chem. Int. Ed.*, 2017, **56**, 11901–11905.
- 2) S. Wang, L. Yang, F. Liang, Y. Zhong, X. Liu, Q. Wang and D. Zhu, Chem. Sci.,

2023, 14, 9197–9206.

- D. Shan, M. Jiang, F. Liang, Y. Zhong and D. Zhu, Org. Chem. Front., 2024, 11, 3675–3684.
- 4) A. I. Sokolov, A. A. Mikhaylov, N. S. Baleeva and M. S. Baranov, *Eur. J. Org. Chem.*, 2021, 4350–4357.
- 5) V. Sashuk. ACS Nano, 2012, 6, 10855–10861.
- 6) W. L. Czaplyski, C. G. Na and E. J. Alexanian, J. Am. Chem. Soc., 2016, **138**, 13854–13857.
- 7) C. G. Na, D. Ravelli and E. J. Alexanian, J. Am. Chem. Soc., 2020, 142, 44-49.
- 8) H. S. Park, H. Y. Lee and Y. H. Kim, Org. Lett., 2005, 7, 3187-3190.
- 9) I. Degani, R. Fochi and C. Magistris, Synthesis, 2009, 22, 3807–3818.
- 10) M. Antony, J. Chakravarthy and H. Ila, J. Org. Chem., 2024, 89, 4453–4460.
- 11) L. Tai, L. Chen, Y. Shi and L.-A. Chen, Org. Chem. Front., 2023, 10, 2505–2516.
- 12) E. N. Jenkins, W. L. Czaplyski and E. J. Alexanian, Org. Lett., 2017, 19, 2350–2353.

9. NMR Spectrum

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

5.856
5.8356

5.835
5.8356

5.835
5.8356

5.835
5.8358

5.823
5.823

5.808
5.823

5.816
5.823

5.828
5.823

5.808
5.823

5.808
5.823

5.808
5.823

5.808
5.823

5.808
5.823

5.714
5.739

7.5.090
7.5.090

7.5.091
7.5.090

7.5.109
7.5.109

7.5.109
7.5.109

7.5.109
7.5.109

7.5.109
7.5.109

7.5.109
7.5.109

7.5.109
7.5.109

7.5.105
7.5.105

7.5.105
7.5.105

7.5.105
7.5.105

7.5.105
7.5.105

7.5.105
7.5.105

7.5.105
7.5.105

7.5.105
7.5.105

7.5.105
7.5.105

7.5.1

7.205 4.605 4.570 4.570 4.570 4.570 4.570 4.570 3.303 3.3132 3.3132 3.3132 3.3132 3.3132 3.3132 3.3132 3.3132 1.9311 1.93111 1.93111 1.9311 1.93111 1.93111 1.93111 1.93111 1.93111 1.93111 1

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm) -7.202 4.597 4.579 4.579 4.557 4.557 4.557 3.050 3.050 3.050 3.050 3.050 1.771 1.771 1.771 1.771 1.771 1.771 1.771 1.772 1.7328 1.1328

S-63

S-69

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm)

$$\left\{\begin{array}{c} 7.221\\ 7.176\\ 7.176\\ 4.557\\ 4.557\\ 4.557\\ 4.557\\ 4.239\\ 1.351\\ 1.316\end{array}\right.$$

7.246 7.217 7.224 7.217 6.909 6.887 6.897 6.8909 6.887 4.559 4.559 4.559 4.559 4.553 4.253 1.330

$\begin{array}{c} 7.207\\ 7.191\\ 7.197\\ 6.971\\ 6.971\\ 6.928\\ 6.928\\ 6.928\\ 6.92931\\ 6.9293\\ 6.92333333\\ 7.177\\ 7.177\\ 7.177\\ 7.177\\ 7.177\\ 7.177\\ 7.13333\\ 7.13333\\ 7.13333\\ 7.13333\\ 7.13333\\ 7.13333\\ 7.13333\\ 7.13333\\ 7.13333$

-7.195 4.577 4.559 4.559 3.673 3.673 3.673 3.673 3.573 3.573 3.573 3.573 3.573 3.573 3.573 3.573 3.573 3.573 3.573 3.573 1.1.422 1.1.329 1.1.3244 1.1.324 1.1.324 1.1.324 1.1.324

4,585 4,4565 4,4565 4,4555 4,4,529 4,4,529 4,4,529 4,4,529 4,4,529 4,4,529 4,4,529 4,4,529 4,4,529 4,4,565 4,4,529 4,5294,529 4,529 4,529 4,529 4,529 4,5294,529 4,529 4,529 4,529 4,529 4,529 4,529 4,5294,529 4,529 4,529 4,529 4,529 4,529 4,5294,529 4,529 4,529 4,5294,529 4,529 4,529

7.200 7.200 4.578 4.578 4.578 7.2452 7.2456 7.2466 7.2466 7.2466 7.2466 7.2465 7.2433 7.2334 7.2334 7.2334 7.1388 7.2337 7.1388 7.2337 7.1388 7.2337 7.1388 7.1377 7.137 7.1377 7.137

7.185 4.601 4.601 4.565 4.565 4.565 4.565 4.566 7.2031 1.884 1.1.884 1.1.884 1.1.884 1.1.884 1.1.884 1.1.788 1.1.365 1

7.199 4.570 4.570 4.570 4.570 4.570 4.570 4.570 3.390 3.381 3.381 3.381 3.381 3.381 3.381 3.381 3.381 3.381 3.381 3.381 3.381 3.381 3.382 3.382 3.382 3.382 3.381 3.381 3.381 3.381 3.382 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.485 3.486 3.486 3.486 3.486 3.486 3.486</

S-91

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2: f1 (ppm) 7.1598 7.1691 7.1691 7.1691 7.1616 7.1659 7.1659 7.110 7.1659 7.1659 7.3022 7.3022 7.3027 7.1659 7.1059 7.1

8.034 8.017 8.

8.761 8.8.312 8.8.153 8.8.153 8.8.158 8.8.158 8.8.155 8.8.155 7.555 7.755 7.753 7.723 7.733 7.723 7.723 7.723 7.723 7.723 7.723 7.723 7.723 7.723 7.723 7.723 7.723 7.723 7.723 7.734 7.734 7.744 7.7447 7.7447 7.7447 7.7447 7.7447 7.7447 7.7447 7.7447 7.7447 7

