Aerobic oxidative synthesis of o-phenylenediamines from

cyclohexanones

Yichen Sun, ^{†,a} Shuyuan Tang, ^{†,a} Binzhi Zhao, ^{†,a} and Ning Jiao^{*,a,b}

^a State Key Laboratory of Natural and Biomimetic Drugs, New Cornerstone Science Laboratory, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

^b Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China

[†] These three authors contributed equally to this work.

E-mail: jiaoning@pku.edu.cn; Fax: (+86)10-8280-5297

Supporting Information

Table of Contents

1.	General remarks	.S2
2.	Condition optimization	S3
3.	Experimental Procedures and Characterization Data for	the
	Products	.S
	7	
4.	ReferencesS	15
5.	¹ H and ¹³ C NMR spectraS	516

1. General remarks

All commercially available compounds were purchased from Sigma-Aldrich, J&K Chemicals, Bide Pharmatech, Shanghai Macklin Biochemical Technology Co., Ltd., etc. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Products were purified by flash chromatography on silica gel. ¹H-NMR spectra were recorded on Bruker AVANCE III-400 spectrometers. Chemical shifts (in ppm) were referenced with TMS in CDCl₃ (0 ppm). ¹³C-NMR spectra were obtained by using the same NMR spectrometers and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). High resolution mass spectra were obtained with a Bruker APEX IV Fourier transform ion cyclotron resonance mass spectrometer.

2. Condition Optimization

Table S1. Optimization details for effect of Bronsted acid on the transformation of oxidative aromatization ^{*a*}

	+ () -	Cu(OTf) ₂ (10 mol%), l ₂ (20 mol%) TfOH, 1,4-dioxane, 24 h, 80 °C, air			
1a	2a , 3.0 equiv.		·	3a	
	Entry	Equiv. of TfOH	Yield (%)		
	1	0.2 mL	0		
	2	3	0		
	3	1	56		
	4	0.5	67		
	5	0.2	59		

^{*a*} Reaction conditions: **1a** (0.3 mmol, 1.0 equiv.), **2a** (0.9 mmol, 3.0 equiv.), $Cu(OTf)_2$ (10 mol%), I₂ (20 mol%), TfOH, 1,4-dioxane (1.5 ml), under air, 80 °C, 24h. The yield was determined by ¹H NMR using 1,1,2,2-tetrachloroethane as the internal standard.

Table S2. Optimization details for effect of Lewis acid on the transformation of oxidative aromatization a

	+ ()	Cu(OTf) ₂ , I ₂ (20 mol%) DH (50 mol%), 1,4-dioxane, 24 h		
1a	2a , 3.0 equiv.			3a
	Entry	Equiv. of Cu(OTf) ₂	Yield (%)	
	1	0.5	67	
	2	0.2	68	
	3	0.1	67	
	4	0.05	52	
	5	0	37	

^{*a*} Reaction conditions: **1a** (0.3 mmol, 1.0 equiv.), **2a** (0.9 mmol, 3.0 equiv.), Cu(OTf)₂, I₂ (20 mol%), TfOH (50 mol%), 1,4-dioxane (1.5 ml), under air, 80 °C, 24h. The yield was determined by ¹H NMR using 1,1,2,2-tetrachloroethane as the internal standard.

3. Experimental Procedure and Characterization Data of Products

<u>3.1 Experimental Procedure</u>

General procedure A: Cyclohexanone **1** (0.5 mmol, 1 equiv.), copper(II) trifluoromethanesulfonate (18.1 mg, 0.05 mmol, 10 mol%), iodine (25.4 mg, 0.1 mmol, 20 mol%), trifluoromethanesulfonic acid (37.5 mg, 22 μ l, 0.25 mmol, 50 mol%) were dissolved in 2.5 mL of 1,4-dioxane in a Schlenk tube equipped with a magnetic stir bar. After the solvent was heated to 80 °C, amine **2** (1.5 mmol, 3.0 equiv.) was added respectively with syringe. The mixture was stirred at 80 °C under air for 24 hours. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by chromatography on silica gel to afford the *o*-phenylenediamine.

Procedure B: 4-phenylcyclohexanone **1a** (1.74 g, 10 mmol, 1 equiv.), copper(II) trifluoromethanesulfonate (180.9 mg, 1.0 mmol, 10 mol%), iodine (507.6 mg, 2.0 mmol, 20 mol%), trifluoromethanesulfonic acid (750.5 mg, 442 μ L, 5.0 mmol, 50 mol%) were dissolved in 50 mL of 1,4-dioxane in a three-neck flask equipped with a magnetic stir bar and a gas pump. After the solvent was heated to 80 °C, morpholine **2a** (2.61 g, 2.62 mL, 1.5 mmol, 3.0 equiv.) was added respectively with syringe. The mixture was stirred at 80 °C with continuously air bubbling for 24 hours. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by chromatography on silica gel to afford the 4,4'-([1,1'-biphenyl]-3,4-diyl)dimorpholine **(3a)**.

Figure S1. Apparatus for large-scale preparation experiments.

Procedure C: 4-Phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1 equiv.), iodine (25.4 mg, 0.1 mmol, 20 mol%), trifluoromethanesulfonic acid (37.5 mg, 22 μ l, 0.25 mmol, 50 mol%) were dissolved in 2.5 mL of 1,4-dioxane in a Schlenk tube. After the solvent was heated to 80 °C, benzylamine **2y** (164 μ l, 1.5 mmol, 3.0 equiv.) was added respectively with syringe. The mixture was stirred at 80 °C under air for 12 hours. After cooling to room temperature, the solution was directly concentrated under vacuum to evaporate all the solvent. Ammonium formate (157.6 mg, 2.5 mmol, 5.0 equiv.) and 10% Pd/C (26.6 mg, 0.025 mmol, 5 mol%) were added to the same Schlenk tube, then the tube was evacuated and backfilled with N₂ for 3 times. Methanol (2.5 mL) was added with syringe under N₂. The mixture was stirred at reflux temperature under N₂ overnight. After completion of the reaction, the catalyst was removed by filtration through a celite pad, which was then washed with 5 ml of methanol. The combined organic filtrate was concentrated under vacuum and purified by column chromatography on silica gel to afford the [1,1'-biphenyl]-3,4-diamine.¹

Procedure D: Cyclohex-2-en-1-one **4** (48.1 mg, 0.5 mmol, 1 equiv.), iodine (25.4 mg, 0.1 mmol, 20 mol%), trifluoromethanesulfonic acid (37.5 mg, 22 μ l, 0.25 mmol, 50 mol%) were dissolved in 2.5 mL of 1,4-dioxane in a Schlenk tube. After the solvent was heated to 80 °C, benzylamine **2y** (164 μ l, 1.5 mmol, 3.0 equiv.) was added respectively with syringe. The mixture was stirred at 80 °C under air for 12 hours. After cooling to room temperature, the solution was directly concentrated under vacuum to evaporate all the solvent. Ammonium formate (157.6 mg, 2.5 mmol, 5.0 equiv.)

and 10% Pd/C (26.6 mg, 0.025 mmol, 5 mol%) were added to the same Schlenk tube, then the tube was evacuated and backfilled with N_2 for 3 times. Methanol (2.5 mL) was added with syringe under N_2 . The mixture was stirred at reflux temperature under N_2 overnight. After completion of the reaction, the catalyst was removed by filtration through a celite pad, which was then washed with 5 ml of methanol. The combined organic filtrate was concentrated under vacuum and purified by column chromatography on silica gel to afford the *p*-phenylenediamine.

3.2 Characterization Data of Products

4,4'-([1,1'-biphenyl]-3,4-diyl)dimorpholine (3a): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3a** as a white solid (108.1 mg, 67%).

Following the procedure B, the reaction was performed with 4-phenylcyclohexanone **1a** (1.74 g, 10.0 mmol, 1.0 equiv.), $Cu(OTf)_2$ (180.9 mg , 1.0 mmol, 10 mol%), I_2 (507.6 mg, 2.0 mmol, 20 mol%), TfOH (750.5 mg, 442 µL, 5.0 mmol, 50 mol%), and morpholine **2a** (2.61 g, 2.62 mL, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (50 mL) at 80 °C with continuously air bubbling for 24 hours. The mixture was purified by column chromatography to obtain **3a** as a white solid (2.07 g, 64%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.57 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.34 (t, *J* = 7.3 Hz, 1H), 7.25 (d, *J* = 2.1 Hz, 1H), 7.16 (d, *J* = 2.1 Hz, 1H), 7.01 (d, *J* = 8.2 Hz, 1H), 3.89 (t, *J* = 4.6 Hz, 8H), 3.27 (d, *J* = 4.6 Hz, 8H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 144.61, 143.73, 141.12, 136.17, 128.71, 126.87, 121.75, 118.74, 117.45, 67.55, 50.08, 50.05.

HRMS (ESI) m/z calcd. for C₂₀H₂₅N₂O₂⁺ (M+H)⁺: 325.1911, found: 325.1910

4,4'-(4-ethyl-1,2-phenylene)dimorpholine (3b): Following the general procedure A, the reaction was performed with 4-ethylcyclohexanone **1b** (63.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3b** as a white solid (90.1 mg, 65%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 6.85 (br-s, 2H), 6.75 (s, 1H), 3.83 (s, 8H), 3.20 (s, 4H), 3.15 (s, 4H), 2.59 (q, *J* = 7.6 Hz, 2H), 1.23 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 144.51, 142.35, 139.29, 122.25, 118.46, 118.24, 67.74, 50.36, 50.24, 28.52, 15.76.

HRMS (ESI) m/z calcd. for C₁₆H₂₅N₂O₂⁺ (M+H)⁺: 277.1911, found: 277.1909

4,4'-(4-propyl-1,2-phenylene)dimorpholine (3c): Following the general procedure A, the reaction was performed with 4-propylcyclohexanone **1c** (70.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 µL, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3c** as a white solid (88.6 mg, 61%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 6.83 (br-s, 2H), 6.73 (s, 1H), 3.83 (d, *J* = 4.2 Hz, 8H), 3.26 – 3.11 (m, 8H), 2.52 (t, *J* = 7.9 Hz, 2H), 1.75 – 1.47 (m, 2H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 144.40, 142.33, 137.80, 122.91, 118.76, 118.33, 67.74, 50.36, 50.25, 37.82, 24.82, 14.14.

HRMS (ESI) m/z calcd. for C₁₇H₂₇N₂O₂⁺ (M+H)⁺: 291.2067, found: 291.2060

4,4'-(4-(tert-pentyl)-1,2-phenylene)dimorpholine (3d): Following the general procedure A, the reaction was performed with 4-tert-pentylcyclohexanone **1d** (77.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3d** as a white solid (111.8 mg, 70%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 6.96 – 6.94 (m, 1H), 6.88 – 6.84 (m, 2H), 3.84 (s, 8H), 3.19 (s, 8H), 1.61 (q, *J* = 7.6 Hz, 2H), 1.26 (s, 6H), 0.70 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 144.43, 143.88, 141.86, 120.57, 117.74, 116.28, 67.73, 50.24, 37.71, 37.01, 28.55, 9.33.

HRMS (ESI) m/z calcd. for $C_{19}H_{31}N_2O_2^+$ (M+H)⁺:319.2380, found: 319.2377

4,4'-(4-((1r,4r)-4-ethylcyclohexyl)-1,2-phenylene)dimorpholine (3e): Following the general procedure A, the reaction was performed with 4-((1r,4r)-4-ethylcyclohexyl)-cyclohexanone **1e** (104.3 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3e** as a white solid (118.3 mg, 66%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 6.85 (br-s, 2H), 6.76 (s, 1H), 3.84 – 3.80 (m, 8H), 3121 – 3.11(m, 8H), 2.45 – 2.31 (m, 1H), 1.93 – 1.83 (m, 4H), 1.48 – 1.37 (m, 2H), 1.30 – 1.16 (m, 3H), 1.08 – 0.98 (m, 2H), 0.91 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 144.36, 142.97, 142.37, 121.03, 118.31, 117.31, 67.74, 50.32, 50.25, 44.33, 39.23, 34.56, 33.35, 30.13, 11.69.

HRMS (ESI) m/z calcd. for C₂₂H₃₅N₂O₂⁺ (M+H)⁺: 359.2693, found: 359.2695

3',4'-dimorpholino-[1,1'-biphenyl]-4-ol (3f): Following the general procedure A, the reaction was performed with 4-(4-hydroxyphenyl)cyclohexan-1-one **1f** (95.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3f** as a white solid (86.8 mg, 51%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.45 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 1H), 7.10 (s, 1H), 6.99 (d, *J* = 8.1 Hz, 1H), 6.91 (d, *J* = 8.0 Hz, 2H), 5.95 – 5.20 (br-s, 1H), 3.89 (br-s, 8H), 3.26 (br-s, 8H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 155.02, 144.60, 143.24, 135.90, 133.76, 128.08, 121.32, 118.77, 117.07, 115.63, 67.58, 50.11.

HRMS (ESI) m/z calcd. for C₂₀H₂₅N₂O₃⁺ (M+H)⁺: 340.1860, found: 340.1864

Ethyl 2-(3,4-dimorpholinophenyl)acetate (3g): Following the general procedure A, the reaction was performed with ethyl 2-(4-oxocyclohexyl)acetate 1g (92.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine 2a (130.7mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain 3g as a white solid (103.5 mg, 62%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 6.91 (d, *J* = 8.0 Hz, 1H), 6.86 (d, *J* = 8.0 Hz, 1H), 6.83 (s, 1H), 4.15 (q, *J* = 7.6 Hz, 2H), 3.82 (s, 8H), 3.54 (s, 2H), 3.17 (s, 8H), 1.26 (t, *J* = 7.6 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 171.98, 144.50, 143.44, 128.94, 123.89, 119.53, 118.58, 67.63, 60.91, 50.13, 50.08, 40.99, 14.34.

HRMS (ESI) m/z calcd. for C₁₈H₂₇N₂O₄⁺ (M+H)⁺: 335.1965, found: 335.1960

4,4'-(4-methyl-1,2-phenylene)dimorpholine (3h): Following the general procedure A, the reaction was performed with 4-methylcyclohexanone **1h** (56.0 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3h** as a white solid (78.8 mg, 60%).

Following the general procedure A, the reaction was performed with 3-methylcyclohexanone **1h**' (56.0 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3h** as a white solid (68.1 mg, 52%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 6.82 (br-s, 2H), 6.73 (s, 1H), 3.83 (br-s, 8H), 3.21 – 3.11 (m, 8H), 2.29 (s, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) 144.50, 142.21, 132.89, 123.62, 119.41, 118.47, 67.75, 67.72, 50.39, 50.25, 21.07.

HRMS (ESI) m/z calcd. for C₁₅H₂₃N₂O₂⁺ (M+H)⁺: 263.1754, found: 263.1756

4,4'-(4-(trifluoromethyl)-1,2-phenylene)dimorpholine (3i): Following the general procedure A, the reaction was performed with 4-trifluoromethylcyclohexanone **1i** (83.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 µL, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3i** as a white solid (111.1 mg, 70%).

Following the general procedure A, the reaction was performed with 3-trifluoromethylcyclohexanone **1i'** (83.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and

morpholine **2a** (130.7mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3i** as a white solid (93.3 mg, 59%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.28 (d, J = 8.0 Hz, 1H), 7.14 (s, 1H), 6.98 (d, J = 8.0 Hz, 1H), 3.87 (t, J = 3.6 Hz, 8H), 3.26 (t, J = 3.6 Hz, 4H), 3.22 (t, J = 3.6 Hz, 4H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 147.25, 144.39, 125.02 (q, *J* = 32.1 Hz), 124.61 (q, *J* = 269.9 Hz), 120.37 (q, *J* = 4.0 Hz), 115.48 (q, *J* = 3.7 Hz), 67.44, 67.42, 49.81, 49.67.

¹⁹F NMR (400 MHz, Chloroform-*d*) δ -61.79

HRMS (ESI) m/z calcd. for C₁₅H₂₀F₃N₂O₂⁺ (M+H)⁺: 317.1471, found: 317.1471

Ethyl 3,4-dimorpholinobenzoate (3j): Following the general procedure A, the reaction was performed with ethyl 4-oxocyclohexane-1-carboxylate 1j (85.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine 2a (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain 3j as a white solid (100.3 mg, 63%).

Following the general procedure A, the reaction was performed with ethyl 3-oxocyclohexane-1carboxylate **1j**' (85.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3j** as a white solid (83.3 mg, 52%). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.70 (dd, *J* = 8.4 Hz, 2.0 Hz, 1H), 7.60 (d, *J* = 2.0 Hz, 1H), 6.90 (d, *J* = 8.4 Hz, 1H), 4.35 (q, *J* = 6.8 Hz, 2H), 3.84 (t, *J* = 4.4 Hz, 8H), 3.28 (t, *J* = 4.4 Hz, 4H), 3.18 (t, *J* = 4.4 Hz, 4H), 1.37 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 166.79, 148.49, 143.75, 125.41, 124.78, 119.95, 117.80, 67.51, 67.41, 60.83, 49.95, 49.57, 14.56.

HRMS (ESI) m/z calcd. for C₁₇H₂₅N₂O₄⁺ (M+H)⁺: 321.1809, found: 321.1810

1,2-dimorpholinobenzene (3k): Following the general procedure A, the reaction was performed with cyclohexanone **1ka** (49.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7mg, 131 µL, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3k** as a white solid (74.0 mg, 60%).

Following the general procedure A, the reaction was performed with 4-hydroxycyclohexan-1-one **1kb** (57.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3k** as a white solid (69.5 mg, 56%).

Following the general procedure A, the reaction was performed with 4-methoxycyclohexan-1-one **1kc** (64.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3k** as a white solid (99.5 mg, 80%).

Following the general procedure A, the reaction was performed with *N*-(4-oxocyclohexyl)acetamide **1kd** (77.6 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7 mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3k** as a white solid (51.1 mg, 41%).

Following the general procedure A, the reaction was performed with 2-(4-oxocyclohexyl)isoindoline-1,3-dione **1ke** (121.6 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3k** as a white solid (87.0 mg, 70%).

Following the general procedure A, the reaction was performed with 4-(cyclohex-1-en-1-yl)morpholine **9** (83.7 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (43.6 mg, 44 μ L, 0.5 mmol, 1.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3k** as a white solid (68.5 mg, 55%).

¹H NMR (400 MHz, Chloroform-*d*) δ 7.03 – 7.00 (m, 2H), 6.99 – 6.91 (m, 2H), 3.84 (t, *J* = 4.8 Hz, 8H), 3.82 (t, *J* = 4.8 Hz, 8H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 144.62, 123.36, 118.56, 67.70, 50.16. HRMS (ESI) m/z calcd. for C₁₄H₂₁N₂O₂⁺ (M+H)⁺: 249.1598, found: 249.1600

1,1'-([1,1'-biphenyl]-3,4-diyl)dipiperidine (3m): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and piperidine **2m** (127.7 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3m** as a white solid (94.5 mg, 59%).

¹**H NMR** (**400 MHz**, Chloroform-*d*) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.31 – 7.26 (m, 1H), 7.19 – 7.10 (m, 2H), 6.96 (d, *J* = 8.0 Hz, 1H), 3.12 (br-s, 8H), 1.78 – 1.68 (m, 8H), 1.62 – 1.55 (m, 4H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 146.40, 145.65, 141.65, 134.99, 128.56, 126.84, 126.43, 120.78, 118.83, 117.67, 50.99, 50.92, 26.88, 26.85, 24.69.

HRMS (ESI) m/z calcd. for $C_{22}H_{29}N_2^+$ (M+H)⁺: 321.2325, found: 321.2323

1,1'-([1,1'-biphenyl]-3,4-diyl)dipyrrolidine (3n): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and pyrrolidine **2n** (106.8 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 12 hours. The mixture was purified by column chromatography to obtain **3n** as a white solid (66.0 mg, 45%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.58 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.24 (m, 2H), 7.15 – 7.09 (m, 2H), 6.96 (d, *J* = 7.2 Hz, 1H), 3.18 – 3.10 (m, 8H), 1.95 – 1.89 (m, 8H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 142.28, 141.99, 141.85, 133.36, 128.67, 126.88, 126.31, 119.41, 116.79, 115.71, 49.21, 24.49, 24.38.

HRMS (ESI) m/z calcd. for C₂₀H₂₅N₂⁺ (M+H)⁺: 293.2012, found: 293.2012

diethyl 1,1'-([1,1'-biphenyl]-3,4-diyl)bis(piperidine-4-carboxylate) (30): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone 1a (87.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and ethyl piperidine-4-carboxylate 2o (235.8 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain 3o as a white solid (141.2 mg, 61%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 8.0 Hz, 1H), 7.14 (s, *J* = 2.8 Hz, 1H), 6.98 (d, *J* = 8.4 Hz, 1H), 4.19 (q, *J* = 7.2 Hz, 4H), 3.75 (d, *J* = 11.6 Hz, 4H), 2.65 (q, *J* = 10.8 Hz, 4H), 2.43 (t, *J* = 11.6 Hz, 2H), 2.07 (d, *J* = 12.8 Hz, 4H), 1.89 (q, *J* = 11.6 Hz, 4H), 1.30 (t, *J* = 7.2 Hz, 6H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 175.38, 145.69, 144.86, 141.41, 135.69, 126.93, 126.75, 121.38, 119.12, 117.89, 60.49, 49.67, 49.63, 41.42, 29.26, 29.24, 14.36.

HRMS (ESI) m/z calcd. for C₂₈H₃₇N₂O₄⁺ (M+H)⁺: 465.2748, found: 465.2745

4,4'-([1,1'-biphenyl]-3,4-diyl)bis(2,6-dimethylmorpholine) (3p): Following the general

procedure A, the reaction was performed with 4-phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and 2,6-dimethylmorpholine **2p** (173.0 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3p** as a white solid (114.1 mg, 60%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.57 (dd, *J* = 8.0, 1.2 Hz, 2H), 7.46 – 7.40 (m, 2H), 7.35 – 7.30 (m, 1H), 7.22 (dd, *J* = 8.0, 2.0 Hz, 1H), 7.11 (d, *J* = 2.0 Hz, 1H), 6.96 (d, *J* = 8.2 Hz, 1H), 3.85 – 3.75 (m, 4H), 3.71 – 3.67 (m, 2H), 3.67 – 3.62 (m, 2H), 2.38 (m, 4H), 1.27 (d, *J* = 6.3 Hz, 12H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 144.22, 143.37, 141.30, 135.97, 128.79, 126.95, 126.89, 121.59, 118.83, 117.50, 72.57, 72.54, 55.45, 55.43, 19.24.

HRMS (ESI) m/z calcd. for C₂₄H₃₃N₂O₂⁺ (M+H)⁺: 381.2537, found: 381.2532

1,1'-([1,1'-biphenyl]-3,4-diyl)dipiperidine (3q): Following the general procedure A, the reaction was performed with 4-Phenylcyclohexanone **1a** (52.3 mg, 0.3 mmol, 1.0 equiv.), I_2 (17.2 mg, 0.06 mmol, 20 mol%), Cu(OTf)₂ (10.8 mg, 0.03 mmol, 10 mol%), TfOH (22.5 mg, 13 µL, 0.15 mmol, 50 mol%), and amantadine **2v** (136.2 mg, 0.9 mmol, 3.0 equiv.) in 1,4-dioxane (1.5 mL)

4-phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and 2,6-dimethylmorpholine **2q** (171.3 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3q** as a white solid (77.6 mg, 41%).

¹**H NMR** (**400 MHz**, Chloroform-*d*) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.36 – 7.29 (m, 1H), 7.22 (d, *J* = 8.0 Hz, 1H), 7.16 (s, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 3.63 – 3.05 (m, 8H), 2.73 – 2.55 (m, 8H), 2.51 (q, *J* = 7.3 Hz, 4H), 1.18 (t, *J* = 7.1 Hz, 6H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 144.71, 143.89, 141.38, 135.62, 128.65, 126.87, 126.66, 121.30, 118.69, 117.36, 53.68, 52.57, 49.25, 12.16.

HRMS (ESI) m/z calcd. for C₂₄H₃₅N₄⁺ (M+H)⁺: 379.2856, found: 379.2864

di-tert-butyl 4,4'-([1,1'-biphenyl]-3,4-diyl)bis(piperazine-1-carboxylate) (3r): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone 1a (87.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and tert-Butyl 1-piperazinecarboxylate 2r (279.3 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain 3r as a white solid (73.1 mg, 28%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.54 (d, *J* = 7.6 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.34 – 7.27 (m, 1H), 7.26 – 7.18 (m, 1H), 7.13 (s, 1H), 6.97 (d, *J* = 8.3 Hz, 1H), 3.62 – 3.54 (m, 8H), 3.20 – 3.11 (m, 8H), 1.50 (s, 18H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 154.98, 154.95, 145.08, 144.18, 141.08, 136.40, 128.79, 126.97, 126.90, 122.00, 119.25, 117.96, 79.87, 77.48, 77.16, 76.84, 67.45, 67.39, 49.84, 49.80, 28.54.

HRMS (ESI) m/z calcd. for C₃₀H₄₃N₄O₄⁺ (M+H)⁺: 523.3279, found: 523.3281

2,2'-([1,1'-biphenyl]-3,4-diylbis(piperazine-4,1-diyl))dipyrimidine (3s): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and 2-(piperidin-4-yl)pyrimidine **2s** (328.4 mg, 2.0 mmol, 4.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3s** as a white solid (95.7 mg, 40%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 8.39 – 8.35 (m, *J* = 4.7 Hz, 4H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.33 (t, *J* = 7.3 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.21 (s, 1H), 7.05 (d, *J* = 8.2 Hz, 1H), 6.54 (t, *J* = 4.8 Hz, 2H), 4.02 (t, *J* = 5.3 Hz, 8H), 3.45 – 3.20 (m, 8H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 161.97, 161.95, 157.76, 145.15, 144.28, 141.15, 136.22, 128.71, 126.87, 126.84, 121.84, 119.13, 117.84, 110.13, 77.37, 77.05, 76.73, 49.77, 49.75, 44.57, 44.53.

HRMS (ESI) m/z calcd. for C₂₈H₃₁N₈⁺ (M+H)⁺: 479.2666, found: 479.2662

4,4'-([1,1'-biphenyl]-3,4-diyl)bis(thiomorpholine) (3t): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1.0 equiv.), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and thiomorpholine **2t** (154.7 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3t** as a white solid (73.1 mg, 41%). **1H NMR (400 MHz**, Chloroform-*d*) δ 7.54 (dd, *J* = 7.6, 1.6 Hz, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.35 – 7.23 (m, 2H), 7.19 – 7.13 (m, 1H), 7.01 (d, *J* = 8.0 Hz, 1H), 3.36 (br-s, 8H), 2.83 (s, 8H). **13C NMR (100 MHz**, Chloroform-*d*) δ 147.11, 146.19, 141.11, 136.76, 128.85, 127.05, 126.98, 122.36, 120.40, 119.13, 53.13, 53.08, 29.00, 28.97.

HRMS (ESI) m/z calcd. for $C_{20}H_{25}N_8S_2^+$ (M+H)+: 357.1454, found: 357.1453

 N^3 , N^4 -dicyclopentyl-[1,1'-biphenyl]-3,4-diamine (3u): Following the general procedure A, the reaction was performed with 4-Phenylcyclohexanone 1a (87.1 mg, 0.5 mmol, 1.0 equiv.), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and cyclopentylamine 2u (127.7 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain 3u as a white solid (71.7 mg, 45%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.61 (d, *J* = 7.6 Hz, 2H), 7.43 (t, *J* = 7.6 Hz, 2H), 7.31 (d, *J* = 7.3 Hz, 1H), 7.06 (d, *J* = 8.1 Hz, 1H), 6.98 (s, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 3.87 (dt, *J* = 14.4, 6.4 Hz, 2H), 3.27 (br-s, 2H), 2.18 – 2.04 (m, 4H), 1.87 – 1.75 (m, 4H), 1.73 – 1.65 (m, 4H), 1.65 – 1.54 (m, 4H).

¹³C NMR (**100 MHz**, Chloroform-*d*) δ 142.31, 137.25, 136.83, 131.80, 128.57, 126.74, 126.05, 117.61, 112.52, 111.62, 54.87, 33.82, 24.46, 24.43.

HRMS (ESI) m/z calcd. for C₂₂H₂₉N₂⁺ (M+H)⁺: 321.2325, found: 321.2328

3v

 N^3 , N^4 -di((38,58,78)-adamantan-1-yl)-[1,1'-biphenyl]-3,4-diamine (3v): Following the general procedure A, the reaction was performed with 4-Phenylcyclohexanone 1a (52.3 mg, 0.3 mmol, 1.0 equiv.), I₂ (17.2 mg, 0.06 mmol, 20 mol%), TfOH (22.5 mg, 13 µL, 0.15 mmol, 50 mol%), and amantadine 2v (136.2 mg, 0.9 mmol, 3.0 equiv.) in chlorobenzene (1.5 mL) under air at 120 °C for 24 hours. The mixture was purified by column chromatography to obtain 3v as a white solid (69.1 mg, 51%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.57 (d, *J* = 7.4 Hz, 2H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.28 (d, *J* = 7.4 Hz, 1H), 7.19 (s, 1H), 7.10 – 7.03 (m, 1H), 7.00 (d, *J* = 8.3 Hz, 1H), 3.72 (br-s, 2H), 2.12 (br-s, 6H), 1.96 – 1.87 (m, 12H), 1.73 – 1.60 (m, 12H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 141.83, 139.22, 136.69, 132.09, 128.69, 126.57, 126.20, 122.17, 120.21, 120.11, 53.07, 52.50, 43.64, 43.41, 36.71, 36.68, 29.90.

HRMS (ESI) m/z calcd. for $C_{32}H_{41}N_2^+$ (M+H)⁺: 453.3264, found: 453.3265

2,3,6-triphenyl-1,2,3,4-tetrahydroquinoxaline (3w): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone **1a** (87.1 mg, 0.5 mmol, 1.0 equiv.), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and 1,2-diphenylethane-1,2-diamine **2w** (318.5 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **3w** as a white solid (136.1 mg, 75%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.59 (d, *J* = 7.7 Hz, 2H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.33 – 7.21 (m, 7H), 7.16 – 7.07 (m, 4H), 6.98 (d, *J* = 7.9 Hz, 1H), 6.92 (s, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 4.32 (s, 2H), 4.20 (s, 2H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 141.65, 139.97, 133.79, 133.25, 131.81, 128.62, 128.24, 127.98, 127.92, 126.53, 126.16, 117.60, 114.09, 112.50, 62.21, 62.09.

HRMS (ESI) m/z calcd. for $C_{26}H_{23}N_2^+$ (M+H)⁺: 363.1856, found: 363.1855

11,11'-([1,1'-biphenyl]-3,4-diylbis(piperidin-1-yl-4-ylidene))bis(9-chloro-6,11-dihydro-5H-

benzo[5,6]cyclohepta[1,2-b]pyridine) (3x): Following the general procedure A, the reaction was performed with 4-phenylcyclohexanone 1a (87.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and 2-(piperidin-4-yl)pyrimidine desloratadine 2x (466.2 mg, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain 3x as a white solid (150.5 mg, 39%).

¹**H NMR** (**400 MHz**, Chloroform-*d*) δ 8.52 – 8.47 (s, 2H), 7.58 – 7.51 (m, 2H), 7.51 – 7.44 (m, 2H), 7.43 – 7.37 (m, 2H), 7.32 – 7.18 (m, 8H), 7.17 – 7.10 (m, 3H), 6.95 (t, *J* = 7.6 Hz, 1H), 3.71 (m, 4H), 3.46 (m, 4H), 2.96 – 2.48 (m, 16H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 157.56, 146.83, 146.77, 145.58, 145.55, 144.76, 141.29, 139.75, 139.70, 138.83, 138.79, 138.75, 138.06, 137.99, 137.45, 135.57, 133.51, 133.46, 133.11, 133.07, 132.79, 132.77, 131.04, 130.89, 128.99, 128.68, 126.81, 126.69, 126.18, 126.13, 122.23, 122.18, 121.32, 119.22, 118.05, 51.89, 51.77, 51.52, 51.47, 51.40, 51.34, 51.14, 51.02, 32.07, 31.90, 31.86, 31.64, 31.61.

HRMS (ESI) m/z calcd. for $C_{26}H_{23}N_2^+$ (M+H)⁺: 771.3016, found: 771.3018

1,4-dimorpholinobenzene (6): Following the general procedure A, the reaction was performed with cyclohex-2-en-1-one **4** (48.1 mg, 0.5 mmol, 1.0 equiv.), $Cu(OTf)_2$ (18.1 mg, 0.05 mmol, 10 mol%), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7mg, 131 µL, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **6** as a white solid (88.0 mg, 71%).

Following the general procedure A, the reaction was performed with 1,4-cyclohexanedione **5** (56.1 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg, 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and morpholine **2a** (130.7mg, 131 μ L, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **6** as a white solid (100.6 mg, 81%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 6.92 (s, 4H), 3.98 – 3.83 (m, 8H), 3.16 – 3.01 (m, 8H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 145.49, 117.37, 67.02, 50.46.

HRMS (ESI) m/z calcd. for $C_{14}H_{21}N_2O_2^+$ (M+H)+: 249.1598, found: 249.1596

[1,1'-biphenyl]-3,4-diamine (7): Following the procedure C, the reaction was performed with 4-phenylcyclohexanone 1a (87.1 mg, 0.5 mmol, 1.0 equiv.), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 µL, 0.25 mmol, 50 mol%), and benzylamine 2y (164 µl, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours, then ammonium formate (157.6 mg, 2.5 mmol, 5.0 equiv.) and 10% Pd-C (26.6 mg, 0.025 mmol, 5 mol%) and 2.5 mL of MeOH under N₂ at reflux temperature for overnight. The mixture was purified by column chromatography to obtain 7 as a brown solid (45.6 mg, 49%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.55 (dd, *J* = 8.3, 1.3 Hz, 2H), 7.45 – 7.37 (m, 2H), 7.33 – 7.26 (m, 1H), 7.02 – 6.98 (m, 2H), 6.83 – 6.77 (m, 1H), 3.47 (br-s, 4H).

¹³C NMR (100 MHz, Chloroform-*d*) δ 141.35, 134.92, 134.32, 133.54, 128.60, 126.60, 126.37, 119.11, 116.96, 115.50.

HRMS (ESI) m/z calcd. for $C_{12}H_{23}N_2^+$ (M+H)⁺: 185.1079, found: 185.1083

Benzene-1,4-diamine (7): Following the procedure D, the reaction was performed with cyclohex-2-en-1-one **4** (48.1 mg, 0.5 mmol, 1.0 equiv.), I_2 (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and benzylamine **2y** (164 μ l, 1.5 mmol, 3.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours, then ammonium formate (157.6 mg, 2.5 mmol, 5.0 equiv.) and 10% Pd-C (26.6 mg, 0.025 mmol, 5 mol%) and 2.5 mL of MeOH under N₂ at reflux temperature for overnight. The mixture was purified by column chromatography to obtain **8** as a brown solid (12.1 mg, 22%).
¹H NMR (400 MHz, Chloroform-*d*) δ 6.59 (s, 4H), 3.35 (br-s, 4H).
¹³C NMR (100 MHz, Chloroform-*d*) δ 138.60, 116.74, 77.37, 77.05, 76.73.
HRMS (ESI) m/z calcd. for C₆H₉N₂⁺ (M+H)⁺: 109.0766, found: 109.0761

4-(2-(piperidin-1-yl)phenyl)morpholine (10): Following the general procedure A, the reaction was performed with 4-(cyclohex-1-en-1-yl)morpholine **9** (83.7 mg, 0.5 mmol, 1.0 equiv.), Cu(OTf)₂ (18.1 mg , 0.05 mmol, 10 mol%), I₂ (25.4 mg, 0.1 mmol, 20 mol%), TfOH (37.5 mg, 22 μ L, 0.25 mmol, 50 mol%), and piperidine **2m** (42.6 mg, 0.5 mmol, 1.0 equiv.) in 1,4-dioxane (2.5 mL) under air at 80 °C for 24 hours. The mixture was purified by column chromatography to obtain **10** as a white solid (49.0 mg, 40%).

¹**H NMR (400 MHz**, Chloroform-*d*) δ 7.08 – 6.84 (m, 4H), 3.89 (t, *J* = 4.6 Hz, 4H), 3.22 (t, *J* = 4.8 Hz, 4H), 3.09 (t, *J* = 5.3 Hz, 4H), 1.74 – 1.67 (m, 4H), 1.63 – 1.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.14, 144.66, 122.86, 122.55, 118.97, 117.97, 67.74, 51.06, 49.86, 26.77, 24.56.

HRMS (ESI) m/z calcd. for C₆H₉N₂⁺ (M+H)⁺: 247.1810, found: 247.18

4. <u>References</u>

(1)(a) Ram, S.; Spicer, L. D. *Synthetic Communications*, 1987, **17**, 415-418. (b) Anwer, M. K.; Spatola, A. F. *Tetrahedron Letters*, 1981, **22**, 4369-4372.

5. <u>NMR Spectral Data</u>

