## Radical Reductive Formylation of N-heteroarenes with Formic acid

## under Catalyst- and Solvent-Free conditions

Shaofeng Pang<sup>+</sup>, <sup>\*a</sup> Qi Wei<sup>+</sup>, <sup>b</sup> Junxi Liang<sup>+</sup>, <sup>a</sup> Liqun Jiang, <sup>b</sup> Xinyun Guan, <sup>c</sup> Bolin Xia, <sup>c</sup> Rong Shang, <sup>a</sup> Yanbin Wang <sup>a</sup> and Yujing Zhang<sup>+</sup>\*<sup>b</sup>

<sup>a</sup> Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission; Gansu Provincial Biomass Function Composites Engineering Research Center; Chemical Engineering Institute; Northwest Minzu University, Lanzhou, Gansu, 730030, P. R. China

<sup>b</sup>Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education; Key Laboratory of Polymer Materials of Gansu Province; College of Chemistry and Chemical Engineering; Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China

<sup>c</sup>National Engineering Laboratory for VOCs Pollution Control Technology and Equipment (SCUT), School of Environment and Energy; South China University of Technology, Guangzhou, Gangdong, 510640, P. R. China

<sup>+</sup> These authors contributed equally to this work

#### \*Corresponding author:

pangshaofeng2006@163.com (S. Pang); yujing0221@163.com (Y. Zhang)

### **Supporting Information**

| I. Materials and reagents                                  | S1  |
|------------------------------------------------------------|-----|
| II. General experimental procedures                        | S1  |
| III. Characterization and computational simulation results | S4  |
| IV. NMR peaks and ESI-HRMS of all products                 |     |
| V. NMR and ESI-HRMS spectra of all products                | S26 |
| VI. References                                             |     |

### I. Materials and reagents

Quinoline and formic acid were purchased from Sigma-Aldrich and Shanghai Maclean Biochemical Technology Co., Ltd., China, respectively. 5,5-Dimethyl-1pyrroline-N-oxide (DMPO) was purchased from Dojindo. All solvents and chemicals were obtained commercially and were used as received.

### **II.** General experimental procedures

High-resolution mass spectra (HRMS) were reported from the Thermo Orbitrap Elite or Bruker Daltonics APEXII 47e FT-ICR instrument with an ESI source.

For the EPR spin-trapping experiments, the reaction mixture of quinoline (1 mmol) and formic acid (9 mmol) was placed in a round-bottom flask and sealed with a septum under an argon atmosphere, then heated to 160 °C. After 2 minutes of reaction, the mixture was rapidly cooled to room temperature using an ice bath. Approximately 50 µL of the reaction mixture was taken out and mixed with 10 µL of DMPO. About 50  $\mu$ L of this mixture was then transferred into a glass microcapillary tube (Hirschmann), and EPR spectra were recorded on a Bruker CW spectrometer ELEXSYS 500-10/12 (X-band,  $v \sim 9.849873$  GHz) at room temperature. The dataset consisted of 1024 data points (X-axis), with a minimum field value of 3460 G and a sweep width of 100 G. The experiment was conducted in CW (continuous wave) mode. The magnetic field axis used was B0VL, with a resolution of 1. The center field for the scan was 3510 G, and the sweep direction was from low field to high field. The microwave power was set at 10.02 mW with an attenuation of 13 dB, and the gain was set to 30 dB. The EPR spectra provided detailed information on various free radicals present in the reaction mixture: Rad0: (DMPO-CO<sub>2</sub><sup>-</sup>): A free radical with a g-factor of 2.00487, a linewidth of 1.77186 G, and an area of 1.84441, containing two different nuclear spins; Rad4 (DMPO-H): A hydrogenated DMPO product with a g-factor of 2.00366, linewidth of 1.8704 G, and an area of 2.04151; Rad4 (DMPO-OH): The DMPO-OH radical with a g-factor of 2.00532, linewidth of 1.10916 G, and an area of 0.305233. Signal fitting was carried out by using the Spin Fit program (Bruker).

NMR spectra were measured by using a Bruker ARX 400 or ARX 600 spectrometer

at 400 MHz (<sup>1</sup>H) and 151 MHz (<sup>13</sup>C). All spectra were recorded in CDCl<sub>3</sub> and chemical shifts (d) are reported in ppm relative to tetramethylsilane referenced to the residual solvent peaks.

The black-box simulation: Molecular configuration of formic acid and quinoline was firstly optimized using the DMol3 module implanted in the Materials Studio (MS) software.<sup>[1]</sup> The generalized gradient approximation (GGA) of B3PW91 functional, GGA-B3PW91, together with double-numeric quality basis set with polarization functions (DNP) was selected as the exchange-correlation function. Next, a cubic blackbox of 25.60 × 25.60 × 25.60 Å containing 180 optimized formic acid and 20 optimized quinoline molecules was built using Amorphous Cell program package, in which the molecular ratio was constructed based on the experimental data. Using Forcite module implanted in MS software, the lowest energy simulation based on the built cubic configuration were performed in Condensed-phase Optimized Molecular Potential for Atomistic Simulation Studies (COMPASS) force field. Then, the annealing simulation was carried out in which the number of cycles was set to 10 and the steps per cycle were 10<sup>5</sup>. The coulombic interaction was calculated by the Group method, while van der Waals interaction was calculated by the atom-based summation method. After the annealing simulation the molecular dynamic (MD) simulation was employed to determine the most stable model. MD simulation of the NPT ensemble at 433K and 100 kPa with a time step of 0.5 fs for 5000 ps was firstly performed to obtain density of 1.075 g/L. Subsequently, the NVT simulation was performed for 10 ns (time step = 1fs, frame output for every step, T = 433K), and the Nose thermostat was used to control the temperature. According to the total energy the most stable model in the trajectory frames was selected to study thermal decomposition of the formic acid because of the effect of the quinoline. The production simulation based on the most stable model was employed to run using the GULP module implanted in MS software with the ReaxFF 6.0 force field. The same parameters were set as in the NVT simulation. In this paper, the RDF (Radial distribution function) that focuses on the distances between particles within the same trajectory's configurations, aggregating these atomic interactions into

a histogram, was performed. This allows for the analysis of the temporal evolution of intermolecular interactions.

For the comparison and discussion of Gibbs free energies, structural optimizations were carried out using the generalized gradient approximation (GGA) of PW91 functional, GGA-PW91, together with double-numeric quality basis set with polarization functions (DNP). Within this computational framework, the electronic structures of all structures were optimized and the transition states (only one imaginary frequency) and intermediates (without any imaginary frequencies) within the reaction mechanism were obtained. The thermal corrections to the Gibbs free energy at 298 K from the frequency analysis were added to the total electronic energy. In addition, all the digital photos were shot with Canon EOS-60D camera.

### III. Characterization and computational simulation results



Fig. S1 Simulation of deconvoluted spectra of radical adducts using DMPO.



Fig. S2 The configuration of the black-box model after MD simulations performed over different durations.



Fig. S3 The ESI-HRMS spectrum for the DMPO-trapped radicals after 20 min of reaction.



Fig. S4 (a) Detection of gaseous products by GC-TCD. The retention times of CO and  $CO_2$  were 8.051 min and 17.569 min, respectively. In addition, the release of H<sub>2</sub> was also observed; (b) GC chromatograms of CO and CO<sub>2</sub> recorded by GC-MS; (c, d) Corresponding mass spectra of CO and CO<sub>2</sub>, respectively.



Fig. S5 NMR spectrum of quinoline with HCOOD after 12 h reaction.



Fig. S6 NMR spectrum of quinoline with DCOOD after 12 h reaction.



Fig. S7 RDF of O-H bond distance in the formic acid.



Fig. S8 RDF of C-OH bond distance in the formic acid.



Fig. S9 RDF of C-H bond distance in the formic acid.

| Table S1 GGA/PW91 | optimized Cartesian Coordinates. |  |
|-------------------|----------------------------------|--|
|-------------------|----------------------------------|--|

| IM-1                              | IM-2                              |
|-----------------------------------|-----------------------------------|
| C, -2.459414, -0.509250, 0.165536 | C, -2.478007, -0.551005, 0.000000 |
| C, -1.778206, -1.737866, 0.317196 | C, -1.809919, -1.774324, 0.000000 |
| C, -0.397650, -1.798480, 0.277693 | C, -0.411130,-1.804451, 0.000000  |
| C, 0.320915, -0.610876, 0.079831  | C, 0.314838, -0.614316, 0.000000  |
| C, -0.344493, 0.644494, -0.078609 | C, -0.346995, 0.649929, 0.000000  |
| C, -1.759501, 0.662020, -0.026449 | C, -1.756229, 0.641174, 0.000000  |
| C, 0.438832, 1.801111, -0.279328  | C, 0.441324, 1.839951, 0.000000   |
| C, 2.440798, 0.491461, -0.161545  | C, 2.471289, 0.534775, 0.000000   |
| N, 1.698607, -0.609297, 0.028655  | N, 1.707815, -0.622398, 0.000000  |
| Н, -3.548573, -0.493538, 0.202190 | H, -3.568787, -0.524362, 0.000000 |
| Н, -2.349902, -2.653659, 0.465127 | H, -2.370269, -2.710467, 0.000000 |
| H, 0.126069, -2.747928, 0.398809  | H, 0.121233, -2.759224, 0.000000  |
| Н, -2.279776, 1.612690, -0.144229 | H, -2.276767, 1.601070, 0.000000  |
| Н, -0.062954, 2.761850, -0.403258 | H, -0.058250, 2.808731, 0.000000  |
| Н, 3.520544, 0.353194, -0.184135  | H, 3.548806, 0.397497, 0.000000   |
| C, 1.822267, 1.729911, -0.321540  | C, 1.842797, 1.755861, 0.000000   |
| Н, 2.436423, 2.614209, -0.476265  | H, 2.454931, 2.658083, 0.000000   |
| H, 2.176013, -1.510045, 0.140321  | Н, 2.173320, -1.526525, 0.000000  |
| <u>ІМ-3</u>                       | IM-4                              |

| C, -2.501140, -0.658413, 0.183421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C, -2.491202, -0.848653, 0.205505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C, -1.824655, -1.867890, 0.339579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C, -1.802230, -2.050324, 0.366135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C, -0.435029, -1.897634, 0.296496                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C, -0.411184, -2.054375, 0.324471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C, 0.296681, -0.718307, 0.098097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C, 0.303601, -0.867128, 0.124560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C, -0.372751, 0.512565, -0.058931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C, -0.387629, 0.346582, -0.033560                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C, -1.767298, 0.511542, -0.012843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C, -1.781530, 0.336808, 0.007224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C, 0.390999, 1.809609, -0.278425                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C, 0.363757, 1.644181, -0.249988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| C, 2.439097, 0.393656, -0.145858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C, 2.404065, 0.085662, -0.099997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| N, 1.687312, -0.757153, 0.054471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N, 1.714524, -0.975327, 0.089276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H, -3.590917, -0.624061, 0.218236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H, -3.582092, -0.828774, 0.244056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H, -2.378888, -2.794264, 0.498664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H, -2.347969, -2.980872, 0.530375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H, 0.100466, -2.842670, 0.420225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H, 0.162821, -2.973889, 0.445433                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H, -2.290709, 1.463606, -0.134933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Н, -2.323710, 1.279020, -0.113724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| H, 0.114091, 2.538072, 0.510354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H, 0.080188, 2.351188, 0.546994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Н, 3.517234, 0.236676, -0.167251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H, 3.497131, -0.035914, -0.126150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C, 1.881348, 1.603236, -0.301533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C, 1.900387, 1.490646, -0.293330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H, 2.529787, 2.466013, -0.453810                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H, 2.384615, 2.122545, 0.472677                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| H, 2.151270, -1.653525, 0.159141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H, 0.007844, 2.102148, -1.187567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| H, 0.053103, 2.278941, -1.225099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H, 2.308612, 1.856476, -1.252390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IM-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>IM-5</b><br>C, -2.856053, -0.524050, 0.180265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Р<br>С, -2.895750, -0.506919, 0.482284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>IM-5</b><br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | р<br>С, -2.895750, -0.506919, 0.482284<br>С, -2.225384, -1.716153, 0.666431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186                                                                                                                                                                                                                                                                                                                                                                                                                                                     | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055                                                                                                                                                                                                                                                                                                                                                                                                                 | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966                                                                                                                                                                                                                                                                                                                                                                             | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604<br>N, 1.260136, -0.636309, -0.092452                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744                                                                                                                                                                                                                                                                                                                                        | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604<br>N, 1.260136, -0.636309, -0.092452<br>H, -3.972368, -0.446539, 0.649278                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702                                                                                                                                                                                                                                                                                                   | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604<br>N, 1.260136, -0.636309, -0.092452<br>H, -3.972368, -0.446539, 0.649278<br>H, -2.773107, -2.605337, 0.982817                                                                                                                                                                                                                                                                                                                                                                                                  |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702<br>H, -0.305193, -2.721847, 0.523561                                                                                                                                                                                                                                                              | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604<br>N, 1.260136, -0.636309, -0.092452<br>H, -3.972368, -0.446539, 0.649278<br>H, -2.773107, -2.605337, 0.982817<br>H, -0.297439, -2.703528, 0.687852                                                                                                                                                                                                                                                                                                                                                             |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702<br>H, -0.305193, -2.721847, 0.523561<br>H, -2.628613, 1.587910, -0.165944                                                                                                                                                                                                                         | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604<br>N, 1.260136, -0.636309, -0.092452<br>H, -3.972368, -0.446539, 0.649278<br>H, -2.773107, -2.605337, 0.982817<br>H, -0.297439, -2.703528, 0.687852<br>H, -2.713960, 1.575714, -0.059178                                                                                                                                                                                                                                                                                                                        |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702<br>H, -0.305193, -2.721847, 0.523561<br>H, -2.628613, 1.587910, -0.165944<br>H, -0.346413, 2.634943, 0.519146                                                                                                                                                                                     | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604<br>N, 1.260136, -0.636309, -0.092452<br>H, -3.972368, -0.446539, 0.649278<br>H, -2.773107, -2.605337, 0.982817<br>H, -0.297439, -2.703528, 0.687852<br>H, -2.713960, 1.575714, -0.059178<br>H, -0.571353, 2.672114, -0.553193                                                                                                                                                                                                                                                                                   |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702<br>H, -0.305193, -2.721847, 0.523561<br>H, -2.628613, 1.587910, -0.165944<br>H, -0.346413, 2.634943, 0.519146<br>H, 3.187973, 0.379049, -0.141817                                                                                                                                                 | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604<br>N, 1.260136, -0.636309, -0.092452<br>H, -3.972368, -0.446539, 0.649278<br>H, -2.773107, -2.605337, 0.982817<br>H, -0.297439, -2.703528, 0.687852<br>H, -2.713960, 1.575714, -0.059178<br>H, -0.571353, 2.672114, -0.553193<br>H, 3.023756, 0.388464, 0.247393                                                                                                                                                                                                                                                |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702<br>H, -0.305193, -2.721847, 0.523561<br>H, -2.628613, 1.587910, -0.165944<br>H, -0.346413, 2.634943, 0.519146<br>H, 3.187973, 0.379049, -0.141817<br>C, 1.527065, 1.885699, -0.281467                                                                                                             | P<br>C, -2.895750, -0.506919, 0.482284<br>C, -2.225384, -1.716153, 0.666431<br>C, -0.844455, -1.782158, 0.486503<br>C, -0.145255, -0.641915, 0.079136<br>C, -0.810734, 0.577988, -0.132603<br>C, -2.186304, 0.631472, 0.094573<br>C, -0.022441, 1.729897, -0.699035<br>C, 1.956038, 0.537090, 0.448604<br>N, 1.260136, -0.636309, -0.092452<br>H, -3.972368, -0.446539, 0.649278<br>H, -2.773107, -2.605337, 0.982817<br>H, -0.297439, -2.703528, 0.687852<br>H, -2.713960, 1.575714, -0.059178<br>H, -0.571353, 2.672114, -0.553193<br>H, 3.023756, 0.388464, 0.247393<br>C, 1.425671, 1.851347, -0.153300                                                                                                                                                                                                            |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702<br>H, -0.305193, -2.721847, 0.523561<br>H, -2.628613, 1.587910, -0.165944<br>H, -0.346413, 2.634943, 0.519146<br>H, 3.187973, 0.379049, -0.141817<br>C, 1.527065, 1.885699, -0.281467<br>H, 1.932986, 2.558610, 0.498118                                                                          | P         C, -2.895750, -0.506919, 0.482284         C, -2.225384, -1.716153, 0.666431         C, -2.225384, -1.716153, 0.666431         C, -0.844455, -1.782158, 0.486503         C, -0.145255, -0.641915, 0.079136         C, -0.810734, 0.577988, -0.132603         C, -2.186304, 0.631472, 0.094573         C, -0.022441, 1.729897, -0.699035         C, 1.956038, 0.537090, 0.448604         N, 1.260136, -0.636309, -0.092452         H, -3.972368, -0.446539, 0.649278         H, -2.773107, -2.605337, 0.982817         H, -0.297439, -2.703528, 0.687852         H, -2.713960, 1.575714, -0.059178         H, -0.571353, 2.672114, -0.553193         H, 3.023756, 0.388464, 0.247393         C, 1.425671, 1.851347, -0.153300         H, 1.470536, 2.628229, 0.624193                                          |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702<br>H, -0.305193, -2.721847, 0.523561<br>H, -2.628613, 1.587910, -0.165944<br>H, -0.346413, 2.634943, 0.519146<br>H, 3.187973, 0.379049, -0.141817<br>C, 1.527065, 1.885699, -0.281467<br>H, 1.932986, 2.558610, 0.498118<br>H, -0.370014, 2.383202, -1.214964                                     | P         C, -2.895750, -0.506919, 0.482284         C, -2.225384, -1.716153, 0.666431         C, -2.225384, -1.716153, 0.666431         C, -0.844455, -1.782158, 0.486503         C, -0.145255, -0.641915, 0.079136         C, -0.810734, 0.577988, -0.132603         C, -2.186304, 0.631472, 0.094573         C, -0.022441, 1.729897, -0.699035         C, 1.956038, 0.537090, 0.448604         N, 1.260136, -0.636309, -0.092452         H, -3.972368, -0.446539, 0.649278         H, -2.773107, -2.605337, 0.982817         H, -0.297439, -2.703528, 0.687852         H, -2.713960, 1.575714, -0.059178         H, -0.571353, 2.672114, -0.553193         H, 3.023756, 0.388464, 0.247393         C, 1.425671, 1.851347, -0.153300         H, 1.470536, 2.628229, 0.624193         H, 0.037111, 1.577813, -1.791671 |
| IM-5<br>C, -2.856053, -0.524050, 0.180265<br>C, -2.179359, -1.728436, 0.374725<br>C, -0.790898, -1.765694, 0.346513<br>C, -0.042376, -0.598626, 0.107205<br>C, -0.716836, 0.625191, -0.062220<br>C, -2.116487, 0.632499, -0.025281<br>C, -0.011845, 1.942058, -0.270186<br>C, 2.115157, 0.542824, -0.102055<br>N, 1.387227, -0.618862, 0.040966<br>H, -3.946257, -0.486324, 0.200744<br>H, -2.732954, -2.650125, 0.556702<br>H, -0.305193, -2.721847, 0.523561<br>H, -2.628613, 1.587910, -0.165944<br>H, -0.346413, 2.634943, 0.519146<br>H, 3.187973, 0.379049, -0.141817<br>C, 1.527065, 1.885699, -0.281467<br>H, 1.932986, 2.558610, 0.498118<br>H, -0.370014, 2.383202, -1.214964<br>H, 1.906026, 2.312565, -1.230986 | P         C, -2.895750, -0.506919, 0.482284         C, -2.225384, -1.716153, 0.666431         C, -0.844455, -1.782158, 0.486503         C, -0.145255, -0.641915, 0.079136         C, -0.810734, 0.577988, -0.132603         C, -2.186304, 0.631472, 0.094573         C, -0.022441, 1.729897, -0.699035         C, 1.956038, 0.537090, 0.448604         N, 1.260136, -0.636309, -0.092452         H, -3.972368, -0.446539, 0.649278         H, -2.773107, -2.605337, 0.982817         H, -0.297439, -2.703528, 0.687852         H, -2.713960, 1.575714, -0.059178         H, -0.571353, 2.672114, -0.553193         H, 3.023756, 0.388464, 0.247393         C, 1.425671, 1.851347, -0.153300         H, 1.470536, 2.628229, 0.624193         H, 0.037111, 1.577813, -1.791671         H, 2.084591, 2.182345, -0.969506  |

| O, 3.351844, -1.847830, 0.009248  | O, 3.173111, -1.732481, -0.779788        |
|-----------------------------------|------------------------------------------|
| Н, 1.507386, -2.724848, 0.085772  | Н, 1.266704, -2.444462, -1.081336        |
|                                   | Н, 1.806167, 0.533075, 1.540817          |
| R-formic acid                     | R-•OH radical                            |
| H, -1.202792, -0.776094, 0.019793 | O, 0.000000, 0.000000, -0.495339         |
| C, -0.424447, 0.007795, 0.013221  | H, 0.000000, 0.000000, 0.495339          |
| 0, 0.796592, -0.585562, -0.010497 |                                          |
| 0, -0.620695, 1.200172, 0.022205  |                                          |
| H, 1.451343, 0.153688, -0.044721  |                                          |
|                                   |                                          |
| IM1-H                             | TS1-H                                    |
| C, 0.636516, 0.832940, -0.051770  | C, -28.75873829628827, 4.22816172885597, |
| H, 0.187573, -0.176976, 0.002856  | 2.49592949509451                         |
| O, 0.025060, 1.862657, -0.215450  | O, -29.69260198271508, 6.12542869213890, |
| O, 1.977968, 0.731389, 0.094735   | 1.63612557923430                         |
| O, -2.956140, -2.770274, 0.036669 | O, -26.75407710749379, 3.02484117335759, |
| H, -2.195611, -2.136614, 0.064181 | 1.48582539387580                         |
| H, 2.324634, 1.656878, 0.068780   | H, -29.61074276371498, 3.18132171977846, |
|                                   | 4.29172576447229                         |
|                                   | O, -31.09007125075293, 1.99221797866747, |
|                                   | 6.31792242661876                         |
|                                   | H, -32.82402625262707, 2.65312740098342, |
|                                   | 6.09465114917873                         |
|                                   | H, -26.44144579143022, 3.91278674894047, |
|                                   | -0.13843292914368                        |
| IM2-Н                             | P-H •CHO radical                         |
|                                   |                                          |

| C, -0.473077, 0.245579, -0.803755 | C, -0.13821100, 0.40081100, -0.00000100 |
|-----------------------------------|-----------------------------------------|
| O, -0.083869, 1.136288, -1.502131 | O, -1.21438300, -0.14285700, 0.00000000 |
| O, -0.391980, -1.080204,-0.98620  | O, 1.09092800, -0.21306900, 0.00000000  |
| Н, 0.020926, -0.433347, 1.718312  | H, 1.81690900, 0.44253900, 0.00000400   |
| O, 0.683872, 0.285205, 1.728924   |                                         |
| Н, 0.136539, 1.093952, 1.676654   |                                         |
| Н, 0.107588, -1.247472, -1.831801 |                                         |
|                                   |                                         |
| Р-Н Н2О                           |                                         |
| O, 0.000000, 0.000000, -0.434589  |                                         |
| H, 0.837830, 0.000000, 0.217294   |                                         |
| Н, -0.837830, 0.000000, 0.217294  |                                         |

**Table S2** GGA/PW91 computed energetic data. HF, Hartree Fock; Zero-point energy, ZPE, in a.u; Number of imaginary frequencies, NImag; as well as sum of electronic and thermal enthalpy,  $H_{tot}$ , in Hartree, and sum of electronic and thermal free energy,  $G_{tot}$ , in Hartree.

|                                       | HF = -402.39960646 a.u. | $H_{tot} = -402.244179 a.u.$         |
|---------------------------------------|-------------------------|--------------------------------------|
| C C C C C C C C C C C C C C C C C C C | ZPE = 0.148115 a.u.     | $G_{tot} = -402.282985 a.u.$         |
|                                       | NImag = 0               |                                      |
| 0 0 IM-1                              |                         |                                      |
|                                       | HF = -402.40461691 a.u. | $H_{tot} = -402.248779 a.u.$         |
|                                       | ZPE = 0.147892 a.u.     | $G_{tot} = -402.288810 \text{ a.u.}$ |
|                                       | NImag = 0               |                                      |
| • • • IM-2                            |                         |                                      |
|                                       | HF = 403.02055983 a.u.  | $H_{tot} = -402.851830 a.u.$         |
|                                       | ZPE = 0.160432 a.u.     | $G_{tot} = -402.892418 a.u.$         |
|                                       | NImag = 0               |                                      |
| • • • IM-3                            |                         |                                      |
|                                       | HF = -403.01191392 a.u. | $H_{tot} = -402.844643 \text{ a.u.}$ |
|                                       | ZPE = 0.159739 a.u.     | $G_{tot} = -402.883470 \text{ a.u.}$ |
|                                       | NImag = 0               |                                      |
| • IM-4                                |                         |                                      |
| Q Q                                   | HF = -516.87580195 a.u. | $H_{tot} = -516.686883 a.u.$         |
|                                       | ZPE = 0.179606 a.u.     | $G_{tot} = -516.731293 a.u.$         |
|                                       | NImag = 0               |                                      |
|                                       |                         |                                      |
|                                       |                         |                                      |

| 0                                     | HF = -517.53536437 a.u. | $H_{tot} = -517.331456 a.u.$         |
|---------------------------------------|-------------------------|--------------------------------------|
|                                       | ZPE = 0.194084 a.u.     | $G_{tot} = -517.376143 a.u.$         |
|                                       | NImag = 0               |                                      |
|                                       |                         |                                      |
| P                                     |                         |                                      |
|                                       | HF = -189.67722792 a.u. | $H_{tot} = -189.640238 a.u.$         |
|                                       | ZPE = 0.032773 a.u.     | $G_{tot} = -189.668600 \text{ a.u.}$ |
|                                       | NImag = 0               |                                      |
|                                       |                         |                                      |
| R-formic acid                         |                         |                                      |
|                                       | HF = -75.70851866 a.u.  | $H_{tot} = -75.697140 a.u.$          |
|                                       | ZPE = 0.008074 a.u.     | $G_{tot} = -75.717401 \text{ a.u.}$  |
| R-•OH radical                         | NImag = 0               |                                      |
|                                       |                         |                                      |
| e e e e e e e e e e e e e e e e e e e | HF = -265.41474941 a.u. | $H_{tot} = -265.364011 a.u.$         |
|                                       | ZPE = 0.044410 a.u.     | $G_{tot} = -265.398782 a.u.$         |
|                                       | NImag = 0               |                                      |
| IM1-H                                 |                         |                                      |
| 0                                     | HF = -265.39243852 a.u. | $H_{tot} = -265.351336 a.u.$         |
|                                       | ZPE = 0.037979 a.u.     | $G_{tot} = -265.386918 a.u.$         |
|                                       | NImag = 1               |                                      |
|                                       |                         |                                      |
| TS1-H                                 |                         |                                      |
|                                       | HF = -265.40478099 a.u. | $H_{tot} = -265.357707 a.u.$         |
|                                       | ZPE = 0.041956 a.u.     | $G_{tot} = -265.390967 a.u.$         |
|                                       | NImag = 0               |                                      |
|                                       |                         |                                      |
| ІМ2-Н                                 |                         |                                      |
|                                       | HF = -76.38611663 a.u.  | $H_{tot} = -76.361794 a.u.$          |
|                                       | ZPE = 0.020543  a.u.    | $G_{tot} = -76.383242 \text{ a.u.}$  |
|                                       | NImag = 0               |                                      |
| P-H H <sub>2</sub> O                  |                         |                                      |
|                                       | HF = -189.01930857 a.u. | $H_{tot} = -188.995051 \text{ a.u.}$ |
|                                       | ZPE = 0.020066  a.u.    | $G_{tot} = -189.023/02 \text{ a.u.}$ |
|                                       | NImag = 0               |                                      |
| P-H •CHO radical                      |                         |                                      |
|                                       |                         |                                      |

**Table S3** Quantitative analysis of gaseous products from the thermal decomposition of

 pure formic acid under variable temperatures and from the model reaction system.

| T (°C) | $H_2 (mmoL)^a$ | CO (mmoL) <sup>a</sup> | $CO_2 (mmoL)^a$ |
|--------|----------------|------------------------|-----------------|
|--------|----------------|------------------------|-----------------|

| 150 | 0.068                     | 0.884                     | 0.071                     |
|-----|---------------------------|---------------------------|---------------------------|
| 160 | 0.072(0.099) <sup>b</sup> | 0.979(1.640) <sup>b</sup> | 0.078(2.214) <sup>b</sup> |
| 170 | 0.075                     | 1.186                     | 0.083                     |
| 180 | 0.063                     | 1.419                     | 0.710                     |
| 190 | 0.059                     | 1.609                     | 0.064                     |

Conditions: <sup>a</sup> Formic acid only (9 mmol); <sup>b</sup> Quinoline (1 mmol) and formic acid (9 mmol) mixture, Ar, 24 h, catalyst- and solvent-free, T ( $^{o}$ C) = Heating module temperature, the yields of various gases were quantitatively determined using calibration factors obtained from reference standard gases, employing a GC system equipped with a TDX-01 packed column and a thermal conductivity detector (TCD, Agilent 7820A).

### **IV. NMR peaks and ESI-HRMS of all products**

### NMR peaks and ESI-HRMS of products

Acquired NMR peaks matched those of the literature.<sup>[2-7]</sup>



<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.66 (s, 1H), 7.21-7.09 (m, 4H), 4.79 (q, J = 6.3 Hz, 1H), 2.85-2.78 (m, 1H), 2.72-2.65 (m, 1H), 2.15-2.06 (m, 1H), 1.68 (dq, J = 12.2, 5.9 Hz, 1H), 1.19 (d, J = 6.6 Hz, 3H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.14, 136.30, 129.82, 129.14, 127.21, 124.79,

118.47, 45.23, 29.22, 24.27, 18.16.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 176.10699; found: 176.10703.



<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.79 (s, 1H), 7.20-7.07 (m, 4H), 4.16 (dd, J = 12.7, 4.1 Hz, 1H), 3.11-3.01 (m, 1H), 2.88 (dd, J = 16.3, 4.9 Hz, 1H), 2.45 (dd, J = 16.2, 10.1 Hz, 1H), 2.01 (td, J = 10.4, 5.3 Hz, 1H), 1.08 (d, J = 6.6 Hz, 3H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.06, 136.90, 129.86, 128.28, 127.03, 124.59, 116.66, 46.37, 35.54, 27.94, 18.75.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 176.10699; found: 176.10701.



<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.74 (s, 1H), 7.24-7.07 (m, 4H), 3.88-3.70 (m, 2H), 2.90 (q, *J* = 6.6 Hz, 1H), 2.01 (h, *J* = 7.1, 6.2 Hz, 1H), 1.71-1.59 (m, 1H), 1.30 (d, *J* = 6.9 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.03, 136.50, 133.85, 128.01, 127.01, 124.61, 117.08, 38.12, 30.67, 29.94, 20.75.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 176.10699; found: 176.10701.



<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.71 (s, 1H), 7.14-6.95 (m, 3H), 3.78 (t, *J* = 5.8 Hz, 2H), 2.69 (t, *J* = 6.8 Hz, 2H), 2.24 (s, 3H), 1.95 (p, *J* = 6.2 Hz, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.02, 137.53, 137.32, 127.05, 126.38, 126.22, 115.24, 39.15, 24.19, 22.38, 19.42.

HRMS (ESI): m/z [M+H] <sup>+</sup> calcd: 176.10699; found: 176.10701.



<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.71 (s, 1H), 6.98 (dd, *J* = 15.5, 7.5 Hz, 3H), 3.79-3.72 (m, 2H), 2.74 (t, *J* = 6.4 Hz, 2H), 2.27 (s, 3H), 1.90 (p, *J* = 6.3 Hz, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.76, 134.64, 133.96, 130.03, 128.49, 127.52,

116.70, 40.09, 26.91, 22.23, 20.53.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 176.10699; found: 176.10701.



<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.75 (s, 1H), 7.06-6.87 (m, 3H), 3.76 (t, *J* = 6.1 Hz, 2H), 2.75 (t, *J* = 6.5 Hz, 2H), 2.32 (s, 3H), 1.91 (p, *J* = 6.3 Hz, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.00, 137.03, 136.83, 129.40, 125.73, 125.30,

117.55, 40.22, 26.69, 22.37, 21.20.

**HRMS (ESI)**: m/z [M+Na] <sup>+</sup> calcd: 198.08894; found: 198.08902.



<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.32 (s, 1H), 7.14-6.99 (m, 3H), 3.77 (t, *J* = 6.8 Hz, 2H), 2.67 (t, *J* = 6.5 Hz, 2H), 2.32 (s, 3H), 1.93 (t, *J* = 6.7 Hz, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 163.34, 136.64, 134.44, 129.88, 129.71, 126.08, 125.51, 40.05, 26.98, 23.52, 18.69.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 176.10699; found: 176.10699.



<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.65 (s, 1H), 7.03 (d, *J* = 8.6 Hz, 1H), 6.74-6.68 (m, 2H), 3.76 (s, 5H), 2.76 (t, *J* = 6.4 Hz, 2H), 1.92 (q, *J* = 6.2 Hz, 2H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.93, 156.74, 130.68, 130.44, 118.32, 114.60, 112.60, 55.51, 40.18, 27.32, 22.44.

HRMS (ESI): m/z [M+H] <sup>+</sup> calcd: 192.10191; found: 192.10191.



<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.75 (s, 1H), 7.04 (d, *J* = 8.2 Hz, 1H), 6.69-6.60 (m, 2H), 3.78-3.74 (m, 5H), 2.71 (t, *J* = 6.5 Hz, 2H), 1.90 (q, *J* = 6.4 Hz, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.06, 158.64, 137.92, 130.30, 120.88, 109.82, 103.27, 55.45, 40.32, 26.40, 22.41.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 192.10191; found: 192.10194.



<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.55 (s, 1H), 7.01 (d, *J* = 8.5 Hz, 1H), 6.73 (dd, *J* = 11.6, 3.1 Hz, 2H), 4.76 (q, *J* = 6.3 Hz, 1H), 3.77 (s, 3H), 2.79-2.73 (m, 1H), 2.67-2.60 (m, 1H), 2.14-2.07 (m, 1H), 1.63 (dd, *J* = 13.0, 7.3 Hz, 1H), 1.17 (d, *J* = 6.6 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.05, 157.10, 131.72, 129.69, 119.89, 114.35, 112.66, 55.60, 45.37, 29.62, 24.82, 18.27.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 206.11756; found: 206.11740.



<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.89 (s, 1H), 7.86 (d, *J* = 6.9 Hz, 2H), 7.21 (d, *J* = 9.1 Hz, 1H), 3.90 (s, 3H), 3.84-3.80 (m, 2H), 2.85 (t, *J* = 6.4 Hz, 2H), 1.98 (q, *J* = 6.2 Hz, 2H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 166.64, 161.11, 141.41, 131.38, 128.89, 128.54, 126.07, 116.35, 52.25, 40.76, 27.40, 21.94.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 220.09682; found: 220.09680.

![](_page_19_Figure_4.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.75 (s, 1H), 7.23-7.12 (m, 4H), 4.33 (dd, J = 13.1, 3.4 Hz, 1H), 3.64 (dd, J = 13.0, 8.3 Hz, 1H), 3.06-2.96 (m, 3H), 2.28 (s, 3H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 207.25, 161.06, 136.72, 130.01, 127.54, 126.75, 125.19, 117.16, 46.12, 40.58, 28.85, 28.68.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 204.10191; found: 204.10196.

![](_page_19_Figure_7.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.86 (s, 1H), 7.32-7.25 (m, 4H), 7.17 (dd, *J* = 16.9, 7.9 Hz, 5H), 5.76 (t, *J* = 6.3 Hz, 1H), 2.70 (q, *J* = 5.4, 4.7 Hz, 2H), 2.38 (dd, *J* = 13.6, 5.7 Hz, 1H), 2.14 (dq, *J* = 13.4, 6.6 Hz, 1H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.75, 141.18, 137.36, 130.36, 129.28, 128.65, 127.65, 127.07, 126.04, 124.95, 118.01, 53.56, 30.29, 24.84.
HRMS (ESI): m/z [M+Na] <sup>+</sup> calcd: 260.10459; found: 260.10461.

![](_page_20_Picture_1.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.64 (s, 1H), 7.08-6.99 (m, 1H), 6.83 (q, J = 12.6, 10.7 Hz, 2H), 3.73 (t, J = 6.3 Hz, 2H), 2.75 (t, J = 6.6 Hz, 2H), 1.90 (d, J = 6.3 Hz, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 161.26, 160.88, 160.46, 158.84, 133.42, 133.40, 131.05, 131.00, 118.51, 118.46, 116.07, 115.92, 113.86, 113.71, 40.05, 27.10, 22.04.
HRMS (ESI): m/z [M+Na] <sup>+</sup> calcd: 202.06386; found: 202.06389.

![](_page_20_Figure_3.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.66 (s, 1H), 7.12 (s, 1H), 7.11-7.04 (m, 2H),
4.81 (h, *J* = 6.3 Hz, 1H), 2.86-2.77 (m, 1H), 2.66 (dd, *J* = 16.4, 5.7 Hz, 1H), 2.11-2.03 (m, 1H), 1.70 (dd, *J* = 13.5, 5.8 Hz, 1H), 1.20 (d, *J* = 6.6 Hz, 3H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.89, 137.50, 132.62, 130.38, 128.04, 124.84, 118.52, 45.22, 28.91, 23.87, 18.17.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 210.06802; found: 210.06799.

![](_page_20_Figure_6.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.62 (s, 1H), 7.29 (dd, *J* = 6.2, 3.2 Hz, 1H), 7.10-7.06 (m, 2H), 3.78 (d, *J* = 6.7 Hz, 2H), 2.72 (d, *J* = 6.7 Hz, 2H), 1.95 (t, *J* = 5.6 Hz, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 163.63, 136.09, 135.08, 128.92, 127.29, 126.59, 126.36, 40.10, 27.24, 23.48.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 196.05237; found: 196.05246.

![](_page_21_Figure_2.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.75 (s, 1H), 7.30 (d, *J* = 6.9 Hz, 2H), 7.04-7.00 (m, 1H), 3.80-3.76 (m, 2H), 2.79 (t, *J* = 6.5 Hz, 2H), 1.97-1.91 (m, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.89, 136.56, 132.54, 131.10, 130.20, 118.60, 117.62, 40.38, 27.13, 22.06.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 240.00185; found: 240.00186.

![](_page_21_Figure_5.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.63 (s, 1H), 7.31 (d, *J* = 6.5 Hz, 2H), 6.99 (d, *J* = 9.2 Hz, 1H), 4.80 (h, *J* = 6.2 Hz, 1H), 2.84-2.77 (m, 1H), 2.66 (dd, *J* = 16.5, 5.8 Hz, 1H), 2.12-2.05 (m, 1H), 1.73-1.65 (m, 1H), 1.22 (d, *J* = 19.8 Hz, 3H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.84, 135.54, 132.10, 131.87, 130.28, 119.98, 117.86, 45.23, 28.87, 24.16, 18.14.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 254.01750; found: 254.01753.

![](_page_22_Figure_0.jpeg)

<sup>1</sup>**H NMR** <sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.87 (s, 1H), 7.50-7.44 (m, 2H), 7.25 (d, *J* = 8.3 Hz, 1H), 3.84-3.79 (m, 2H), 2.84 (t, *J* = 6.4 Hz, 2H), 1.96 (q, *J* = 6.3 Hz, 2H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.79, 141.47, 133.65, 131.35, 129.70, 118.61, 117.04, 107.90, 40.78, 27.28, 21.60.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 187.08659; found: 187.08658.

![](_page_22_Figure_4.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.65 (s, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.85 (d, J = 6.9 Hz, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.49 (ddd, J = 11.2, 8.0, 1.4 Hz, 2H), 7.29 (d, J = 8.3 Hz, 1H), 3.95 (s, 2H), 2.94 (d, J = 6.7 Hz, 2H), 2.11-2.06 (m, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 164.49, 133.61, 133.26, 129.62, 128.63, 127.59, 127.01, 126.76, 125.89, 125.73, 122.21, 40.58, 27.24, 23.78.
HRMS (ESI): m/z [M+H] <sup>+</sup> calcd: 212.10699; found: 212.10696.

![](_page_22_Figure_6.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.90 (s, 1H), 7.33 (t, *J* = 6.8 Hz, 8H), 3.90 (s, 2H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.59, 131.29, 130.73, 128.24, 127.62, 127.48,

127.42, 126.23, 123.50, 119.88, 119.11, 33.04.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 210.09134; found: 210.09125.

![](_page_23_Picture_2.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 9.69 (s, 1H), 8.58 (s, 1H), 7.98 (d, *J* = 7.2 Hz, 2H), 7.71 (s, 1H), 7.52-7.40 (m, 4H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 157.44, 127.81, 127.07, 126.17, 124.70, 124.33, 120.78, 119.84, 116.83, 109.95.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 196.07569; found: 196.07553.

![](_page_23_Figure_6.jpeg)

<sup>1</sup>H NMR (400 MHz, Chloroform-*d*) δ 8.58 (s, 1H), 7.89-7.83 (m, 1H), 7.79 (d, *J* = 7.7 Hz, 1H), 7.29 (dddd, *J* = 9.5, 8.9, 6.6, 4.4 Hz, 6H), 4.91 (s, 2H).
<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.62, 136.25, 132.69, 130.77, 128.80, 128.29, 128.22, 127.85, 126.43, 126.26, 124.39, 123.28, 119.18, 42.15.
HRMS (ESI): m/z [M+H] <sup>+</sup> calcd: 210.09134; found: 210. 09132.

![](_page_23_Figure_8.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.76 (s, 1H), 8.37 (d, *J* = 11.4 Hz, 1H), 7.48 (d, *J* = 8.2 Hz, 1H), 7.15 (s, 1H), 3.89-3.77 (m, 2H), 3.02 (t, *J* = 6.6 Hz, 2H), 2.04 (dd, *J* =

12.3, 6.3 Hz, 2H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 160.50, 149.07, 145.23, 129.41, 123.56, 39.98, 30.39, 21.57.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 163.08659; found: 163.08652.

![](_page_24_Figure_3.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.13 (s, 1H), 7.17 (dddd, *J* = 21.2, 10.5, 8.0, 5.9 Hz, 4H), 5.45 (q, *J* = 6.9 Hz, 1H), 3.69 (dd, *J* = 13.3, 6.0 Hz, 1H), 3.58-3.51 (m, 1H), 2.99-2.77 (m, 2H), 1.55 (d, *J* = 6.9 Hz, 1H), 1.47 (d, *J* = 6.9 Hz, 2H).

<sup>13</sup>**C NMR** (151 MHz, Chloroform-*d*) δ 161.14, 137.39, 133.75, 132.85, 129.36, 129.05, 127.18, 127.09, 126.77, 126.70, 126.52, 52.74, 47.09, 39.93, 34.03, 29.96, 28.25, 24.43, 21.73.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 176.10699; found: 176.10693.

![](_page_24_Figure_7.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.84 (s, 2H), 7.31 (dd, *J* = 6.1, 3.5 Hz, 2H), 7.20 (dd, *J* = 6.1, 3.5 Hz, 2H), 3.91 (s, 4H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 159.95, 128.59, 125.78, 117.60, 38.83.

HRMS (ESI): m/z [M+H] <sup>+</sup> calcd: 191.08150; found: 191.08150.

![](_page_25_Figure_0.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.24 (s, 1H), 8.02 (s, 1H), 7.14 (t, *J* = 7.8 Hz, 1H), 6.93 (d, *J* = 8.1 Hz, 1H), 6.76 (d, *J* = 7.5 Hz, 1H), 3.77-3.74 (m, 2H), 2.95 (t, *J* = 7.1 Hz, 2H), 2.14-2.08 (m, 2H).

<sup>13</sup>C NMR (126 MHz, Chloroform-*d*) δ 162.54, 150.18, 131.56, 127.96, 126.43, 121.48, 118.46, 47.14, 26.58, 24.25.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 178.08626; found: 178.08612.

![](_page_25_Figure_4.jpeg)

<sup>1</sup>**H NMR** (400 MHz, Chloroform-*d*) δ 8.77 (s, 1H), 7.22-7.12 (m, 4H), 4.38 (dd, *J* = 12.8, 4.6 Hz, 1H), 3.72 (s, 3H), 3.65 (dd, *J* = 13.0, 9.2 Hz, 1H), 3.10-3.07 (m, 2H), 2.93 (ddd, *J* = 16.8, 8.0, 4.4 Hz, 1H).

<sup>13</sup>C NMR (151 MHz, Chloroform-*d*) δ 172.80, 161.06, 136.81, 129.99, 127.65, 126.66, 125.13, 117.17, 52.29, 41.17, 38.77, 29.71.

**HRMS (ESI)**: m/z [M+H] <sup>+</sup> calcd: 220.09682; found: 220.09673.

# V. NMR and ESI-HRMS spectra of all products

Fig. S10  $^{1}$ H NMR of 4

![](_page_26_Figure_2.jpeg)

# Fig. S12 $^{1}$ H NMR of 5

![](_page_27_Figure_1.jpeg)

## Fig. S14 $^{1}$ H NMR of 6

![](_page_28_Figure_1.jpeg)

# **Fig. S16** <sup>1</sup>H NMR of **7**

![](_page_29_Figure_1.jpeg)

![](_page_29_Figure_2.jpeg)

-161.02

| <137.53<br><137.32 | £127.05<br>£126.38<br>126.22 |   | -77.16 CDCI3 |   | 24.19<br>22.38<br>19.42 |
|--------------------|------------------------------|---|--------------|---|-------------------------|
| Ŷ                  | r                            | 1 | 1            | 1 | 111                     |

![](_page_29_Figure_4.jpeg)

## Fig. S18 $^{1}$ H NMR of 8

![](_page_30_Figure_1.jpeg)

## Fig. S20 <sup>1</sup>H NMR of 9

![](_page_31_Figure_1.jpeg)

<sup>230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10</sup> f1 (ppm)

## **Fig. S22** <sup>1</sup>H NMR of **10**

![](_page_32_Figure_1.jpeg)

## Fig. S24 $^{1}$ H NMR of 11

![](_page_33_Figure_1.jpeg)

![](_page_33_Figure_2.jpeg)

![](_page_33_Figure_3.jpeg)

## Fig. S26 $^{1}$ H NMR of 12

![](_page_34_Figure_1.jpeg)

![](_page_34_Figure_2.jpeg)

| 40'0CI | <br>-130.30 | -120.88 | <br> | -77.16 CDCI3 | — <mark>55,45</mark> | -40.32 | -26.40 |
|--------|-------------|---------|------|--------------|----------------------|--------|--------|
|        |             |         |      |              |                      |        |        |

![](_page_34_Figure_4.jpeg)

## **Fig. S28** <sup>1</sup>H NMR of **13**

![](_page_35_Figure_1.jpeg)

![](_page_35_Figure_2.jpeg)

## **Fig. S30** <sup>1</sup>H NMR of **14**

![](_page_36_Figure_1.jpeg)

# Fig. S31 <sup>13</sup>C NMR of 14

![](_page_36_Figure_3.jpeg)

## **Fig. S32** <sup>1</sup>H NMR of **15**

![](_page_37_Figure_1.jpeg)

![](_page_37_Figure_2.jpeg)

<sup>230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10</sup> f1 (ppm)

## **Fig. S34** <sup>1</sup>H NMR of **16**

![](_page_38_Figure_1.jpeg)

## **Fig. S36** <sup>1</sup>H NMR of **17**

![](_page_39_Figure_1.jpeg)

![](_page_39_Figure_2.jpeg)

# Fig. S37 <sup>13</sup>C NMR of 17

![](_page_39_Figure_4.jpeg)

![](_page_39_Figure_5.jpeg)

## **Fig. S38** <sup>1</sup>H NMR of **18**

![](_page_40_Figure_1.jpeg)

<sup>230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10</sup> f1 (ppm)

## Fig. S40 <sup>1</sup>H NMR of 19

![](_page_41_Figure_1.jpeg)

## Fig. S42 $^{1}$ H NMR of 20

![](_page_42_Figure_1.jpeg)

<sup>230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10</sup> f1 (ppm)

## Fig. S44 $^{1}$ H NMR of 21

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

# Fig. S45 <sup>13</sup>C NMR of 21

![](_page_43_Picture_4.jpeg)

![](_page_43_Figure_5.jpeg)

## Fig. S46 $^{1}$ H NMR of 22

![](_page_44_Figure_1.jpeg)

## Fig. S48 $^{1}$ H NMR of 23

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

# Fig. S49 <sup>13</sup>C NMR of 23

![](_page_45_Figure_4.jpeg)

## **Fig. S50** <sup>1</sup>H NMR of **24**

![](_page_46_Figure_1.jpeg)

![](_page_46_Figure_2.jpeg)

# Fig. S51 <sup>13</sup>C NMR of 24

![](_page_46_Figure_4.jpeg)

## Fig. S52 $^{1}$ H NMR of 25

![](_page_47_Picture_1.jpeg)

![](_page_47_Figure_2.jpeg)

# Fig. S53 <sup>13</sup>C NMR of 25

![](_page_47_Figure_4.jpeg)

### **Fig. S54** <sup>1</sup>H NMR of **26**

![](_page_48_Figure_1.jpeg)

Fig. S55 <sup>13</sup>C NMR of 26

![](_page_48_Figure_3.jpeg)

![](_page_49_Figure_0.jpeg)

**Fig. S57** <sup>13</sup>C NMR of **27** 

![](_page_49_Figure_2.jpeg)

## Fig. S58 <sup>1</sup>H NMR of 28

![](_page_50_Figure_1.jpeg)

![](_page_50_Figure_2.jpeg)

## Fig. S59 <sup>13</sup>C NMR of 28

![](_page_50_Figure_4.jpeg)

![](_page_50_Figure_5.jpeg)

# Fig. **S60** <sup>1</sup>H NMR of **29**

![](_page_51_Figure_1.jpeg)

# Fig. S61 <sup>13</sup>C NMR of 29

![](_page_51_Figure_3.jpeg)

![](_page_51_Figure_4.jpeg)

## Fig. S62 $^{1}$ H NMR of 30

![](_page_52_Figure_1.jpeg)

## Fig. S64 $^{1}$ H NMR of 31

![](_page_53_Figure_1.jpeg)

<sup>230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10</sup> f1 (ppm)

### Fig. S66 HRMS of 4

![](_page_54_Figure_1.jpeg)

Fig. S67 HRMS of 5

![](_page_54_Figure_3.jpeg)

### Fig. S68 HRMS of 6

![](_page_55_Figure_1.jpeg)

Fig. S69 HRMS of 7

![](_page_55_Figure_3.jpeg)

### Fig. S70 HRMS of 8

![](_page_56_Figure_1.jpeg)

![](_page_56_Figure_2.jpeg)

![](_page_56_Figure_3.jpeg)

### Fig. S72 HRMS of 10

![](_page_57_Figure_1.jpeg)

![](_page_57_Figure_2.jpeg)

![](_page_57_Figure_3.jpeg)

### Fig. S74 HRMS of 12

![](_page_58_Figure_1.jpeg)

Fig. S75 HRMS of 13

![](_page_58_Figure_3.jpeg)

### Fig. S76 HRMS of 14

![](_page_59_Figure_1.jpeg)

Fig. S77 HRMS of 15

![](_page_59_Figure_3.jpeg)

### Fig. S78 HRMS of 16

![](_page_60_Figure_1.jpeg)

**Fig. S79** HRMS of **17** 

![](_page_60_Figure_3.jpeg)

### Fig. S80 HRMS of 18

![](_page_61_Figure_1.jpeg)

**Fig. S81** HRMS of **19** 

![](_page_61_Figure_3.jpeg)

### Fig. S82 HRMS of 20

![](_page_62_Figure_1.jpeg)

Fig. S83 HRMS of 21

![](_page_62_Figure_3.jpeg)

### Fig. S84 HRMS of 22

![](_page_63_Figure_1.jpeg)

![](_page_63_Figure_2.jpeg)

![](_page_63_Figure_3.jpeg)

### Fig. S86 HRMS of 24

![](_page_64_Figure_1.jpeg)

Fig. S87 HRMS of 25

![](_page_64_Figure_3.jpeg)

### Fig. S88 HRMS of 26

![](_page_65_Figure_1.jpeg)

Fig. S89 HRMS of 27

![](_page_65_Figure_3.jpeg)

### Fig. S90 HRMS of 28

![](_page_66_Figure_1.jpeg)

Fig. S91 HRMS of 29

![](_page_66_Figure_3.jpeg)

### Fig. S92 HRMS of 30

![](_page_67_Figure_1.jpeg)

Fig. **S93** HRMS of **31** 

![](_page_67_Figure_3.jpeg)

### VI. References

- Levine, I. N. Quantum Chemistry. In Quantum Chemistry, 5th ed., Prentice Hall: Hoboken, NJ, 1999.
- Chen, F., Sahoo, B., Kreyenschulte, C., Lund, H., Zeng, M., He, L., K, Junge. K., Beller, M. *Chem. Sci.*, 2017, 8(9), 6239-6246.
- Han, Y., Wang, Z., Xu, R., Zhang, W., Chen, W., Zheng, L., Zhang, J., Luo, J., Wu, K., Zhu, Y., Chen, C., Peng, Q., Liu, Q., Hu, P., Wang, D., Li, Y. *Angew. Chem. Int. Ed.*, 2018, 57(35), 11262-11266.
- Leng, Y., Du, S., Feng, G., Sang, X., Jiang, P., Li, H., Wang, D. ACS Appl. Mater. Interfaces, 2019, 12(1), 474-483.
- Zhu, M., Tian, H., Chen, S., Xue, W., Wang, Y., Lu, H., Li, T., Chen, F., Tang, C. J. Catal., 2022, 416, 170-175.
- Chauhan, A., Banerjee, A., Kar, A. K., Srivastava, R. ChemSusChem, 2022, 15(23), e202201560.
- Liang, H., Zhao, T., Ou, J., Liu, J., Hu, X. ACS Sustain. Chem. Eng., 2023, 11(39), 14317-14322.