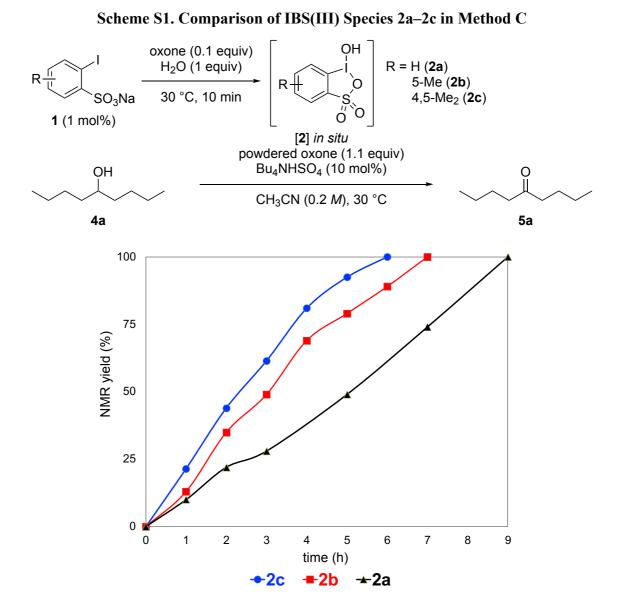
Supporting Information

The Low-Temperature Selective Oxidation of Alcohols and a One-Pot Oxidative Esterification Using an IBS(III/V)/Oxone Catalysis

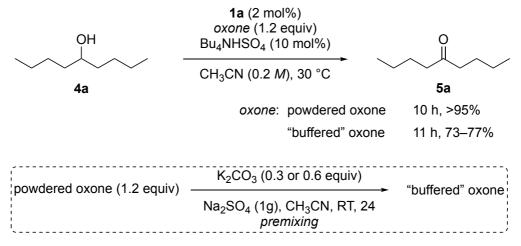
Ryutaro Kondo, Muhammet Uyanik,* and Kazuaki Ishihara*

Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan E-mail: muha@chembio.nagoya-u.ac.jp, ishihara@cc.nagoya-u.ac.jp

Table of Contents:


Material and Methods	S2
Additional Information	<u></u> S3
Scheme S1. Comparison of IBS(III) Species 2a–2c in Method C	<u></u> S3
Scheme S2. Effect of "Buffered" Oxone on the Oxidation Reaction	S3
Table S1. Optimization of Reaction Conditions for Oxidative Esterification	S4
EcoScale Calculation	S4
Catalysts and Substrates	S7
Representative Procedures for Oxidation of Primary Alcohols to Aldehydes	S8
Representative Procedures for Oxidation of Secondary Alcohols to Ketones	S13
Procedures for Oxidative Lactonization	S17
Representative Procedure for Oxidative Esterification (Method C)	S18
References	<u></u> S23
NMR Spectra	S24

Materials and Methods


Infrared (IR) spectra were recorded on a JASCO FT/IR 460 plus spectrometer. ¹H NMR spectra were measured on a JEOL ECS-400 (400 MHz) spectrometer at ambient temperature. Chemical shifts are reported in ppm from the solvent resonance (CD₃CN: 1.94 ppm) or Me₄Si resonance (0.00 ppm; CDCl₃) as internal standard. Data were recorded as follows: the chemical shift in ppm from internal tetramethylsilane on the δ scale, multiplicity (s = singlet; d = doublet; t = triplet; q = quartet; quin = quintet; sept = septet; m = multiplet; brs = broad singlet), coupling constant (Hz), and integration. ¹³C NMR spectra were measured on a JEOL ECS-400 (100 MHz) spectrometer at ambient temperature. Chemical shifts were recorded in ppm from the solvent resonance employed as the internal standard (CDCl₃: 77.00 ppm, CD₃CN: 1.32 ppm). Chemical shifts were recorded in ppm from the solvent resonance employed as the external standard (CFCl₃ at 0 ppm). High-resolution mass spectral analysis (HRMS) was performed at Chemical Instrument Center, Nagoya University [JEOL JMS-700 (FAB). HRMS were obtained by fast atom bombardment (FAB) using a double-focusing magnetic sector mass spectrometer. Elemental analyses were performed on a Yanaco MT-6 analyzer. For thin-layer chromatography (TLC) analysis, Merck precoated TLC plates (silica gel 60 F₂₅₄ 0.25 mm or silica gel 60 NH₂ F₂₅₄s 0.20 mm) were used. The products were purified by column chromatography on silica gel (E. Merck Art. 9385). An oil bath was used for reactions that required heating.

In experiments that required dry solvents, toluene, benzene, diethyl ether (Et₂O), tetrahydrofuran (THF), *N*,*N*-dimethylformamide (DMF) and dichloromethane (CH₂Cl₂) were purchased from FUJIFILM Wako Pure Chemical Industries, Ltd. as the "anhydrous" and stored over 4A molecular sieves. Other solvents were purchased from Aldrich Chemical Co., Inc., FUJIFILM Wako Pure Chemical Industries, Ltd., or Tokyo Chemical Industry Co., Ltd. and used without further purification. Oxone (KHSO₅·0.5KHSO₄·0.5K₂SO₄) and peracetic acid (9% acetic acid solution) were purchased from Aldrich Chemical Co., Inc. and used without further purification. Powdered oxone was prepared according to the known procedure.¹ Other commercially available simple chemicals were analytical-grade and used without further purification.

Additional Information

Scheme S2. Effect of "Buffered" Oxone on the Oxidation Reaction

Table S1. Optimization of Reaction Conditions for Oxidative Esterification

			l c (2 mol%)											
	0)	xone (0.1 ec H ₂ O (~1 ec		min										
Ph	∕он	powder	[2c] <i>in situ</i> ed oxone (<i>x</i> equi HSO ₄ (10 mol%)			+								
4р	1		₄ , CH ₃ NO ₂ (0.2 Λ 30 °C, 6 h	<i>/</i>)	Ph H Ph OH 5p S2									
1 mm	lor	4p	: >99% conv.											
	O II	+	O L	+	OMe ↓	MeOl powdere	H (8a , <i>z</i> eo d oxone (quiv) <i>y</i> equiv)						
Ph		DMe P		Ph	OMe	◄	T°C, time							
	9pa		S2	S	3									
Entire	Oxone	(equiv)	8a (equiv)	T(0C)	T:	Yield $(\%)^a$								
Entry	x	У	Z	<i>T</i> (°C)	<i>Time</i> (h)	9pa	S2	S3						
1	2.4	0	2	30	24	44	18	32						
2	2.4	0	2	50	18	51	15	34						
3	3.6	0	2	30	18	80	5	12						
4	1.6	2.0	2	30	14	66	9	25						
5	1.6	2.0	10	30	18	60	10	30						
6	1.6	2.0	20	30	18	75	6	19						
7	1.6	2.0	30	30	18	90	2	7						
8	1.6	2.0	40	30	18	90	3	7						
9	1.6	2.0	30	30	24	95 (92) ^b	5	_						

^{*a*} ¹H NMR analysis. ^{*b*} Isolated yield.

EcoScale Calculation

EcoScale scores were calculated for representative reactions to provide a quantitative assessment of the greenness of the methods. The calculations were performed for a 1 mmol scale reaction using the online EcoScale Calculator (available at https://ecoscale.cheminfo.org/calculator), which is based on the work of Van Aken et al.²

Table S2. Comparison of The EcoScale for Our Previous and Present Works^a

	Previous work ^{1a}	This work	
Oxidation of 4b to 5b	45	76	
Oxidation of 4c to 5c	19.5	68	

^{*a*} The catalysts employed (e.g., **1a**, **1c**, **2c**) are not commercially listed in the EcoScale calculator database. However, as they are readily synthesized in high yields from inexpensive precursors and common reagents, ^{1a} the price penalty for these catalysts was considered to be zero in our EcoScale calculations.

Previous method: Oxidation of 4b to 5b

Ecoscale calculator	Manual Paper Contact									
Reagents 🗵										
Link identifier ²	* name	MF*	мw	density	purity*	ml	g	mmoles	equiv.	
1 +-	4-Methoxybenzyl alcohol	C8H10O2	138.1662	1.1125	100%	0.124194	0.138166	1	1	××
2 + -	Potassium peroxomonosulfate	H3O18K5S	4 614.74452		100%	0	0.368847	0.6	0.6	××
3 + -	Sodium sulfate	Na2O4S	142.03714	2.68	100%	0.373134	1	7.0404121	7.0404121	×
4 + -	Nitromethane	CH3NO2	61.04032	1.12	100%	5	5.6	91.742638	91.742638	×
Products 🗵										
	identifier*: name:		MF*:	MW:	g: 5032 0.05	mmole: 2 0.381	s: g theor 9307 0.1361		32	
Conditions 🗵						(
Reagents	Name	mmoles	s eq.	Bp H	lazard	Price				
	4-Methoxybenzyl alcohol	19.23	1	259	(3				
	Potassium peroxomonosulfate	11.53	0.6		(۹				
	Sodium sulfate	135.39	7.04	1700		•				
	Nitromethane	1764.28	91.74	248	0	0				
Yield	38					-31				
Price / availability						-8				
Safety Technical setup			lected items			0				
recinical setup	Any additional special glassware (Inert) gas atmosphere Glove box		ommon set-u	D		0				
Temperature / time	Possible items Heating, > 1h Cooling to 0°C Cooling, < 0°C		eating, > 1h			-3				
Workup and purification	Possible items Sublimation Liquid - liquid extraction or washing Classical chromatography	R	lected items emoval of sol quid - liquid e lassical chron	xtraction or		-13				
EcoScale						45				

Current method: Oxidation of 4b to 5b Ecoscale calculator Manual Paper Contact Reagents 🗵 🗹 Link density identifier* name MF* мw purity^{*} mi g mmoles 1 +-4-Methoxybenzyl alcohol C8H10O2 138.1662 1.1125 100% 0.124194 0.138166 1 1 2 +-Potassium peroxomonosulfate H3O18K5S4 614.74452 100% 0 0.368847 0.6 0.6 3 + -0 Tetrabutylammonium hydrogen sulfate C16H35N . H 339.53408 100% 0.033953 0.1 0.1 4 + -7.0404121 7.0404121 🗙 Sodium sulfate Na2O4S 142.03714 2.68 100% 0.373134 1 5 + -CH3NO2 61.04032 1.12 100% 5 5.6 91.742638 91.742638 🗙 Nitromethane Products 🗵 mmoles: g theor: yield: 0.9034132 0.13615 90.3415 identifier*: name: p-Anisaldehyde MF*: C8H8O2 MW: g: 136.15032 0.123 Conditions 🗵 Reagents Name Вр Hazard Price m eq. 4-Methoxybenzyl alcohol 8.13 1 259 0 0 Potassium peroxomonosulfate 4.87 0.6 0 0.81 0.1 Tetrabutylammonium hydrogen sulfate 6 Sodium sulfate 57.23 7.04 1700 00 Nitromethane 91.74 248 745.87 Yield 90 -5 Price / availability -5 Safety 0 Technical setup Possible items Any additional special glassware Selected items Common set-up 0 (Inert) gas atmosphere Glove box 1 Temperature / time Possible items Room temperature, < 1h Room temperature, < 24h Heating, < 1h Selected items Room temperature, < 24h -1 Workup and purification Possible items Sublimation Selected items Removal of solvent with bp < 150°C -13 Liquid - liquid extraction or washing Classical chromatography Liquid - liquid extraction or washing Classical chromatography

Previous method: Oxidation of 4c to 5c

EcoScale

76

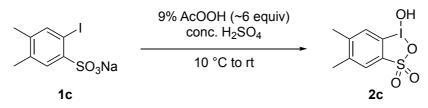
XX

XX

XX

scale calculator	Manual Paper Contact										
Reagents 🗵											
Link identifier	* name	MF*	мw	density	purity*	ml	g	mmoles	equiv.		
+-	1,2,3,4-Tetrahydro-1-naphthol	C10H12O	148.20468	1.09	100%	0.140976	0.153664	1.0368358		XX	
	Potassium peroxomonosulfate	H3O18K5S4	614.74452	[100%		0.382433	0.6221014	0.6	XX	
	Acetonitrile	CH3CN		0.701	100%	5	3.905		91.742638		
+-	Acetonitrile	CH3CN	41.05252	0.781	100%	5	3.905	95.12205	91.742638	0	
Products 🗵											
	identifier*: name: alpha-Tetralone		MF*:	MW:	g: 388 0.024	mmoles 852 0.17	s: g theor 0.151				
Conditions 🗵											
Reagents	Name	mmoles	eq.	Вр На	azard	Price					
	1,2,3,4-Tetrahydro-1-naphthol	41.72		aN		9					
	Potassium peroxomonosulfate	25.03	0.6			0					
	Acetonitrile	3827.54		aN 🛔		0					
20.11		3627.34	91.74 1	an 😗	× 6						
	17					-41.	5				
Price / availability						-13					
Safety						-10					
Technical setup	Possible items Any additional special glassware		ected items mmon set-up	ก							
	(Inert) gas atmosphere					0					
Temperature / time	Glove box		ected items								
remperature / time	Heating, > 1h		ating, > 1h			-3					
	Cooling to 0°C Cooling, < 0°C					-3					
up and purification	Possible items		ected items								
	Sublimation Liquid - liquid extraction or washing	Rei	moval of solv uid - liquid ex	ent with bp	< 150°C	-13					
	Classical chromatography		uid - liquid e) issical chrom		wasning						
EcoScale						19.5		_			

Current method: Oxidation of $4c\ \mbox{to}\ 5c$

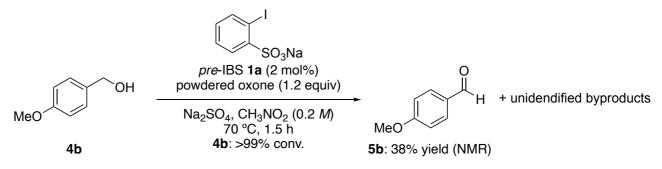

Ecoscale calculator 💦	Manual Paper Contact										
Reagents 🗵											
Link identifier ²	* name	MF*	мw	density	purity*	mi	g	mmoles	equiv.		
1 +-	1,2,3,4-Tetrahydro-1-naphthol	C10H12O	148.20468	1.09	100%	0.135968	0.148205	1	1	XX	
2 + -	Potassium peroxomonosulfate	H3O18K5S4	614.74452		100%	0	0.368847	0.6	0.6	XX	
3 + -	Tetrabutylammonium hydrogen sulfate	C16H35N . F	339.53408		100%	0	0.033953	0.1	0.1	××	
4 + -	Acetonitrile	CH3CN	41.05252	0.781	100%	5	3.905	95.12205:	95.12205:	۵.	××
Products 🗵											
	identifier*: name: alpha-Tetralone		MF*:	MW:	g: 888 0.14	mmole	s: g theor 6657 0.146		2201		
Conditions 🗵	apna-retraione		CIONIO	140.1	0.14	0.937	0.140	95.700	5595		
Reagents	Name	mm	oles eq.	Вр	Hazard	Price					
	1,2,3,4-Tetrahydro-1-naphthol	7.14	1	NaN		•					
	Potassium peroxomonosulfate	4.28	0.6			9					
	Tetrabutylammonium hydrogen sulfate	0.71	0.1			0					
	Acetonitrile	679.4	4 95.12	81		99					
Yield	96					-2					
Price / availability						-6					
Safety						-10					
Technical setup	Possible items Any additional special glassware		ected items mmon set-up	1		0					
	(Inert) gas atmosphere Glove box	0				U					
Temperature / time	Possible items Room temperature, < 1h		ected items om temperat	ure < 24h							
	Room temperature, < 24h Heating, < 1h		omtomporat	uro, • 2 m		-1					
Workup and purification	Possible items Sublimation		ected items moval of solv	rent with br	< 150°C						
	Liquid - liquid extraction or washing Classical chromatography	Liq	uid - liquid ex assical chrom	traction or		-13					
EcoScale	olassical shiomatography	Cla		atograpity		68				_	-

Catalysts and Substrates

Pre-IBSs **1a–1c** were prepared according to the known procedures.² **1a** and **1b** (as their potassium salts) are also commercially available from Junsei Chemical or Sigma-Aldrich.

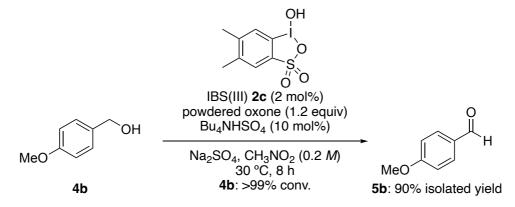
Alcohols 4a-4j, 4l-4u, and 6 were purchased from Aldrich Chemical Co., Inc., FUJIFILM Wako Pure Chemical Industries, Ltd., or Tokyo Chemical Industry Co., Ltd. and used without further purification. $1k^3$ is a known compound and was prepared by following the literature procedures.

Synthesis of IBS(III) 2c



Procedure adapted from literature.⁴ To a stirred mixture of **1c** (as 1.5 hydrate, 1.60 g, 4.43 mmol) and concentrated H₂SO₄ (0.600 mL), maintained at ~10 °C under a nitrogen atmosphere, was added peroxyacetic acid (9 wt% acetic acid solution, 22.0 mL) dropwise. The mixture was stirred at 10 °C and then allowed to stir overnight at room temperature. Diethyl ether (20 mL) was added to the mixture to precipitate solids, which were collected by filtration and washed with cold diethyl ether and cold water. The resulting solid was suspended in acetonitrile (20.0 mL) and water (10.0 mL), and the mixture was heated to 70 °C until most of the solids dissolved. The hot mixture was filtered, allowed to cool to room temperature, and then kept overnight to allow crystallization. The precipitated solid was filtrated and washed with cold diethyl ether to afford **2c** (0.609 g, 1.86 mmol). The filtrate was concentrated to one-third of its original volume to give a second crop of solid (0.416 g, 1.27 mmol). Combined yield: 3.13 mmol, 71%.

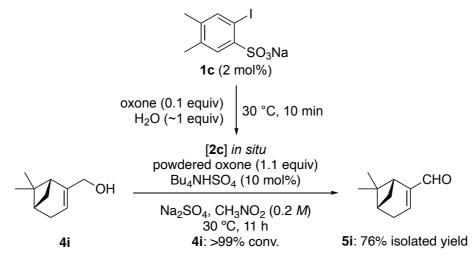
1-Hydroxy-5,6-dimethyl-1*H***-1**λ³**-benzo**[*d*][**1,2,3**]**iodaoxathiole 3,3-dioxide (2c)**:¹ White powder. **¹H NMR** (CD₃CN, 400 MHz) δ 2.23 (s, 3H), 2.24 (s, 3H), 7.78 (s, 1H), 7.82 (s, 1H); ¹³C NMR (CD₃CN, 100 MHz) δ 19.4, 20.6, 109.6, 126.5, 130.0, 138.0, 142.8, 145.8. Anal. Calcd for C8H9IO4S: C, 29.28; H, 2.76. Found: C, 29.18; H, 2.69.


Representative Procedures for Oxidation of Primary Alcohols to Aldehydes

Previous Method (Method A):

To a rigorously stirring mixture of powdered oxone (0.369 g, 1.20 mmol, 1.2 equiv), **1a** (as a monohydrate, 0.00650 g, 0.0200 mmol, 2 mol%), biphenyl (0.0771 g, 0.500 mmol, as an internal standard) and anhydrous Na₂SO₄ (1.00 g, pre-dried under vacuum with a heat gun) in CH₃NO₂ (5.00 mL, 0.200 *M*) was added **4b** (0.138 g, 1.00 mmol) at room temperature under a nitrogen atmosphere. The reaction mixture was then heated to 70 °C and monitored by TLC and ¹H NMR analysis. Upon completion, the mixture was cooled to room temperature, filtered through a tightly packed celite plug, and washed thoroughly with diethyl ether. The combined filtrates were washed with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The yield of the **5b** was determined to be 38% by ¹H NMR analysis of the crude using biphenyl as a calibrated internal standard. Multiple unidentified byproducts were observed, indicating competing side reactions under the reaction conditions.

Current Method (Method B):

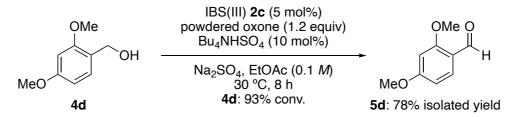


To a rigorously stirring mixture of powdered oxone (0.369 g,1.20 mmol), 2c (0.00660 g, 0.0200 mmol, 2 mol%), Bu₄NHSO₄ (0.0340 g, 0.100 mmol, 10 mol%) and anhydrous Na₂SO₄ (1.00 g, predried under vacuum with a heat gun) in CH₃NO₂ (5.00 mL, 0.200 *M*) was added 4b (0.138 g, 1.00 mmol) at 30 °C using a thermostated bath under a nitrogen atmosphere. The reaction progress was monitored by TLC analysis. Upon completion, the mixture was filtered through a tightly packed celite plug and washed thoroughly with diethyl ether. The combined filtrates were washed with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure.

The crude product was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane– $Et_2O = 10:1$) to afford product **5b** (0.123 g, 0.903 mmol, 90% yield) in analytically pure form.

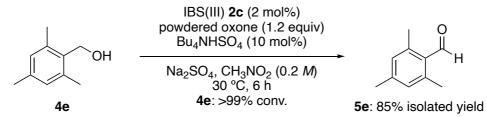
4-Methoxybenzaldehyde (5b): This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. Colorless oil; **TLC**, $R_f = 0.23$ (hexane–EtOAc = 4:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 3.90 (s, 3H), 7.01 (td, J = 2.3, 9.6 Hz, 2H), 7.85 (td, J = 2.3, 9.2 Hz, 2H), 9.89 (s, 1H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 55.4, 114.1, 129.7, 131.8, 164.4, 190.6.

Current Method (Method C):

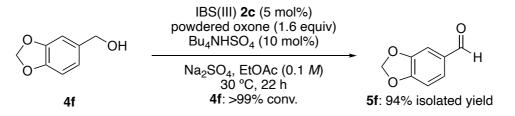


A mixture of 1c (as 1.5 hydrate, 0.00720 g, 0.0200 mmol, 2 mol%), oxone (0.0307 g, 0.100 mmol), and H₂O (ca. 20 μ L) was stirred at 30 °C for 10 min. To this stirring mixture were added powdered oxone (0.338 g, 1.10 mmol), Bu₄NHSO₄ (0.0340 g, 0.100 mmol, 10 mol%), anhydrous Na₂SO₄ (1.00 g, pre-dried under vacuum with a heat gun), CH₃NO₂ (5.00 mL, 0.200 *M*), and **4i** (0.152 g, 1.00 mmol) at 30 °C using a thermostated bath under a nitrogen atmosphere. The reaction progress was monitored by TLC analysis. Upon completion, the mixture was filtered through a tightly packed celite plug and washed with diethyl ether. The combined organic layers were washed with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The crude products were purified by column chromatography on silica gel (eluent: hexane–EtOAc = 10:1) to yield **5i** (0.114 g, 0.761 mmol, 76% yield) in analytically pure form.

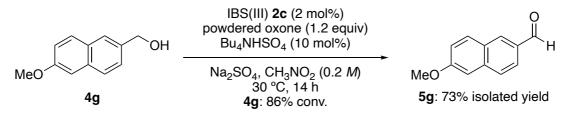
cf. Method A, 8 h: 4i, >99% conv.; 5i, 25% NMR yield (multiple unidentified byproducts were observed).


(1*R*,5*S*)-6,6-Dimethylbicyclo[3.1.1]hept-2-ene-2-carbaldehyde (5i): This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 30:1). Colorless oil; **TLC**, R_f = 0.48 (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 0.75 (s, 3H), 1.06 (d, *J* = 9.6 Hz, 1H), 1.34 (s, 3H), 2.18–2.22 (m, 1H), 2.49 (td,

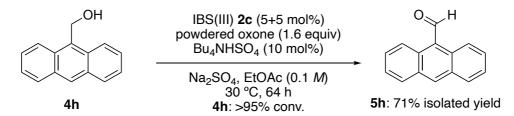
J = 4.6, 9.6 Hz, 1H), 2.57 (td, *J* = 3.0, 10.1 Hz, 2H), 2.87 (t, *J* = 5.5 Hz, 1H), 6.72 (sept, *J* = 1.5 Hz, 1H), 9.44 (s 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 20.9, 25.6, 31.0, 33.0, 37.5, 38.0, 40.6, 147.9, 151.4, 191.3.


cf. Method A [1a (5 mol%), EtOAc (0.1 M)], 3 h: 4d, 90% conv.; 5d, 2% NMR yield (multiple unidentified byproducts were observed).

2,4-Dimethoxybenzaldehyde (5d): Method B, 78% yield (0.130 g, 0.783 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 10:1). Colorless oil; **TLC**, $R_f = 0.25$ (hexane–EtOAc = 4:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 3.88 (s, 3H), 3.91 (s, 3H), 6.45 (d, J = 1.8 Hz, 1H), 6.56 (dd, J = 1.8, 8.7 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 10.30 (s, 1H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 55.5, 55.6, 97.8, 105.7, 118.9, 130.6, 163.5, 166.1, 188.3.

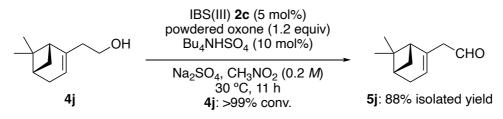

cf. Method A, 2 h: **4e**, >99% conv.; **5e**, 10% NMR yield. Dibenzyl ether, a dehydrative dimerization byproduct, was obtained as a main byproduct in 70% yield.

2,4,6-Trimethylbenzaldehyde (5e): Method B, 85% yield (0.126 g, 0.853 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 10:1). Colorless oil; TLC, $R_f = 0.55$ (hexane–EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz) δ 2.32 (s 3H), 2.59 (s 6H), 6.91 (s, 2H), 10.57 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 20.5, 21.4, 129.9, 130.5, 141.4, 143.8, 192.9.

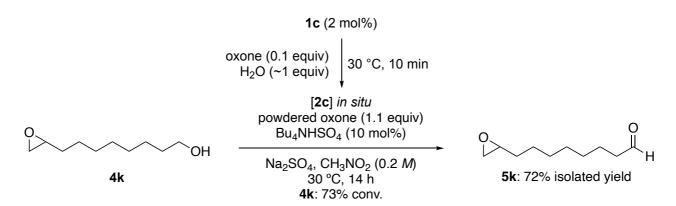

cf. Method A [**1a** (5 mol%), oxone (1.6 equiv), EtOAc (0.1 *M*)], 14 h: **4f**, 93% conv.; **5f**, 14% NMR yield (multiple unidentified byproducts were observed).

Benzo[*d*][1,3]dioxole-5-carbaldehyde (5f): Method B, 94% yield (0.141 g, 0.939 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 10:1). Colorless oil; TLC, $R_f = 0.34$ (hexane–EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz) δ 6.09 (s, 2H), 6.94 (d, J = 8.2 Hz, 1H), 7.34 (d, J = 1.4 Hz, 1H), 7.43 (dd, J = 1.4, 7.8 Hz, 1H), 9.82 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 102.1, 106.9, 108.3, 128.7, 131.8, 148.7, 153.1, 190.3.

cf. Method A, 7 h: **4f**, >95% conv.; **5g**, 11% NMR yield (multiple unidentified byproducts were observed).


6-Methoxy-2-naphthaldehyde (5g): Method B, 73% yield (0.135 g, 0.726 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 20:1). Pale yellow oil; TLC, $R_f = 0.23$ (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 3.97 (s, 3H), 7.19 (d, J = 2.3 Hz, 1H), 7.24 (dd, J = 2.3, 9.2 Hz, 1H), 7.81 (d, J = 8.2 Hz, 1H), 7.90 (d, J = 9.2 Hz, 1H), 7.93 (dd, J = 1.4, 8.7 Hz, 1H), 8.26 (s, 1H), 10.10 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 55.4, 106.0, 119.8, 123.5, 127.6, 127.8, 131.0, 132.2, 134.2, 138.1, 160.1, 191.9.

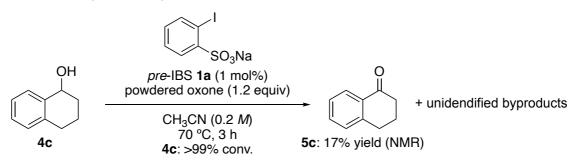
cf. Method A [1a (10 mol%), oxone (1.6 equiv), EtOAc (0.1 M)], 24 h: 4h, >99% conv.; 5h, 17%


NMR yield (multiple unidentified byproducts were observed).

Anthracene-9-carbaldehyde (5h): Method B (after 16 h, 2c (5 mol%) was further added), 71% yield (0.146 g, 0.707 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 50:1). Yellow solid; TLC, $R_{\rm f} = 0.37$ (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 7.55–7.59 (m, 2H), 7.68–7.72 (m, 2H), 8.09 (d, J = 8.7 Hz, 2H), 8.73 (s, 1H), 9.01 (d, J = 9.2 Hz, 2H), 11.56 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 123.5, 124.6, 125.7, 129.1, 129.3, 131.0, 132.1, 135.2, 193.0.

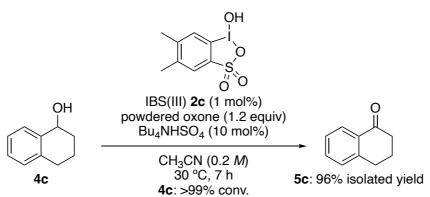
cf. Method A [1a (5 mol%)], 3 h: 4j, >99% conv.; 5j, 6% NMR yield (multiple unidentified byproducts were observed).

2-((1*R***,5***S***)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)acetaldehyde (5j):** Method B, 88% yield (0.145 g, 0.881 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 30:1). Yellow oil; **TLC**, *R*_f = 0.63 (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 0.86 (s, 3H), 1.22 (d, *J* = 8.7 Hz, 1H), 1.28 (s, 3H), 2.05 (dt, *J* = 1.4, 5.5 Hz, 1H), 2.10–2.14 (m, 1H), 2.22–2.36 (m, 2H), 2.40 (td, *J* = 4.4, 8.7 Hz, 1H), 3.06 (q, *J* = 1.2 Hz, 2H), 5.47 (quin, *J* = 1.4 Hz, 1H), 9.59 (t, *J* = 2.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.1, 26.1, 31.5, 31.6, 38.2, 40.3, 46.0, 51.9, 122.5, 139.3, 200.1.



cf. Method A, 8 h: 4k, >99% conv.; 5k, 11% NMR yield (multiple unidentified byproducts were observed).

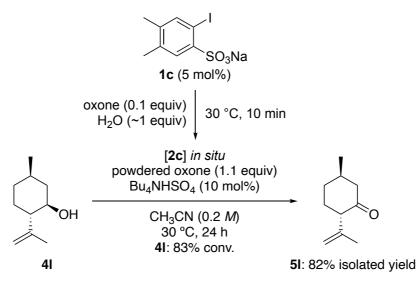
8-(Oxiran-2-yl)octanal (5k):⁵ Method C, 72% yield (0.123 g, 0.722 mmol). This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane– $Et_2O =$


10:1). Pale yellow oil; **TLC**, $R_f = 0.38$ (hexane–EtOAc = 4:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 1.33– 1.67 (m, 12H), 2.43 (dt, J = 1.8, 7.3 Hz, 2H), 2.47 (dd, J = 2.8, 5.0 Hz, 1H), 2.75 (dd, J = 4.1, 5.0 Hz, 1H), 2.88–2.93 (m, 1H), 9.77 (t, J = 1.8 Hz, 1H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 21.8, 25.7, 28.8, 28.97, 29.03, 32.2, 43.6, 46.8, 52.1, 202.6.

Representative Procedures for Oxidation of Secondary Alcohols to Ketones Previous Method (Method A):

To a rigorously stirring mixture of powdered oxone (0.369 g, 1.20 mmol, 1.2 equiv), **1a** (as a monohydrate, 0.00320 g, 0.0100 mmol, 1 mol%), and biphenyl (0.0771 g, 0.500 mmol, as an internal standard) in CH₃CN (5.00 mL, 0.200 *M*) was added **4c** (0.148 g,1.00 mmol) at room temperature under a nitrogen atmosphere. The reaction mixture was then heated to 70 °C and monitored by TLC and ¹H NMR analysis. Upon completion, the mixture was cooled to room temperature, filtered through a tightly packed celite plug, and washed thoroughly with diethyl ether. The combined filtrates were washed with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The yield of the **5c** was determined to be 17% by ¹H NMR analysis of the crude using biphenyl as a calibrated internal standard. Multiple unidentified byproducts were observed, indicating competing side reactions under the reaction conditions.

Current Method (Method B):

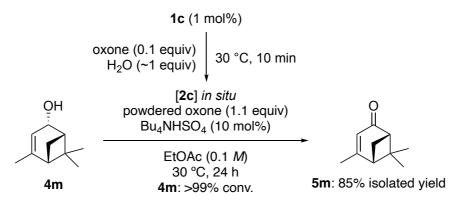


To a rigorously stirring mixture of powdered oxone (0.369 g,1.20 mmol), 2c (0.00330 g, 0.0100 mmol, 1 mol%), Bu₄NHSO₄ (0.0340 g, 0.100 mmol, 10 mol%) and anhydrous Na₂SO₄ (1.00 g, predried under vacuum with a heat gun) in CH₃NO₂ (5.00 mL, 0.200 *M*) was added 4c (0.148 g, 1.00

mmol) at 30 °C using a thermostated bath under a nitrogen atmosphere. The reaction progress was monitored by TLC analysis. Upon completion, the mixture was filtered through a tightly packed celite plug and washed thoroughly with diethyl ether. The combined filtrates were washed with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The crude product was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 10:1) to afford product **5c** (0.140 g, 0.958 mmol, 96% yield) in analytically pure form.

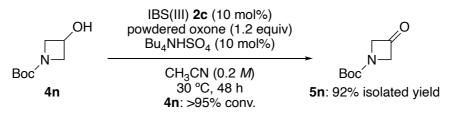
3,4-Dihydronaphthalen-1(2*H***)-one (5c):** This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. Light yellow oil; **TLC**, $R_f = 0.27$ (hexane–EtOAc = 4:1); ¹**H NMR** (CD₃CN, 400 MHz) δ 2.10 (quin, J = 6.3 Hz, 2H), 2.60 (t, J = 6.6 Hz, 2H), 2.97 (t, J = 6.2 Hz, 2H), 7.30–7.34 (m, 2H), 7.51 (dt, J = 1.4, 7.3 Hz, 1H), 7.91–7.94 (m, 1H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 23.1, 29.5, 38.9, 126.4, 126.9, 128.6, 132.4, 133.2, 144.3, 198.1.

Current Method (Method C):



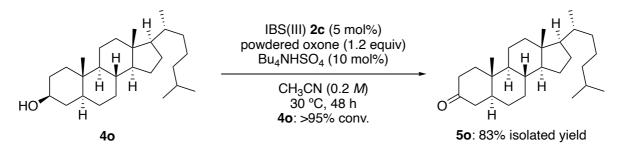
A mixture of **1c** (as 1.5 hydrate, 0.0173 g, 0.0500 mmol, 5 mol%), oxone (0.0307 g, 0.100 mmol), and H₂O (ca. 20 μ L) was stirred at 30 °C for 10 min. To this stirring mixture were added powdered oxone (0.338 g, 0.110 mmol), Bu₄NHSO₄ (0.0340 g, 0.100 mmol, 10 mol%), CH₃CN (10.0 mL, 0.100 M), and **4I** (0.154 g, 1.00 mmol) at 30 °C using a thermostated bath under a nitrogen atmosphere. The reaction progress was monitored by TLC analysis. Upon completion, the mixture was filtered through a tightly packed celite plug and washed with diethyl ether. The combined organic layers were washed with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The crude products were purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 20:1) to afford **5I** (0.125 g, 0.818 mmol, 82% yield) in analytically pure form.

cf. Method A [1a (5 mol%)], 12 h: 4l, 92% conv.; 5l, 6% NMR yield (multiple unidentified byproducts


were observed).

(2*S*,5*R*)-5-Methyl-2-(prop-1-en-2-yl)cyclohexan-1-one (5l): This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. Colorless oil; TLC, $R_f = 0.40$ (hexane–EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz) δ 1.04 (d, J = 6.4 Hz, 3H), 1.38–1.48 (m, 1H), 1.74–1.85 (m, 1H), 1.75 (s, 3H), 1.86–1.96 (m, 2H), 2.02–2.09 (m, 2H), 2.41 (ddd, J = 2.0, 3.7, 13.3 Hz, 1H), 2.96 (dd, J = 5.5, 12.8 Hz, 1H), 4.72 (t, J = 0.92 Hz, 1H), 4.94 (t, J = 1.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.2, 22.2, 31.0, 33.7, 35.2, 50.4, 57.5, 112.6, 143.3, 210.0.

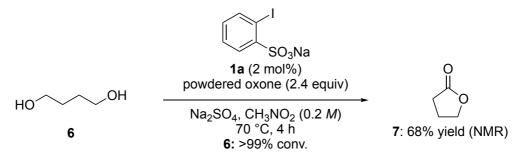
cf. Method A [1a (1 mol%), EtOAc], 6 h: 4m, >99% conv.; 5m, 10% NMR yield (multiple unidentified byproducts were observed).


(1*S*,5*S*)-4,6,6-Trimethylbicyclo[3.1.1]hept-3-en-2-one (5m): Method C, 85% yield (0.127 g, 0.847 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane– $Et_2O = 20:1$). Pale yellow oil; TLC, $R_f = 0.40$ (hexane–EtOAc = 4:1); ¹H NMR (CDCl₃, 400 MHz) δ 1.01 (s, 3H), 1.50 (s, 3H), 2.02 (d, J = 1.4 Hz, 3H), 2.08 (d, J = 9.2 Hz, 1H), 2.40–2.43 (m, 1H), 2.63–2.67 (m, 1H), 2.81 (td, J = 4.6, 11.0 Hz, 1H), 5.73 (s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.8, 23.3, 26.3, 40.6, 49.4, 53.7, 57.3, 120.9, 170.0, 203.6.

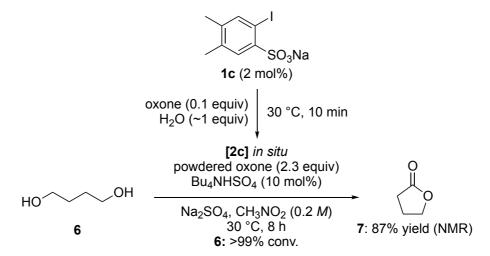
cf. Method A [**1a** (10 mol%)], 12 h: **4n**, >95% conv.; **5n**, 10% NMR yield (multiple unidentified byproducts were observed).

tert-Butyl 3-oxoazetidine-1-carboxylate (5n): Method B, 92% yield (0.158 g, 0.920 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 10:1). Yellow solid; TLC, $R_f = 0.57$ (hexane–EtOAc = 2:1);

¹**H NMR** (CDCl₃, 400 MHz) δ 1.49 (s, 9H), 4.69 (s, 4H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 28.2, 70.9, 80.9, 155.9, 196.6.

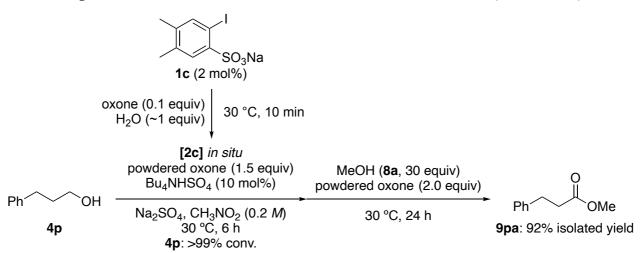

cf. Method A [1a (5 mol%)], 60 h: 40, 11% conv.; 50, <10% NMR yield (unreacted 40 was recovered). (5*S*,8*R*,9*S*,10*S*,13*R*,14*S*,17*R*)-10,13-Dimethyl-17-((*R*)-6-methylheptan-2-yl)hexadecahydro-3*H*-cyclopenta[a]phenanthren-3-one (50): Method B, 83% yield (0.320 g, 0.827 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 20:1). Yellow solid; TLC, $R_f = 0.23$ (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 0.68 (s, 3H), 0.85 (d, *J* = 1.8 Hz, 3H), 0.87 (d, *J* = 1.8 Hz, 3H), 0.90 (d, *J* = 6.4 Hz, 3H), 0.95–1.41 (m, 22H), 1.49–1.60 (m, 4H), 1.67–1.71 (m, 1H), 1.77–1.85 (m, 1H), 1.97–2.10 (m, 3H), 2.23–2.43 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 11.4, 12.0, 18.6, 21.4, 22.5, 22.8, 23.8, 24.2, 28.0, 28.2, 28.9, 31.7, 35.3, 35.6, 35.7, 36.1, 38.2, 38.5, 39.5, 39.8, 42.5, 44.7, 46.7, 53.7, 56.20, 56.22, 212.2.

Nonan-5-one (5a): Method B, 95% yield (0.137 g, 0.952 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 20:1). Colorless oil; **TLC**, $R_f = 0.55$ (hexane–EtOAc = 4:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 0.90 (t, J = 7.3 Hz, 6H), 1.31 (sext, J = 7.4 Hz, 4H), 1.55 (quin, J = 7.5 Hz, 4H), 2.40 (t, J = 7.6 Hz, 4H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 13.8, 22.3, 25.9, 42.4, 211.7.


Procedures for Oxidative Lactonization

Previous Method (Method A):

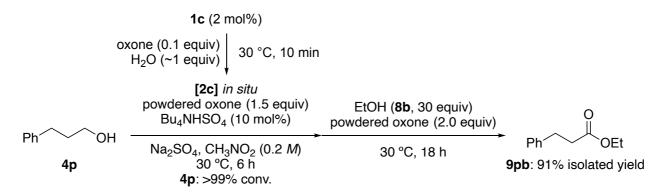
To a rigorously stirring mixture of powdered oxone (0.738 g, 2.40 mmol, 2.4 equiv), **1a** (as a monohydrate, 0.00650 g, 0.0200 mmol, 2 mol%), biphenyl (0.0771 g, 0.500 mmol, as an internal standard) and anhydrous Na₂SO₄ (1.00 g, pre-dried under vacuum with a heat gun) in CH₃NO₂ (5.00 mL, 0.200 *M*) was added **6** (0.0901 g, 1.00 mmol) at room temperature under a nitrogen atmosphere. The reaction mixture was then heated to 70 °C and monitored by TLC and ¹H NMR analysis. Upon completion, the mixture was cooled to room temperature, filtered through a tightly packed celite plug, and washed thoroughly with diethyl ether. The combined filtrates were washed with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The yield of lactone **7** was determined to be 68% by ¹H NMR analysis of the crude using biphenyl as a calibrated internal standard.


Current Method (Method C):

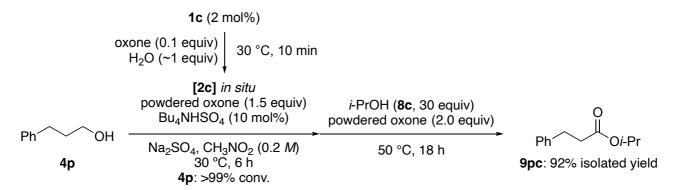
A mixture of **1c** (as 1.5 hydrate, 0.00720 g, 0.0200 mmol, 2 mol%), oxone (0.0307 g, 0.100 mmol), and H₂O (ca. 20 μ L) was stirred at 30 °C for 10 min. To this stirring mixture were added powdered oxone (0.707 g, 2.30 mmol), Bu₄NHSO₄ (0.0340 g, 0.100 mmol, 10 mol%), anhydrous Na₂SO₄ (1.00 g, pre-dried under vacuum with a heat gun), CH₃NO₂ (5.00 mL, 0.200 M), and **6** (0.0901 g, 1.00 mmol) at 30 °C using a thermostated bath under a nitrogen atmosphere. The reaction progress was monitored by TLC analysis. Upon completion, the mixture was filtered through a tightly packed

celite plug and washed with diethyl ether. The combined organic layers were washed with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO₄, and concentrated under reduced pressure. The yield of the **7** was determined to be 87% by ¹H NMR analysis of the crude using biphenyl as a calibrated internal standard.

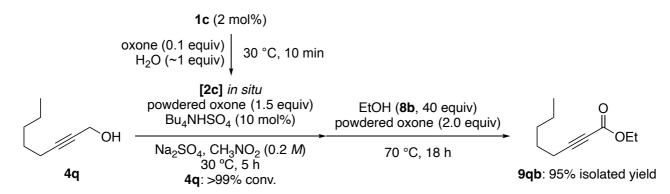
Dihydrofuran-2(*3H*)-one (7): This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. Colorless oil; **TLC**, $R_f = 0.63$ (hexane–EtOAc = 4:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 2.27 (quin, J = 7.7 Hz, 2H), 2.50 (t, J = 8.0 Hz, 2H), 4.36 (t, J = 7.1 Hz, 2H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 21.8, 27.4, 68.2, 177.6.

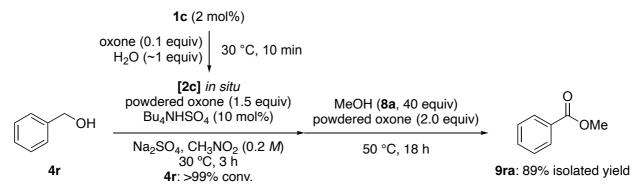


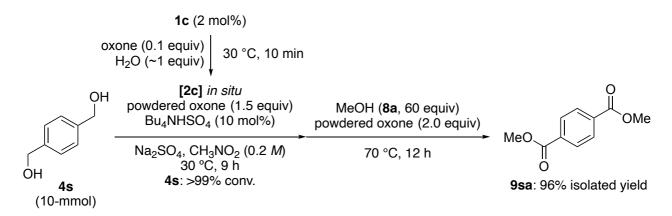
Representative Procedure for Oxidative Esterification (Method C)

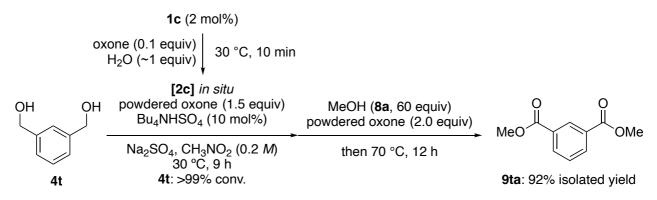

A mixture of **1c** (as 1.5 hydrate, 0.00722 g, 0.0200 mmol, 2 mol%), oxone (0.0307 g, 0.100 mmol, 0.1 equiv.), and H₂O (ca. 20 µL) was stirred at 30 °C for 10 min. To this stirred mixture were added powdered oxone (0.461 g, 1.50 mmol, 1.5 equiv.), Bu₄NHSO₄ (0.0340 g, 0.100 mmol, 10 mol%), anhydrous Na₂SO₄ (1.00 g, pre-dried under vacuum with a heat gun), CH₃NO₂ (5.00 mL, 0.200 *M*), and **4p** (1.00 mmol) were added at 30 °C under nitrogen. The reaction progress was monitored by TLC or ¹H NMR analysis. After complete consumption of **4p** and formation of aldehyde **5p**, to the resulting mixture were added powdered oxone (0.615 g, 2.00 mmol) and methanol (**8a**, 0.961 g, 30.0 mmol, 30.0 equiv.) at 30 °C under a nitrogen atmosphere. The reaction was again monitored by TLC or ¹H NMR analysis. Upon completion, the reaction mixture was filtered through a plug of tightly packed celite, which was then thoroughly washed with diethyl ether. The combined filtrates were washed successively with water (2 x 5 mL) and brine (1 x 5 mL), dried over anhydrous MgSO4, and concentrated under reduced pressure. The crude products were purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 20:1) to yield **7pa** (0.151 g, 0.922 mmol, 92% yield) in analytically pure form.

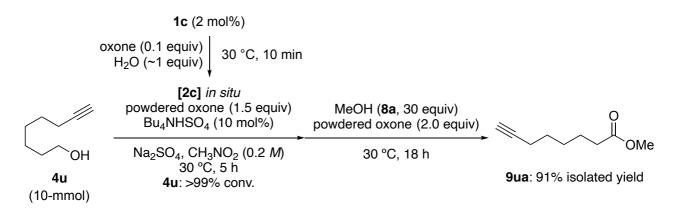
Methyl 3-phenylpropanoate (7pa): This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. Colorless oil; TLC, $R_f = 0.33$


(hexane–EtOAc = 10:1); ¹**H** NMR (CDCl₃, 400 MHz) δ 2.62–2.66 (m, 2H), 2.96 (t, *J* = 8.0 Hz, 2H), 3.67 (s, 3H), 7.19–7.22 (m, 3H), 7.27–7.31 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 30.6, 35.3, 51.2, 126.0, 128.0, 128.2, 140.2, 172.9.


Ethyl 3-phenylpropanoate (9pb): Method C, 91% yield (0.162 g, 0.909 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 30:1). Colorless oil; TLC, $R_f = 0.40$ (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 1.23 (t, J = 7.3 Hz, 3H), 2.62 (t, J = 7.8 Hz, 2H), 2.95 (t, J = 8.0 Hz, 2H), 4.13 (q, J = 7.2 Hz, 2H), 7.18–7.21 (m, 3H), 7.26–7.31 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 14.2, 30.9, 35.9, 60.4, 126.2, 128.3, 128.4, 140.5, 172.9.


Isopropyl 3-phenylpropanoate (9pc): Method C, 92% yield (0.177 g, 0.920 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 30:1). Pale yellow oil; **TLC**, $R_f = 0.42$ (hexane–EtOAc = 10:1); ¹**H NMR** (CDCl₃, 400 MHz) δ 1.20 (d, J = 6.4 Hz, 6H), 2.59 (t, J = 7.8 Hz, 2H), 2.94 (t, J = 8.0 Hz, 2H), 5.00 (sept, J = 6.3 Hz, 1H), 7.18–7.22 (m, 3H), 7.27–7.30 (m, 2H); ¹³**C NMR** (CDCl₃, 100 MHz) δ 21.7, 30.9, 36.1, 67.5, 126.0, 128.2, 128.3, 140.4, 172.2.


Ethyl oct-2-ynoate (9qb): Method C, 95% yield (0.160 g, 0.951 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 30:1). Pale yellow oil; TLC, $R_f = 0.46$ (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 0.90 (t, J = 7.3 Hz, 3H), 1.29–1.42 (m, 7H), 1.59 (quin, J = 7.3 Hz, 2H), 2.33 (t, J = 7.1 Hz, 2H), 4.22 (q, J = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 13.8, 14.0, 18.6, 22.0, 27.2, 30.9, 61.7, 73.1, 89.4, 153.8.


Methyl benzoate (9ra): Method C, 89% yield (0.122 g, 0.894 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 30:1). Yellow oil; TLC, $R_f = 0.45$ (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 3.92 (s, 3H), 7.42–7.46 (m, 2H), 7.56 (tt, J = 1.4, 7.6 Hz, 1H), 8.03–8.06 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz) δ 51.9, 128.2, 129.4, 130.0, 132.8, 166.9.

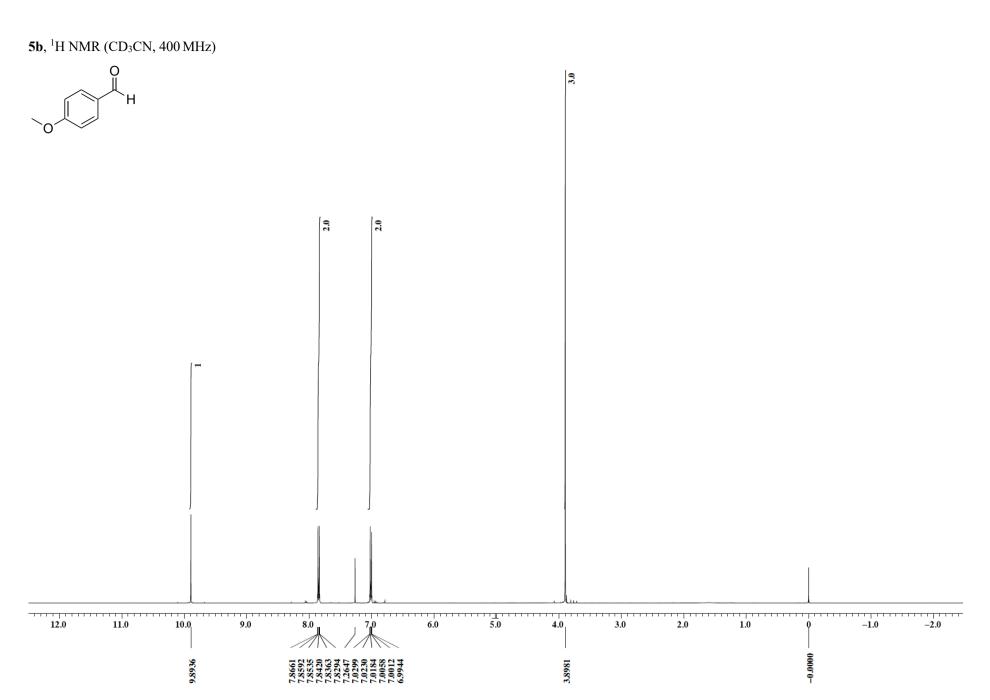
Dimethyl terephthalate (9sa): Method C, 96% yield (1.86 g, 9.58 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 10:1). White solid; **TLC**, $R_f = 0.71$ (hexane–EtOAc = 2:1); ¹H NMR (CDCl₃, 400 MHz) δ 3.95 (s, 6H), 8.11 (s, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ 52.4, 129.5, 133.8, 166.2.

Dimethyl isophthalate (9ta): Method C, 92% yield (0.179 g, 0.920 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 10:1). White solid; **TLC**, $R_f = 0.66$ (hexane–EtOAc = 2:1); ¹H NMR (CDCl₃, 400 MHz) δ 3.95 (s, 6H), 7.54 (t, J = 7.8 Hz, 1H), 8.24 (dd, J = 1.8, 7.8 Hz, 2H), 8.70 (t, J = 1.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 52.3, 128.6, 130.51, 130.65, 133.7, 166.2.

Methyl oct-7-ynoate (9ua): Method C, 91% yield (1.408 g, 9.13 mmol). This compound is commercially available. The spectral and physical data were consistent with those of an authentic sample. This compound was purified by flash column chromatography on silica gel (E. Merck Art. 9385, eluent: hexane–Et₂O = 20:1). Colorless oil; TLC, $R_f = 0.29$ (hexane–EtOAc = 10:1); ¹H NMR (CDCl₃, 400 MHz) δ 1.40–1.48 (m, 2H), 1.55 (quin, J = 7.3 Hz, 2H), 1.65 (quin, J = 7.6 Hz, 2H), 1.95 (t, J = 2.8 Hz, 1H), 2.20 (dt, J = 2.8, 7.1 Hz, 2H), 2.33 (t, J = 7.6 Hz, 2H), 3.67 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ 17.8, 24.0, 27.68, 27.73, 33.4, 50.9, 68.1, 83.6, 173.3.

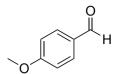
References

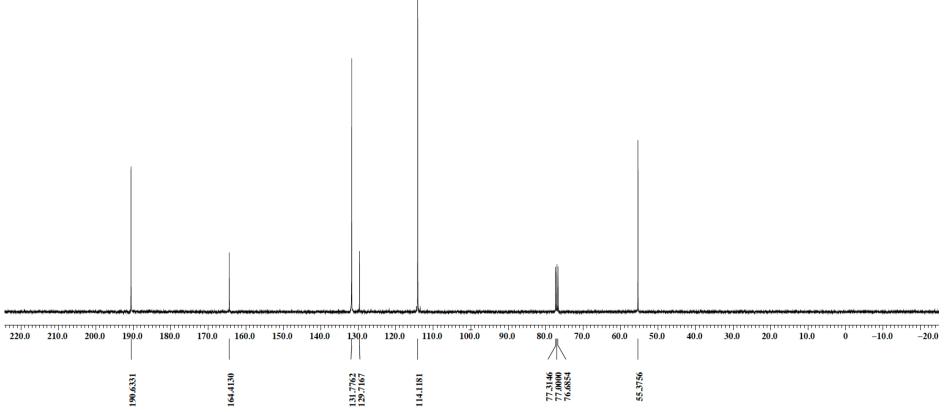
- (a) Uyanik, M.; Akakura, M.; Ishihara, K. J. Am. Chem. Soc. 2009, 131, 251–262. (b) Uyanik, M.; Fukatsu, R.; Ishihara, K. Org. Lett. 2009, 11, 3470–3473. (c) Uyanik, M.; Mutsuga, T.; Ishihara, K. Angew. Chem. Int. Ed. 2017, 56, 3956–3960.
- 2. K. Van Aken, L. Strekowski and L. Patiny, Beilstein J. Org. Chem., 2006, 2, No. 3.
- Akaji, K.; Konno, H.; Mitsui, H.; Teruya, K.; Shimamoto, Y.; Hattori, Y.; Ozaki, T.; Kusunoki, M.; Sanjoh, A. J. Med. Chem. 2011, 54, 7962–7973.
- 4. Justik, M. W. Tetrahedron Lett. 2007, 48, 3003–3007.
- 5. Jiménez, T.; Barea, E.; Oltra, J. E.; Cuerva, J. M.; Justicia, J. J. Org. Chem. 2010, 75, 7022–7025.

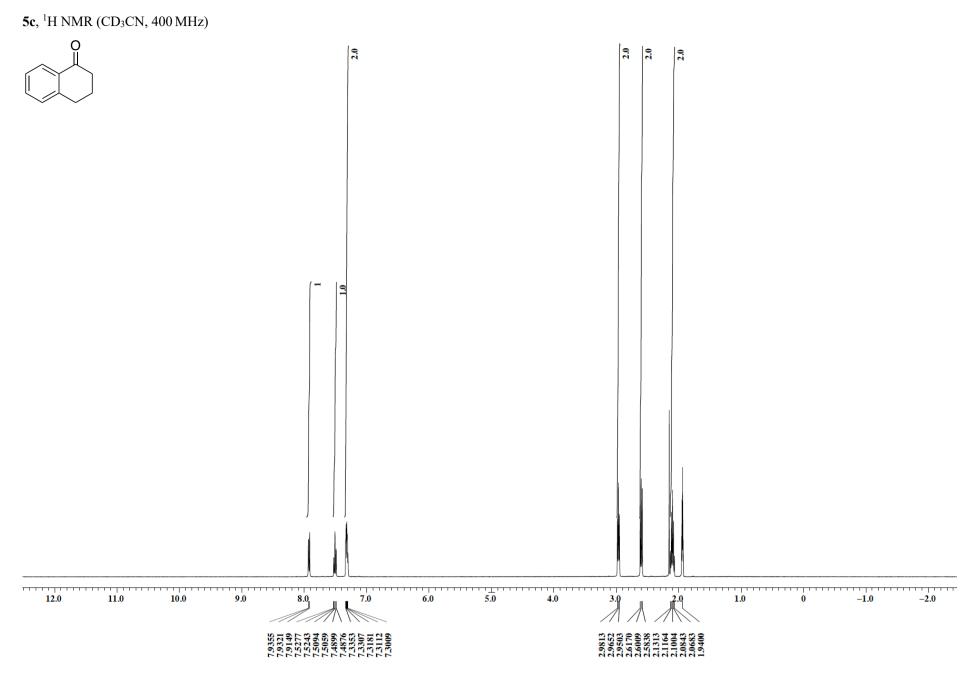

5a, ¹H NMR (CDCl₃, 400 MHz) 0.0 0 4.0 (4 -1.0 -2.0 12.0 11.0 10.0 9.0 8.0 7.0 6.0 5.0 4.0 3.0 <u>2.0</u> 1.0 7.2681 2.4147 2.3952 2.3769 587

X : parts per Million : 1H

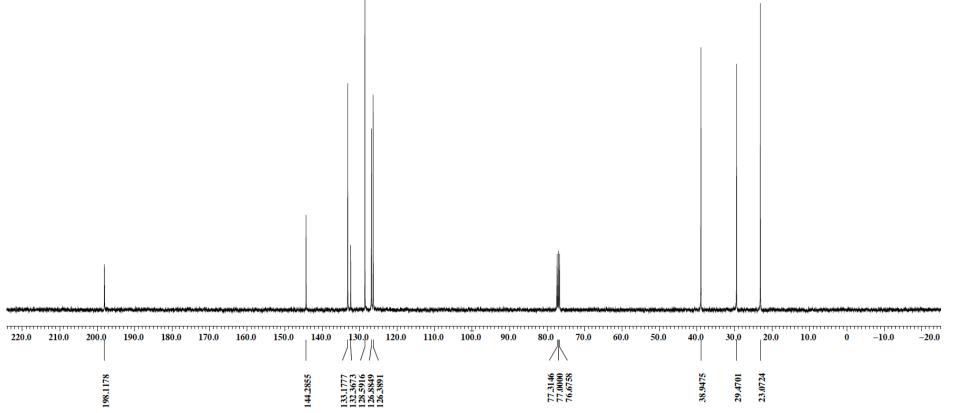
5a, ¹³C NMR (CDCl₃, 100 MHz)

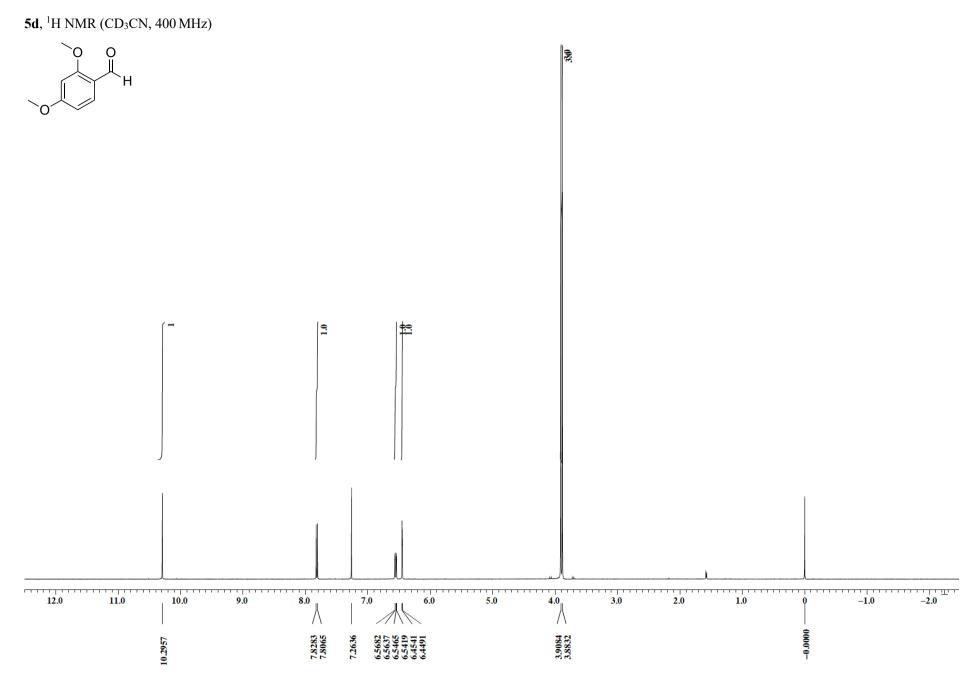

220.0	210.0 6959.112	200.0	190.0	180.0	 170.0	160.0	150.0	140.0	130.0	 110.0	100.0	90.0	77.3242 77.0000 76.6854	70.0	60.0	50.0	40.0 40.0	30.0	25.9042	0.0	13:7953	 -10.0	-20.0



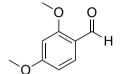

X : parts per Million : 1H

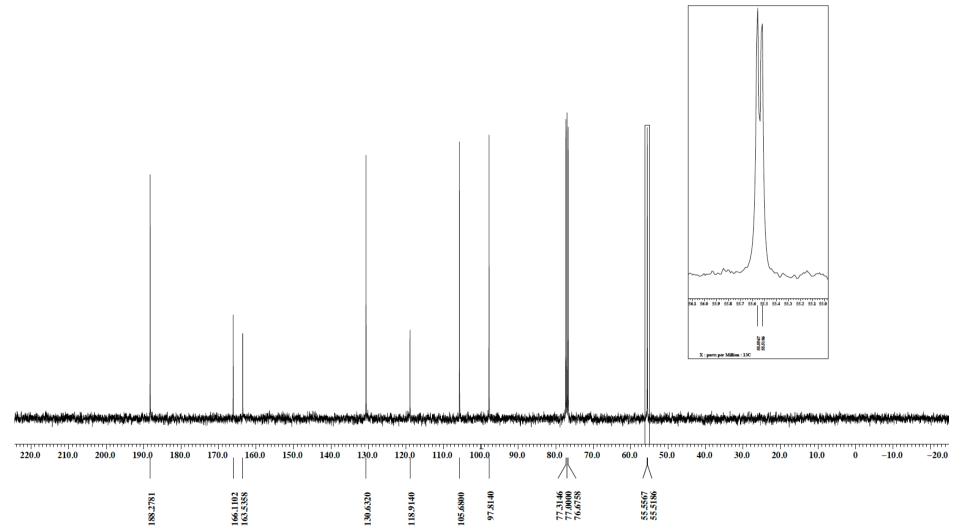
5b, ¹³C NMR (CD₃CN, 100 MHz)

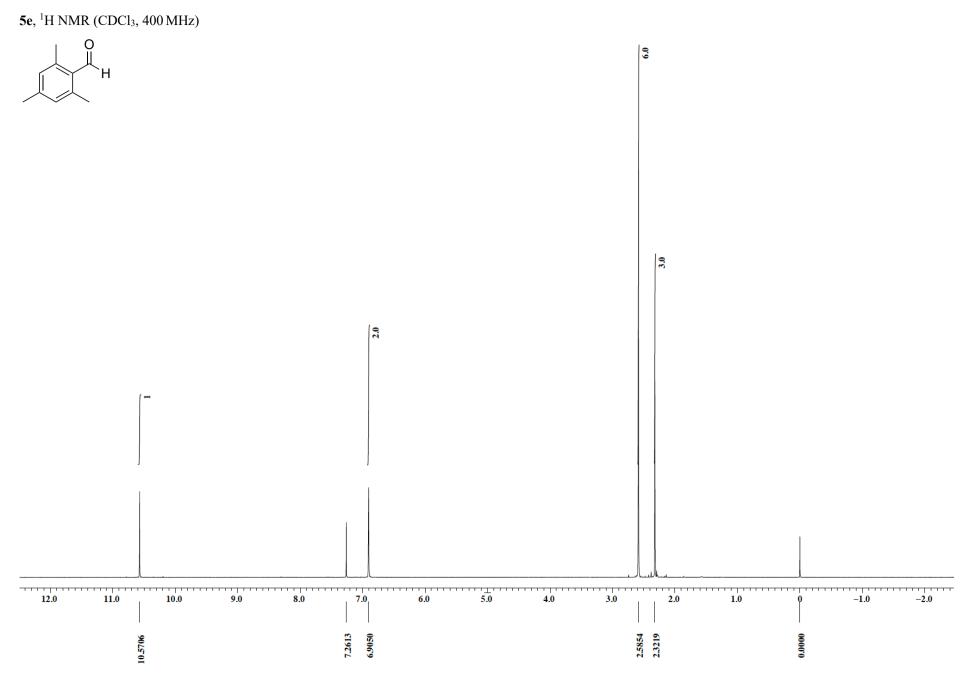

X : parts per Million : 13C


X : parts per Million : 1H

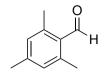
5c, ¹³C NMR (CDCl₃, 100 MHz)

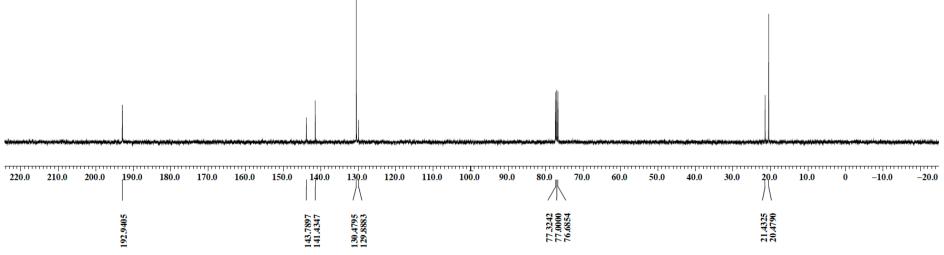


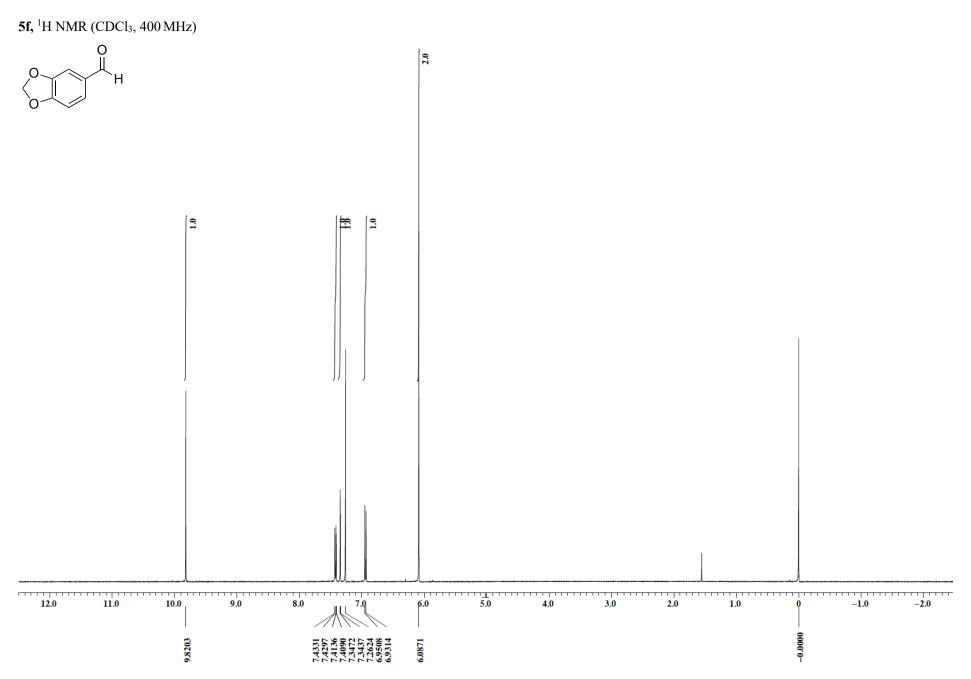

X : parts per Million : 13C


X : parts per Million : 1H

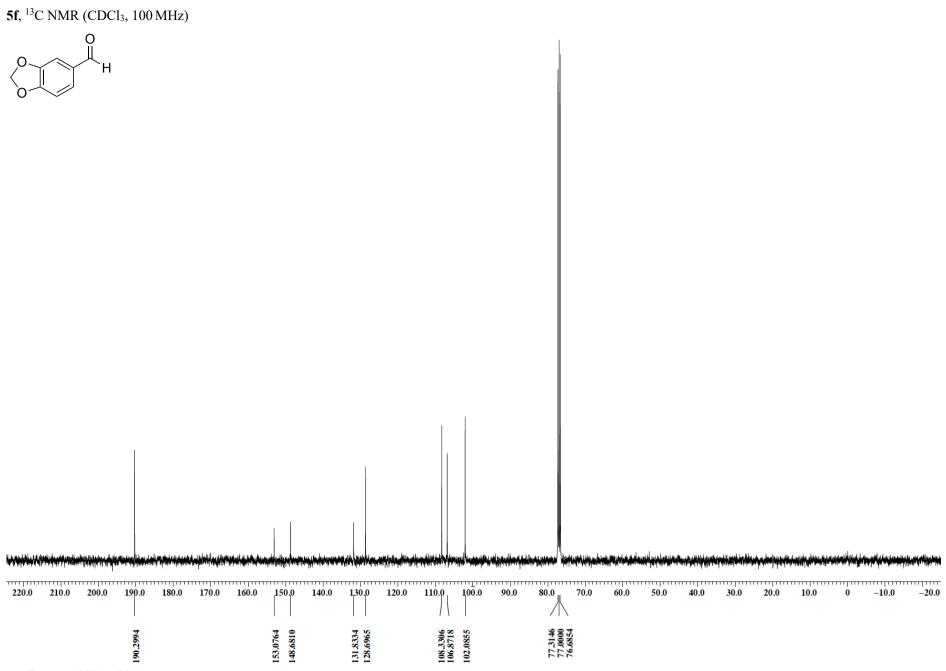
5d, ¹³C NMR (CD₃CN, 100 MHz)

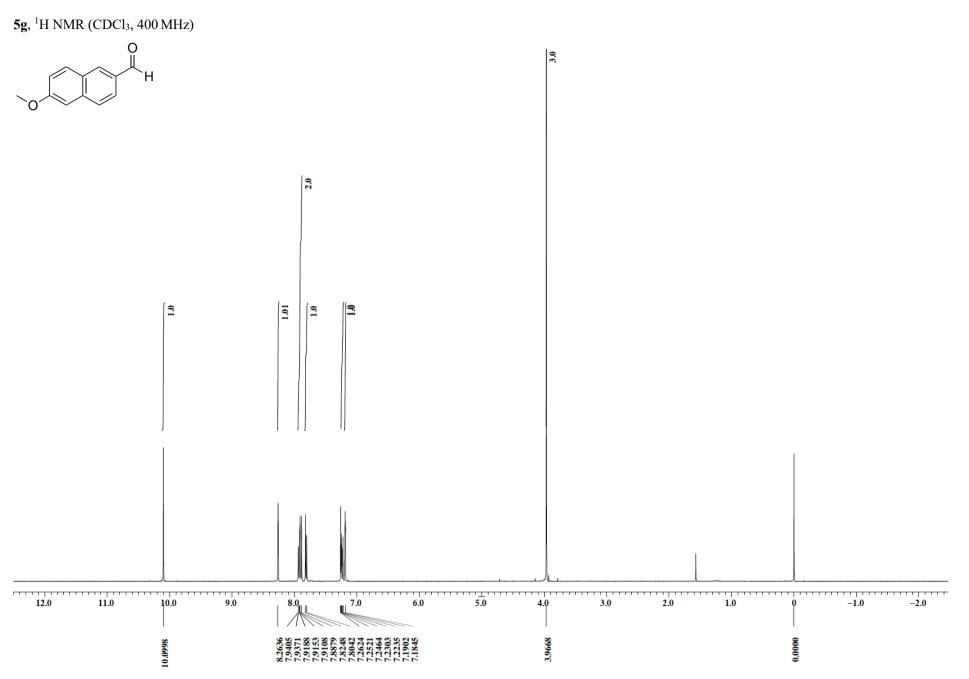


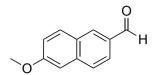

X : parts per Million : 13C

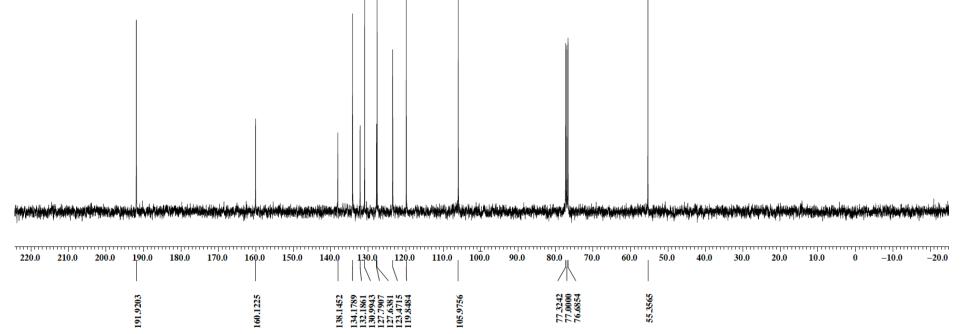

X : parts per Million : 1H

5e, ¹³C NMR (CDCl₃, 100 MHz)

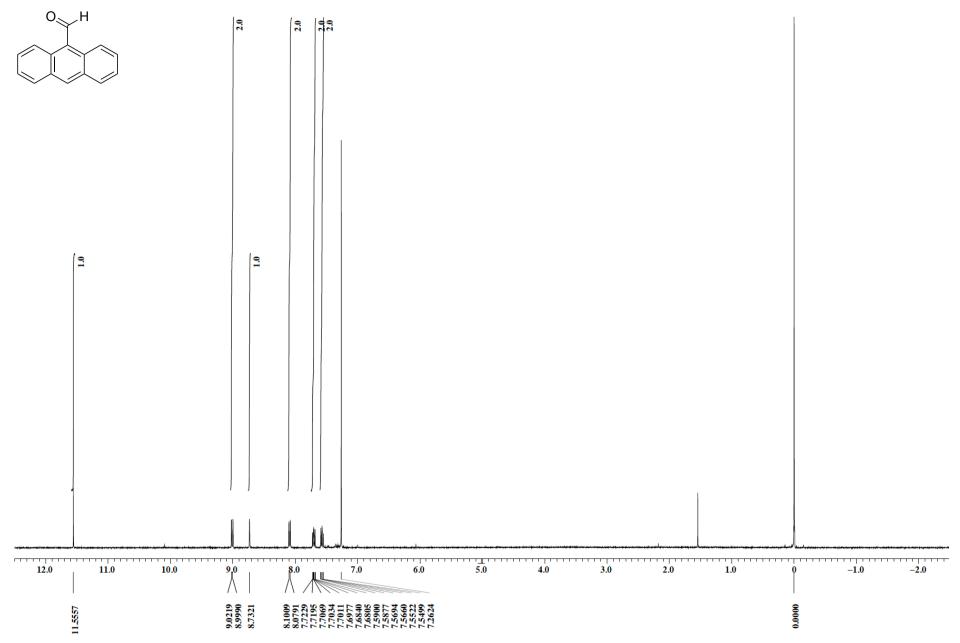



X : parts per Million : 13C

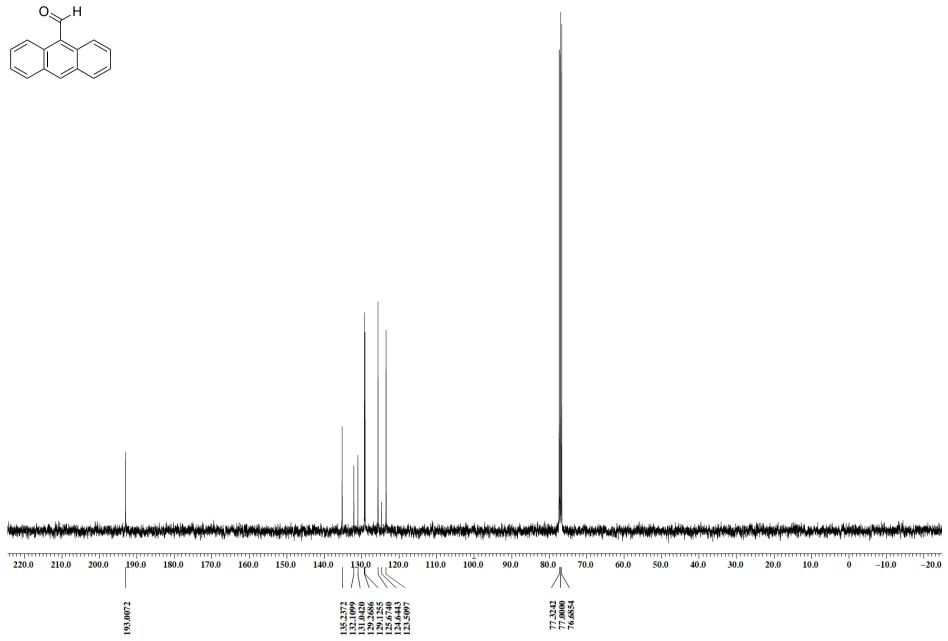

X : parts per Million : 1H

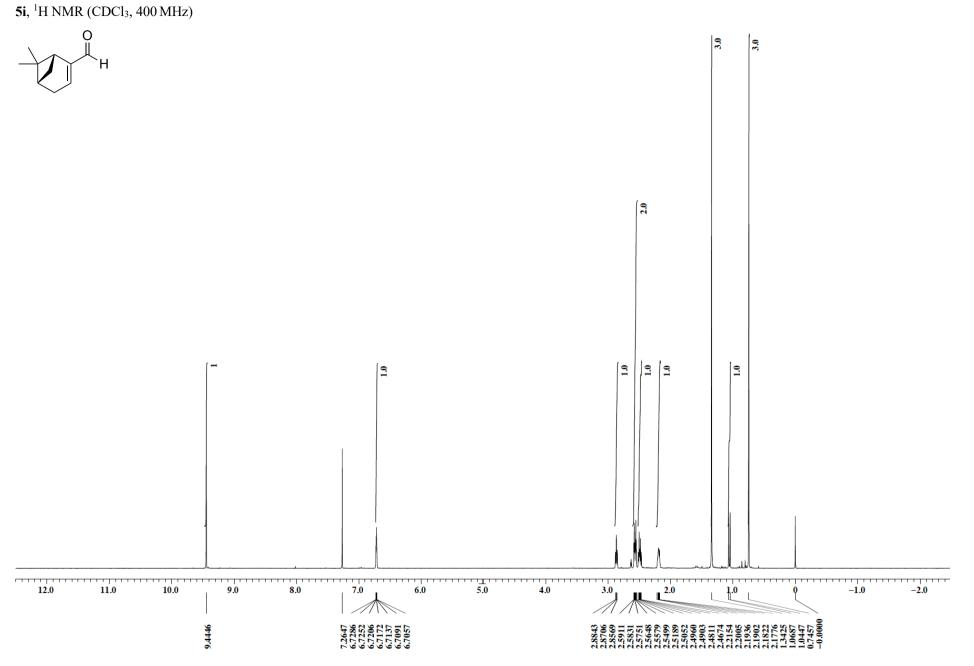


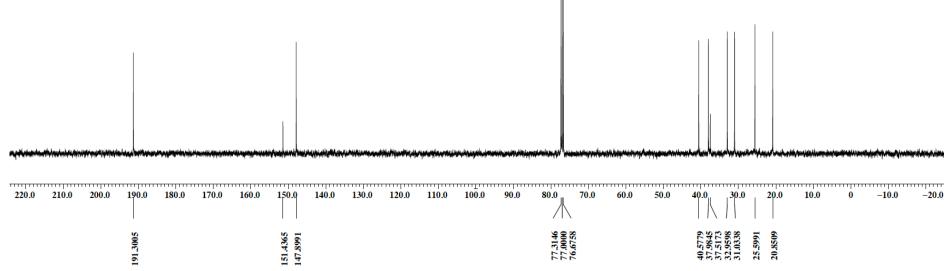
X : parts per Million : 13C

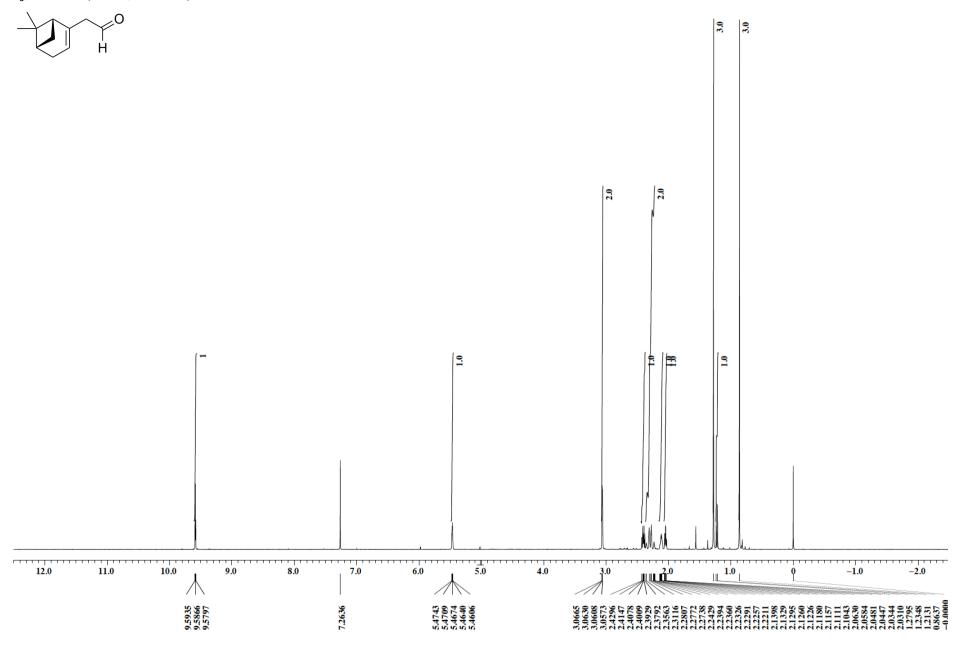


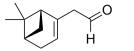
5g, ¹³C NMR (CD₃CN, 100 MHz)

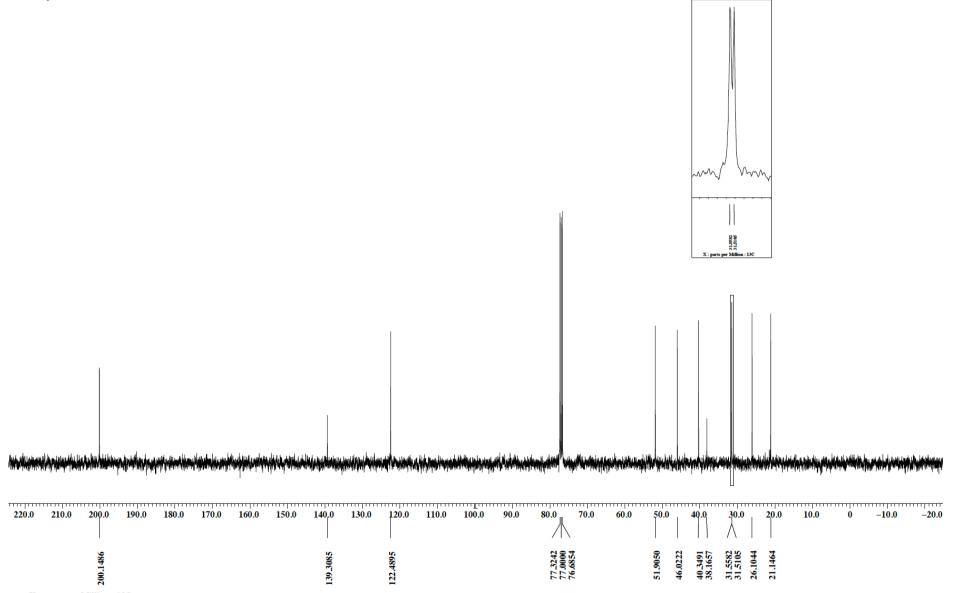



5h, ¹H NMR (CDCl₃, 400 MHz)

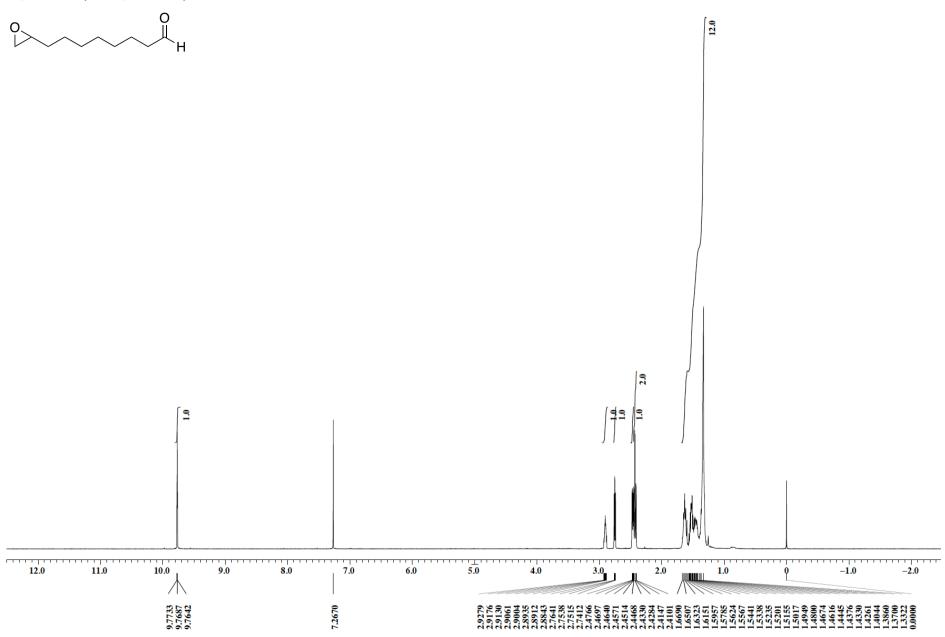




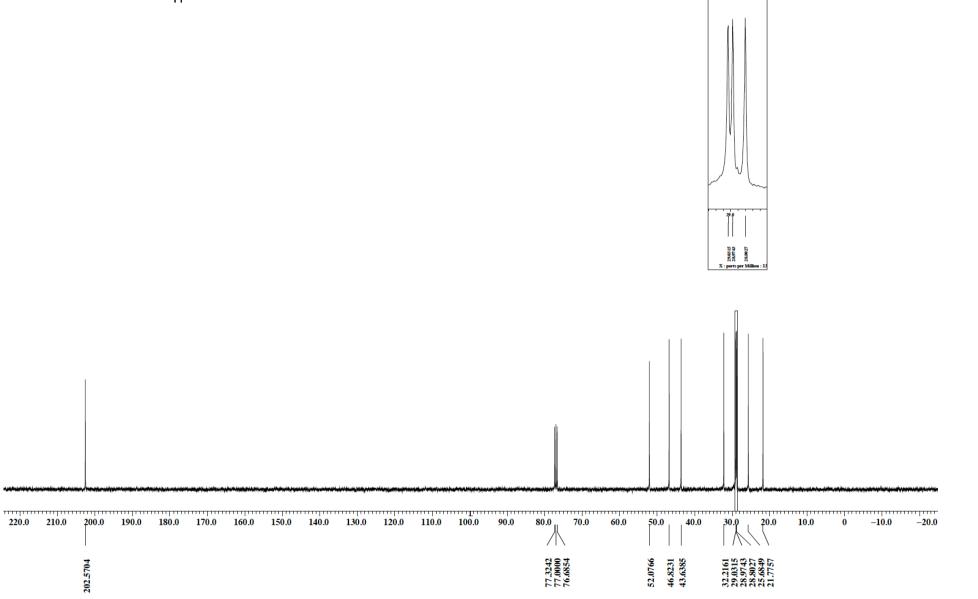

5i, ¹³C NMR (CDCl₃, 100 MHz)



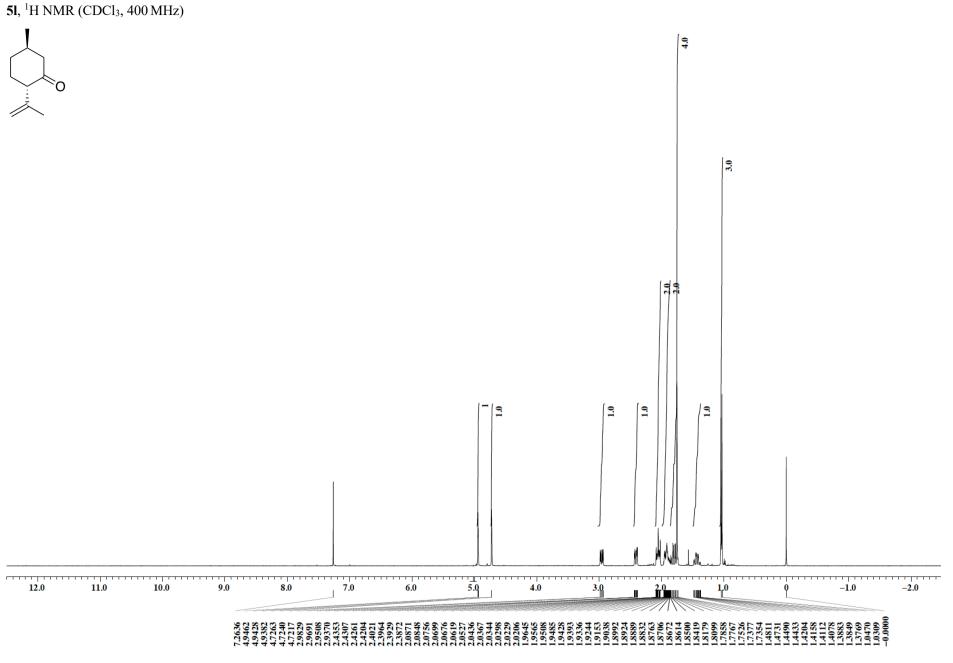
5j, ¹H NMR (CDCl₃, 400 MHz)



5j, ¹³C NMR (CDCl₃, 100 MHz)

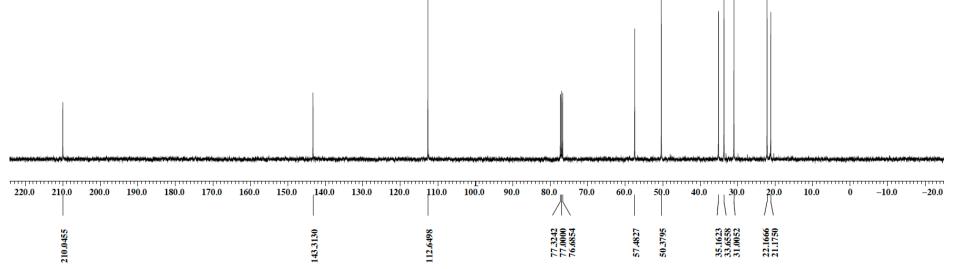


5k, ¹H NMR (CDCl₃, 400 MHz)



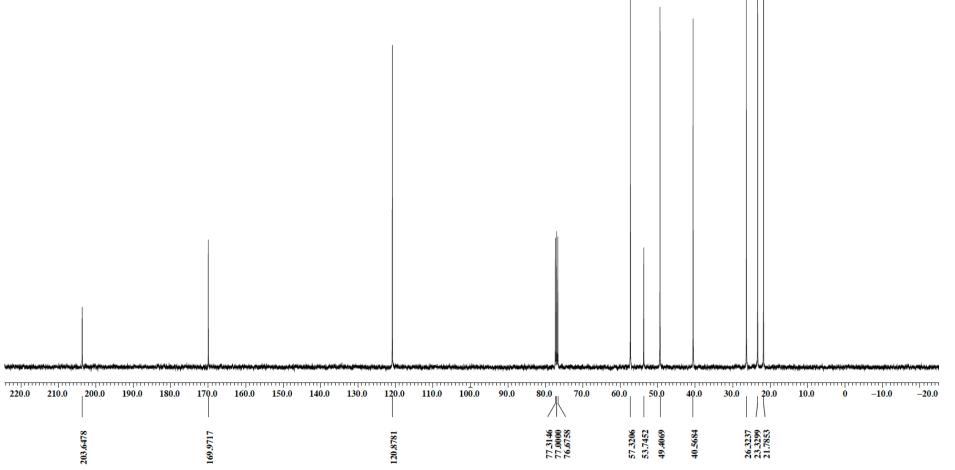
5k, ¹³C NMR (CDCl₃, 100 MHz)

° H

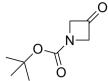


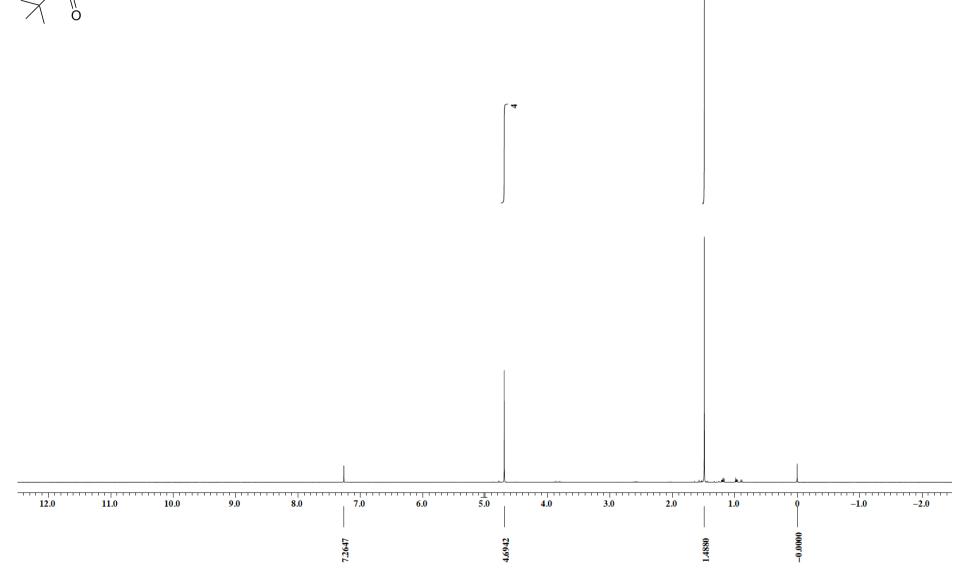
X : parts per Million : 13C

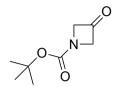
51, ¹³C NMR (CDCl₃, 100 MHz)

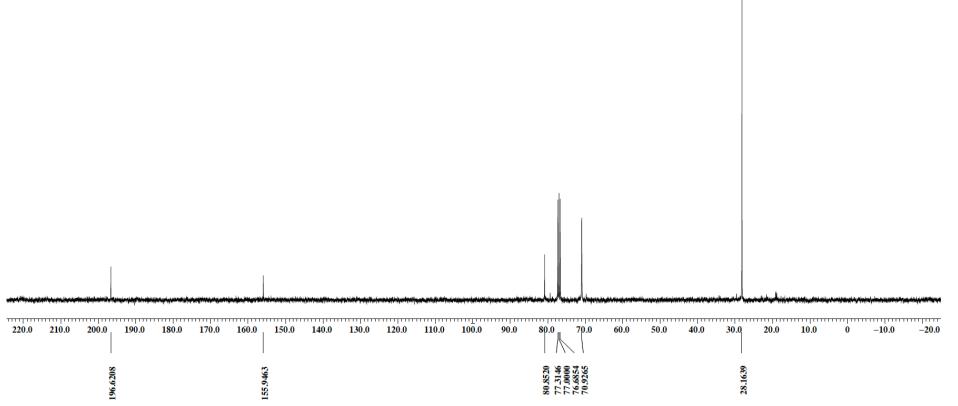


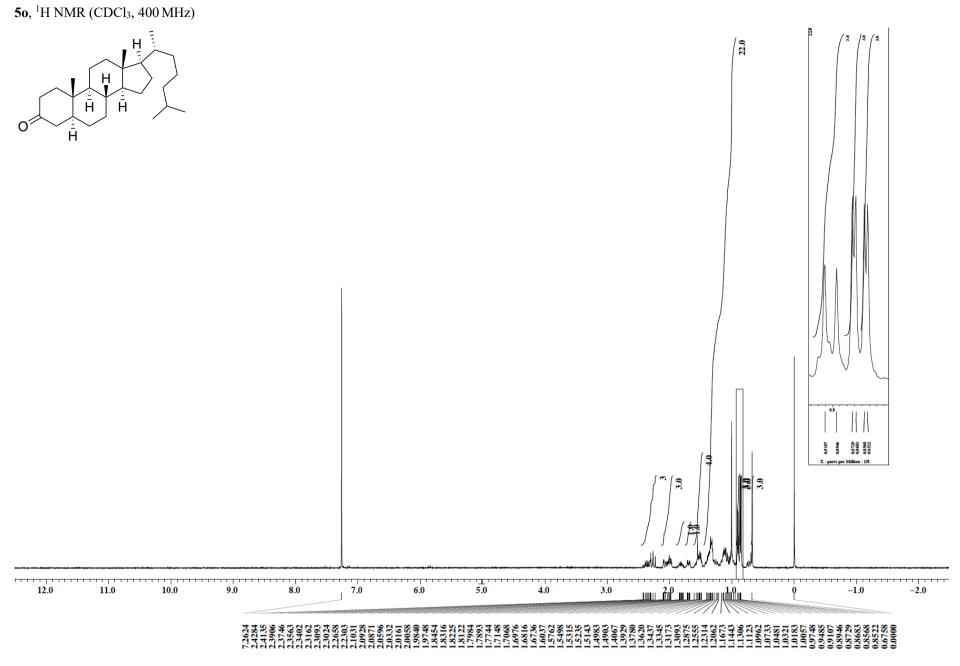
5m, ¹H NMR (CDCl₃, 400 MHz)

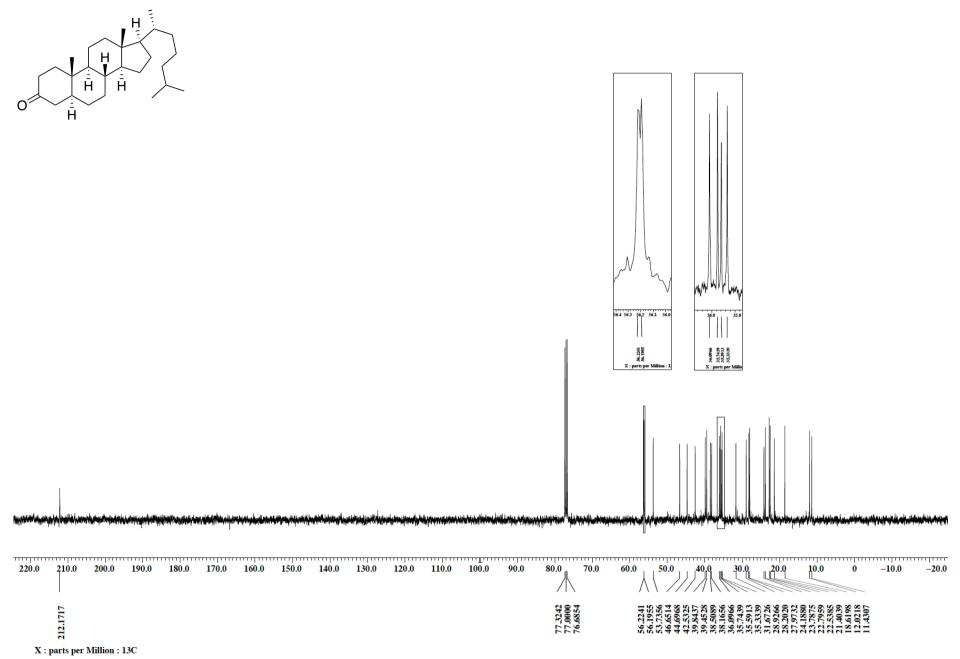



5m, ¹³C NMR (CDCl₃, 100 MHz)

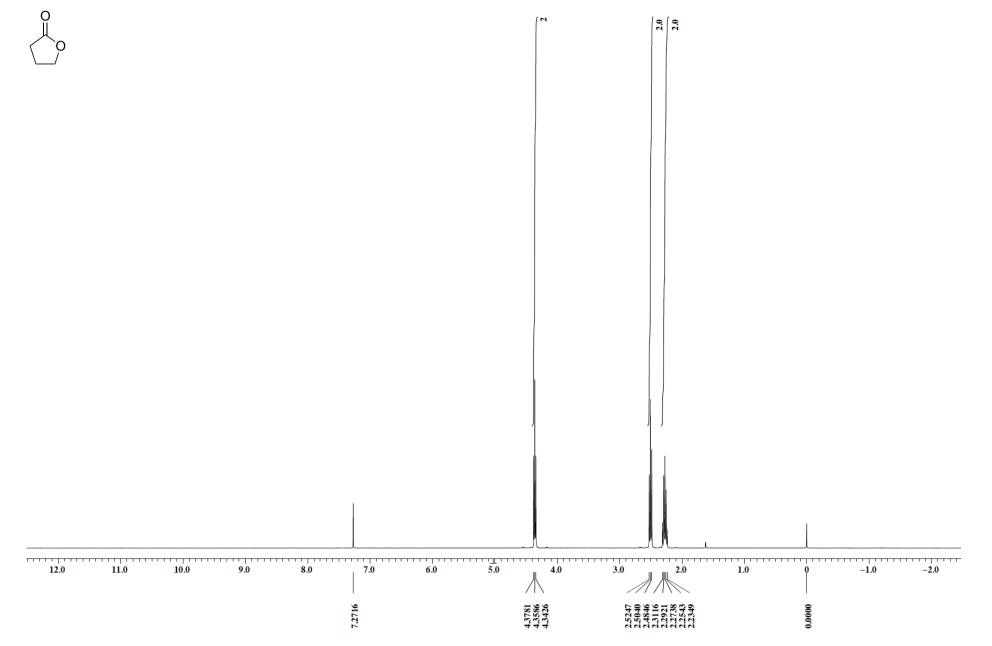

5n, ¹H NMR (CDCl₃, 400 MHz)

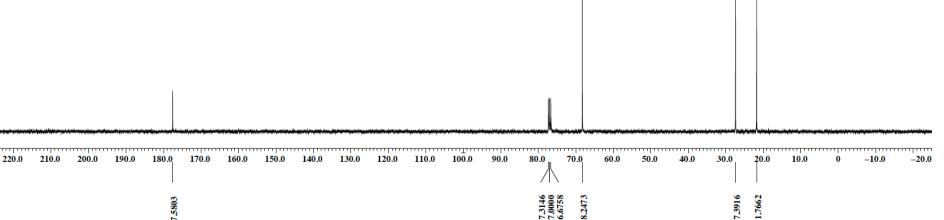





0.6

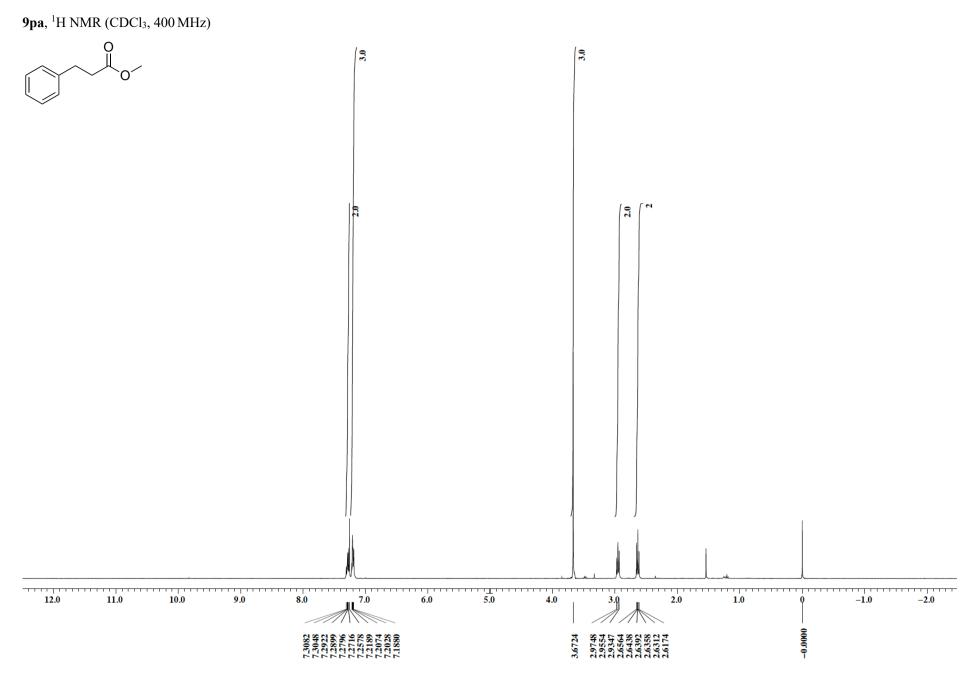
5n, ¹³C NMR (CDCl₃, 100 MHz)



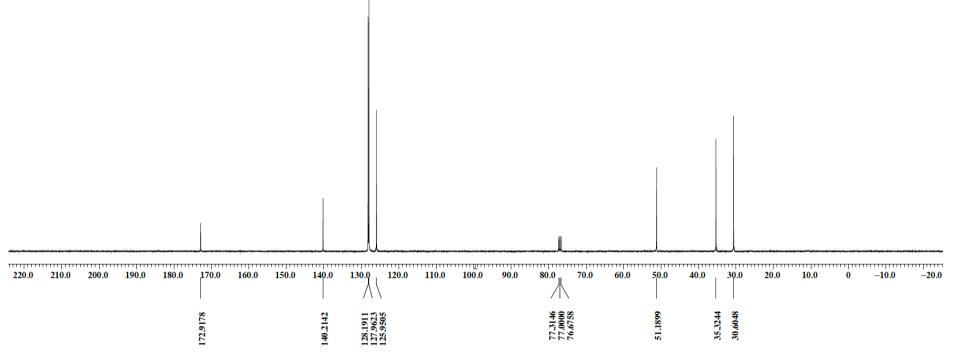


50, ¹³C NMR (CDCl₃, 100 MHz)

7, ¹H NMR (CDCl₃, 400 MHz)

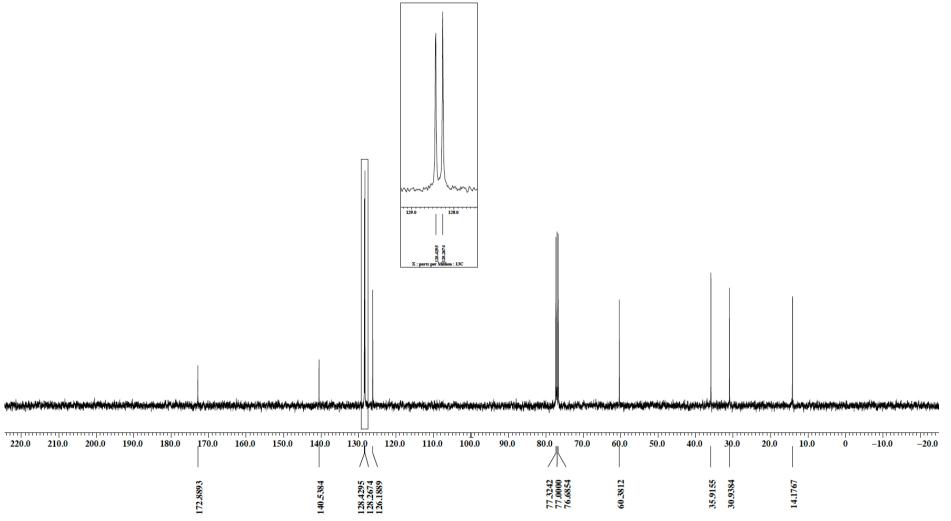


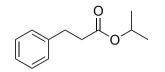
lan berefi antian metilik lan aktivat an gaf at til men yitang at saktiv	undere and the second secon	and a second second state and a second s	belayalari karangang karang		4	
220.0 210.0 200.0 190.0	180.0 170.0 160.0		120.0 110.0 100.0	90.0 80.0 70.0 60.0	50.0 40.0 30.0 20.0	10.0 0 -10.0 -20.0
	177,5803			77.3146 77.0000 76.6758 68.2473	27.3916 21.7662	

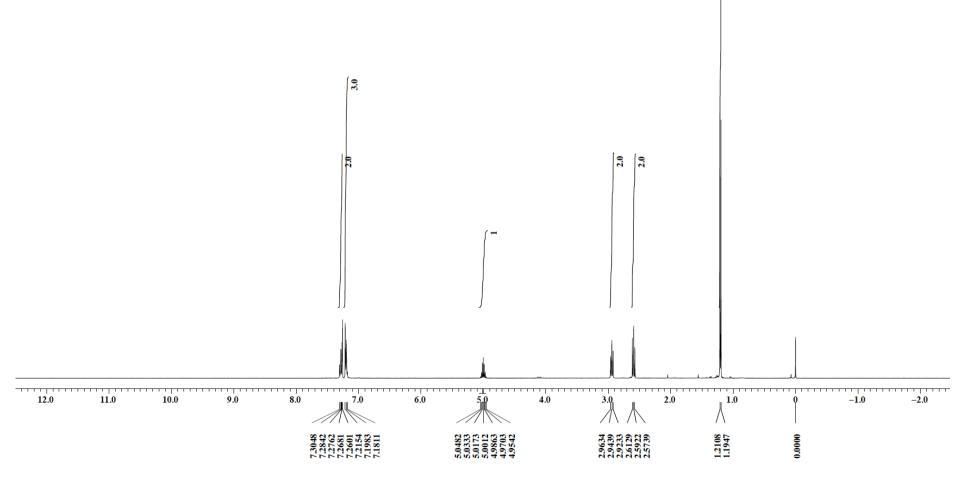


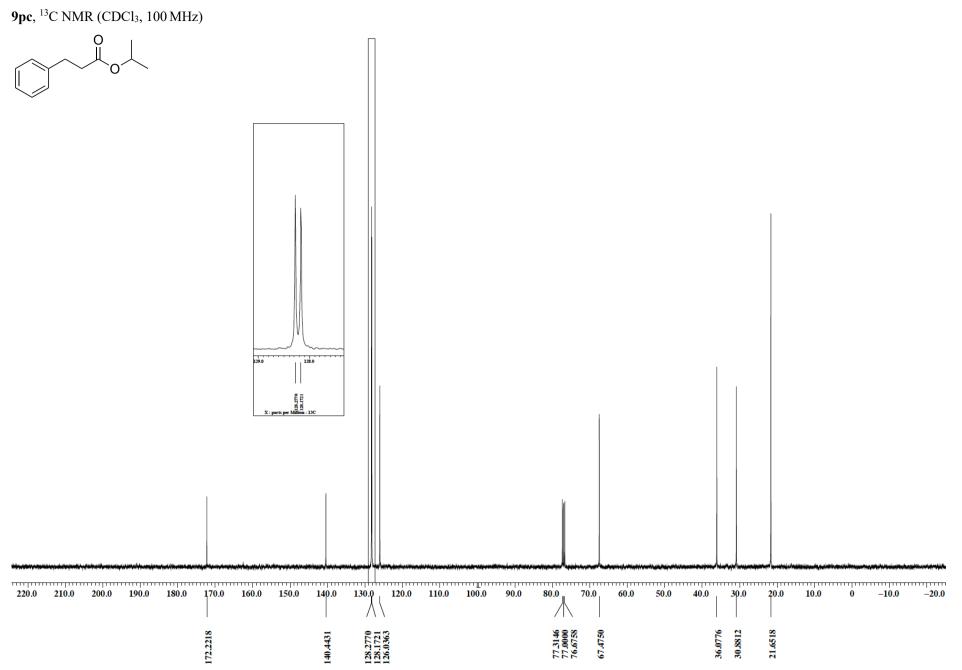
7, ¹³C NMR (CDCl₃, 100 MHz)

9pa, ¹³C NMR (CDCl₃, 100 MHz)

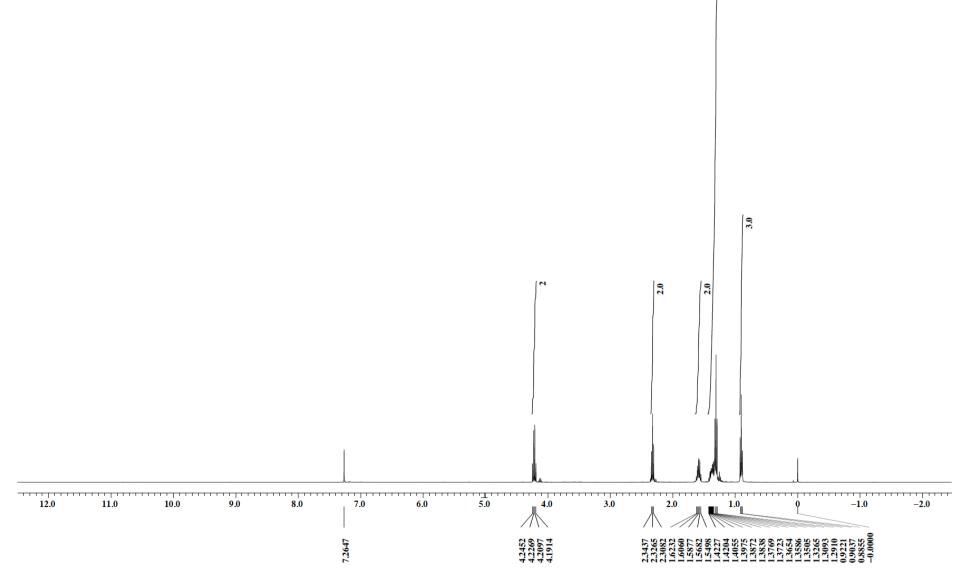

o I `0´




9pb, ¹³C NMR (CDCl₃, 100 MHz)



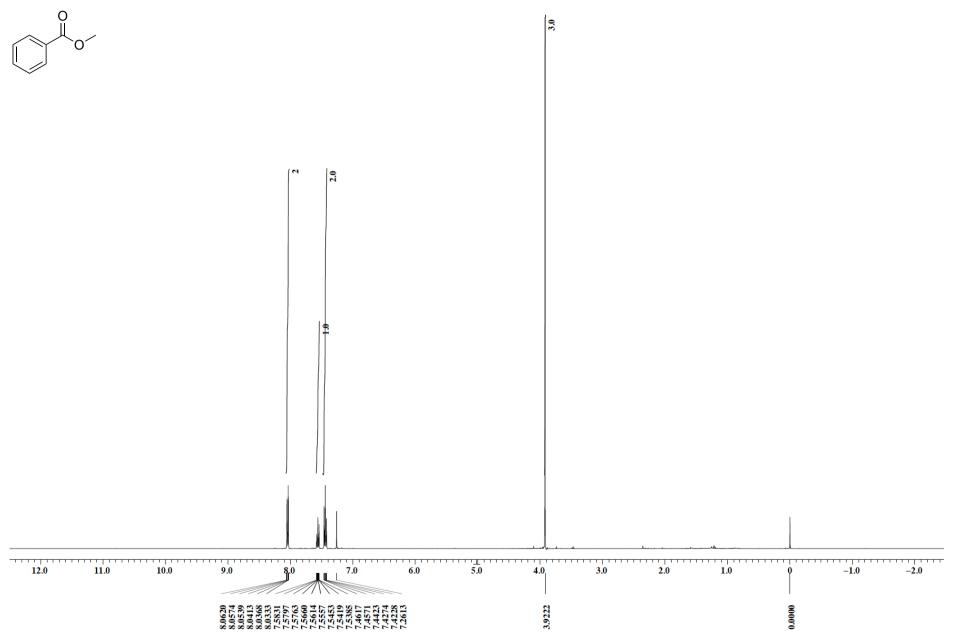
9pc, ¹H NMR (CDCl₃, 400 MHz)



6.0

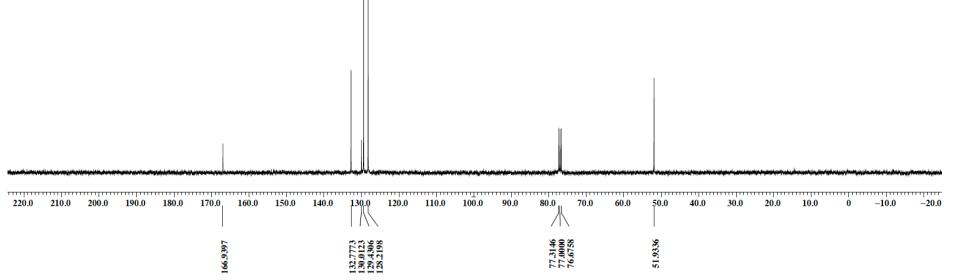
9qb, ¹H NMR (CDCl₃, 400 MHz)

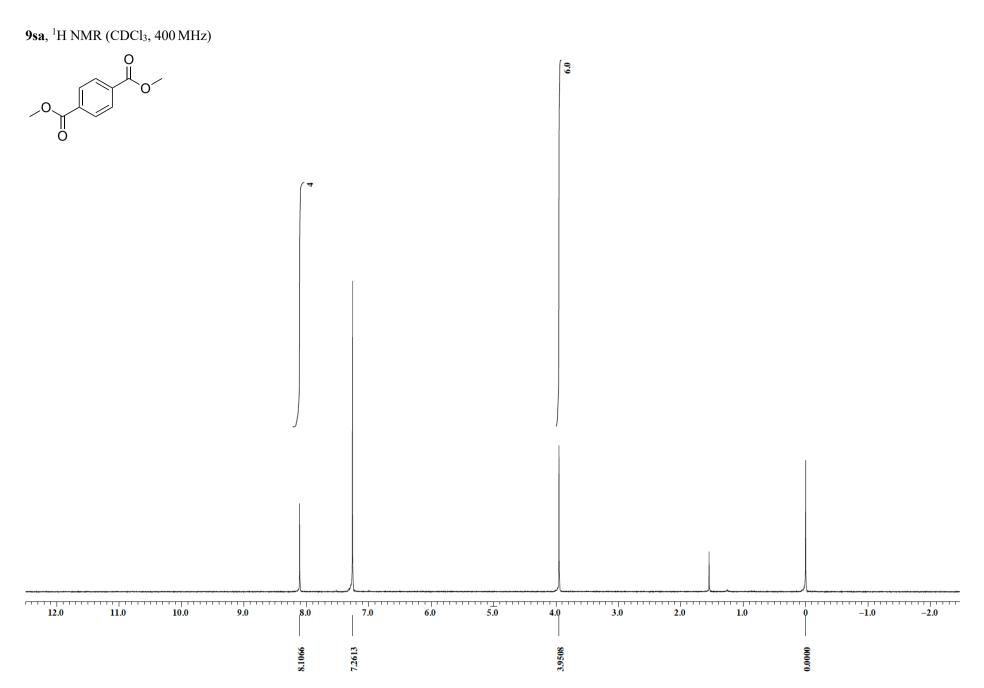
0

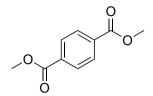

7.0

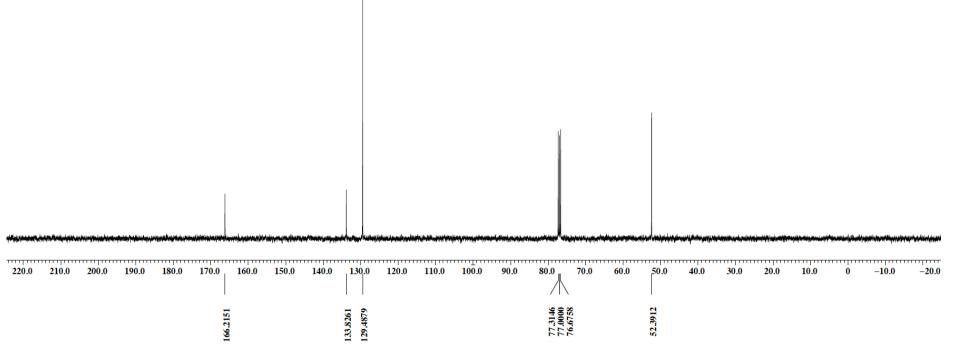
9qb, ¹³C NMR (CDCl₃, 100 MHz)

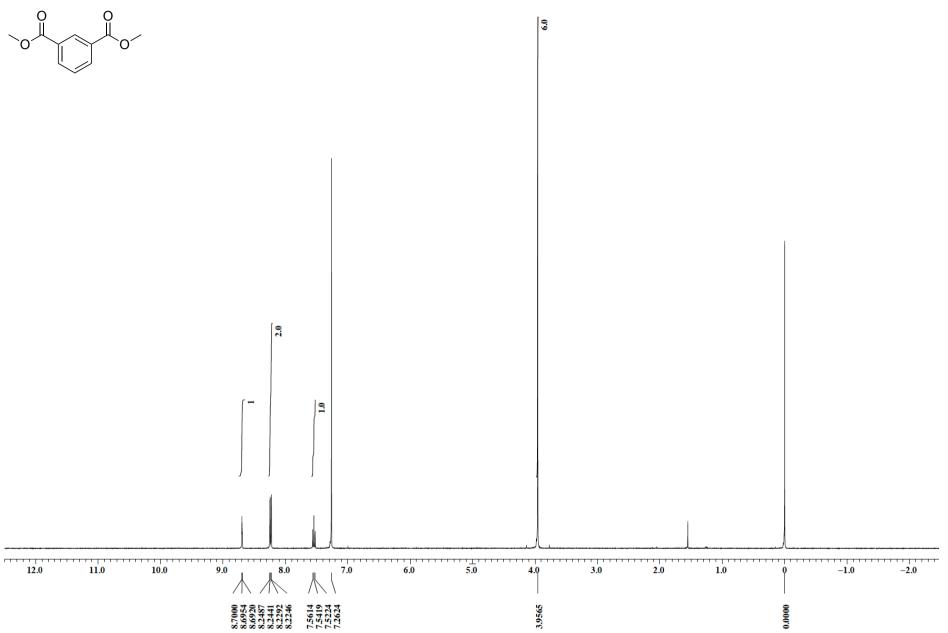
0


WARTER AND AND	ten kalende fan de s	-	nit og skalen for skale	light have going and	in disjonation	ni fi ingilara di ka jerilar Na ingilara di kata ya kata na ingilara	a analousta fa	ç di festigini (tilory	uniterstation	and the second second	and the second secon	ang tang tang tang tang tang tang tang t	aland here for the	ultragentes Maratianiani	Nightad Martin	intern brandet spekte	tig the production of	H. An Proat of		unity to add day	hill read from	Hydines projety of	rðað nið fyði
220.0	210.0	200.0	190.0	180.0	170.0	160.0	150.0	140.0	130.0	120.0	110.0	100.0	90.0	80.0 70.0	60.0	50.0	40.0	30.0	20.0	10.0	0	-10.0	-20.0
							153,8106						89.3950	77.3146 77.0000 76.6854 73.0527	61.6779			30.9003 27.1627	.0236	13.7857			

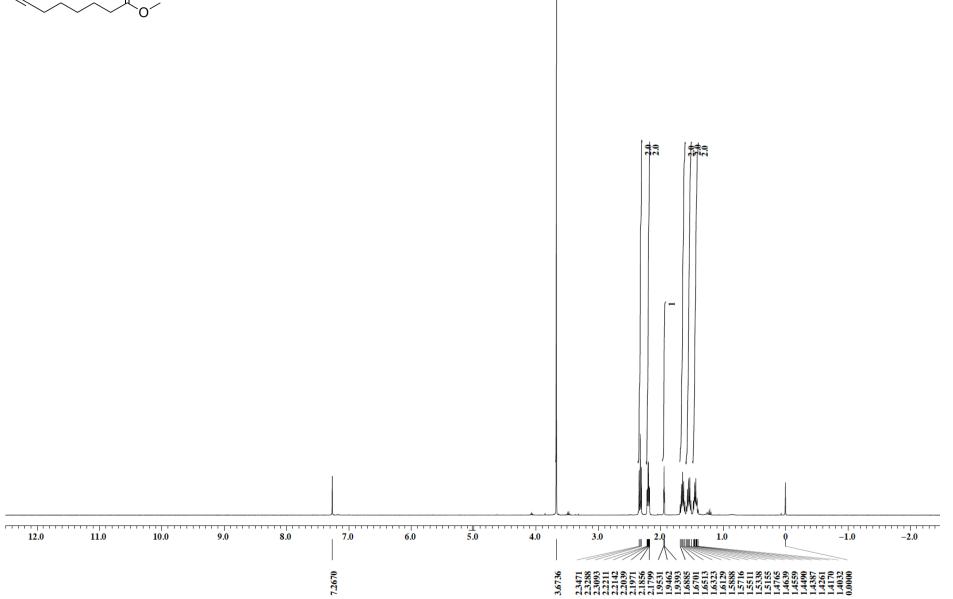

9ra, ¹H NMR (CDCl₃, 400 MHz)


9ra, ¹³C NMR (CDCl₃, 100 MHz)



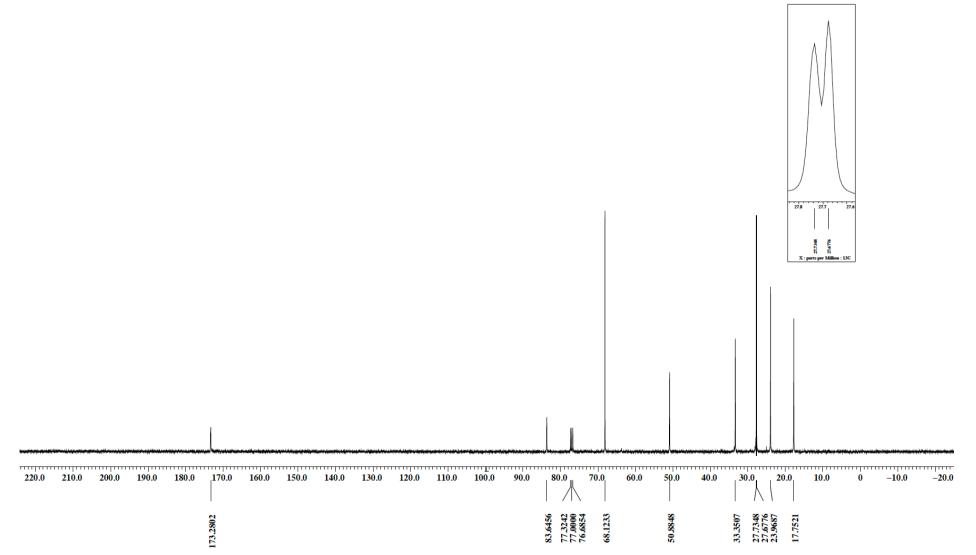


9sa, ¹³C NMR (CDCl₃, 100 MHz)


0 || 0 `O `O MWW WMM 131.0 130.0 \prod S S S X : parts per Million 220.0 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0 -10.0 -20.0 $\langle | \rangle$ 52.3150 166.1769 77.3146 77.0000 76.6758 (33.7403 (30.6511 (30.5081 (38.5725

X : parts per Million : 13C

9ta, ¹³C NMR (CDCl₃, 100 MHz)


9ua, ¹H NMR (CDCl₃, 400 MHz)

0 ||

3.0

9ua, ¹³C NMR (CDCl₃, 100 MHz)

