Complementary Acid Site Mechanisms in Hydrogen-Free Polyethylene Upcycling: Elucidating the Distinct Roles of Brønsted and Lewis Sites in Ce-Modified Zeolites

Taeeun Kwon ^{a,b}, Jonghyun Park ^a, Ki Hyuk Kang ^c, Dae Sung Jung ^d, Wangyun Won ^{b,*}, Insoo Ro ^{a,*}

^a Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea

^b Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea

^c Chemical & Process Technology Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea

^d Hyundai Motor Company, Jangduk-ri 772-1, Hwaseong-si, Gyeonggi-do 18280, Republic of Korea

*Corresponding Authors:

Prof. W. Won (wwon@korea.ac.kr) and Prof. I. Ro (insoo@seoultech.ac.kr)

Table SI. ICP-OES res	uns		
Sample	Si (ppm)	Al (ppm)	Metal (ppm)
Na_micro_Y	137,999	83,294	Na: 61,693
Na_meso_Y	106,514	85,850	Na: 66,933
Li_meso_Y	155,826	113,825	Li: 11,208
K_meso_Y	173,405	108,048	K: 94,584
H_Y	197,476	98,867	
La_meso_Y	144,671	87,553	La: 79,521
Ce_meso_Y	105,177	80,731	Ce: 110,850
Ce/HY-WI	179,937	126,431	Ce: 110,527
Ce_meso_Y-0.1	164,044	118,096	Ce: 42,424
Ce_meso_Y-0.3	178,159	123,424	Ce: 148,536
La_meso_Y-0.3	163,654	138,763	La: 119,710

 Table S1. ICP-OES results

CH ₂ Cl ₂ (mL)	PE (g)	ISTD (g)	Vial before drying (g)	Vial after drying (g)	Weight difference (g)
20	-	-	33.6434	33.6499	0.0065
20	-	0.0351	34.2697	34.2765	0.0068
20	0.4027	-	34.1167	34.5252	0.4085
20	0.1012	0.0381	33.8524	33.9605	0.1081
20	0.2016	0.0350	33.8094	34.0130	0.2036
20	0.4017	0.0374	33.8387	34.2523	0.4136
20	0.6005	0.0365	34.2436	34.8574	0.6138

 Table S2. Drying results of PE and ISTD in a vacuum oven at 80°C for 48 hours under various

 conditions

Entry	Name	Category	Retention time (min)
1	iso-Pentane	iso-Alkane	3.4
2	n-Pentane	n-Alkane	3.6
3	Methylene Chloride	(Solvent)	3.8 - 3.9
4	iso-Hexane	iso-Alkane	4.5 - 4.7
5	n-Hexane	n-Alkane	5.0
6	Methylcyclopentane	Cycloalkane	5.6
7	Benzene	Aromatic	6.1
8	Cyclohexane	Cycloalkane	6.3
9	iso-Heptane	iso-Alkane	6.7 - 7.0
10	n-Heptane	n-Alkane	7.3
11	Methylcyclohexane	Cycloalkane	8.0
12	Toluene	Aromatic	9.1
13	iso-Octane	iso-Alkane	9.4 - 9.7
14	n-Octane	n-Alkane	10.5
15	Ethylcyclohexane	Cycloalkane	11.7
16	Ethylbenzene	Aromatic	12.3
17	p-, m-Xylene	Aromatic	12.7
18	iso-Nonane	iso-Alkane	12.8 - 13.1
19	o-Xylene	Aromatic	13.5
20	n-Nonane	n-Alkane	14.0
21	n-Decane	n-Alkane	17.5
22	n-Undecane	n-Alkane	20.7
23	n-Dodecane	n-Alkane	23.7
24	n-Tridecane	n-Alkane	26.6
25	n-Tetradecane	n-Alkane	29.3
26	n-Pentadecane	n-Alkane	31.8
27	n-Hexadecane	n-Alkane	34.2
28	n-Heptadecane	n-Alkane	36.4
29	n-Octadecane	n-Alkane	38.5
30	n-Nonadecane	n-Alkane	40.6
31	n-Eicosane	n-Alkane	42.6
32	n-Heneicosane	n-Alkane	44.4
33	n-Docosane	n-Alkane	46.2

 Table S3. GC-FID compound identification table.

Figure S1. Product distribution from PE catalytic cracking over various zeolites: (a) Na_micro_Y, (b) Na_meso_Y, (c) Li_meso_Y, (d) K_meso_Y, (e) H_Y, and (f) La_meso_Y. Reaction conditions: 300°C, 4 h, atmospheric Ar, 0.1 g catalyst, and 0.2 g PE.

Figure. S2 (a-b) Pyridine-DRIFTS spectra of HY and Ce/HY-WI catalysts after calcination at 550°C for 6 hours at different desorption temperatures. (a) HY and (b) Ce/HY-WI. (c-d) Reaction results of HY and Ce/HY-WI catalysts after calcination at 550°C for 6 hours. (c) HY and (d) Ce/HY-WI. Reaction conditions: 300°C, 2 h, atmospheric Ar, 0.1 g catalyst, and 0.2 g PE.

Figure S3. Product distribution from PE catalytic cracking over Ce_meso_Y as a function of reaction temperature. (a) 260 °C, (b) 280 °C, (c) 300 °C, and (d) 320 °C. Reaction conditions: 4 h, atmospheric Ar, 0.1 g catalyst, and 0.2 g PE.

Figure S4. Product distribution from PE catalytic cracking over Ce_meso_Y as a function of PE/Catalyst ratio. (a) Conversion as a function of PE/Catalyst ratio. Product distributions at PE/Catalyst ratio of (b) 5, (c) 4, (d) 3, and (e) 2. Reaction conditions: 300 °C, 4 h, atmospheric Ar, and 0.1 g catalyst.

Figure S5. Product distribution from PE catalytic cracking over Ce_meso_Y as a function of reaction time. (a) 2 h, (b) 4 h, (c) 8 h, (d) 16 h, and (e) 24 h. Reaction conditions: 300 °C, atmospheric Ar, 0.1 g catalyst, and 0.3 g PE.

Figure S6. Physicochemical characterization of Ce_meso_Y and La_meso_Y with different loading. (a) NH_3 -TPD profile, and (b) N_2 adsorption-desorption isotherms and BJH pore size distribution of zeolites.

	^a Surface area (m ² g ⁻¹)	^b Pore volume (cm ³ g ⁻¹)	° A	° Total acid		
Catalyst			Weak (50-250 °C)	Medium (250-400 °C)	Strong (400-600 °C)	site density (mmol NH ₃ g ⁻¹)
Ce_meso_Y-0.1	491	0.376	48.2	35.8	16.0	1.53
Ce_meso_Y-0.3	436	0.282	53.5	33.7	12.9	1.66
La_meso_Y-0.3	451	0.288	49.4	36.6	14.0	1.42

Table S4. Catalytic characterization results of different ion-exchanged zeolites.

^a BET surface area evaluated using the standard multipoint method at $P/P_0 = 0.05-0.3$. ^b Total pore volume at $P/P_0 = 0.995$, and ^c Acid site density determined by NH₃-TPD analysis.

Figure S7. Pyridine-DRIFTS spectra at different desorption temperatures. (a) Ce_meso_Y-0.1 (b) Ce_meso_Y-0.3, and (c) La_meso_Y-0.3.

	At 50 °C			At 300 °C			At 450 °C		
Catalyst	BA S (%)	LAS (%)	BAS/LA S	BAS (%)	LAS (%)	BAS/LA S	BAS (%)	LAS (%)	BAS/LA S
Ce_meso_Y-0.1	39.5	60.5	0.652	74.8	25.2	2.965	77.7	22.3	3.479
Ce_meso_Y-0.3	29.7	70.3	0.422	89.6	10.4	8.620	81.3	18.7	4.344
La_meso_Y-0.3	42.4	57.6	0.735	90.8	9.2	9.833	91.0	9.0	10.061

Table S5. Pyridine-DRIFTS analysis results of Brønsted and Lewis acid sites at different desorption temperatures.

Figure S8. PE catalytic cracking results over Ce_meso_Y and La_meso_Y with different loading. (a) Product yield, (b-d) Product distribution from PE catalytic cracking over (b) Ce_meso_Y-0.1 (c) Ce_meso_Y-0.3, and (d) La_meso_Y-0.3. Reaction conditions: 300°C, 4 h, atmospheric Ar, 0.1 g catalyst, and 0.2 g PE.

Figure S9. (a) Conversion as a function of strong Lewis acid sites (LASs) density. (b) H/C ratio of products and residues over ion-exchanged zeolites.

Figure S10. (a) PE catalytic cracking results of different ion-exchanged zeolites. (b) Comparison of H/C ratio and hydrogen yield at similar conversion levels. (c) Product distribution from PE catalytic cracking over Ce_meso_Y. Reaction conditions: 300°C, 2 h, atmospheric Ar, 0.1 g catalyst, and 0.2 g PE.

Figure S11. Product distribution from PE catalytic cracking over (a) Ce/HY-WI and (b) Ce_meso_Y-Pyr. Reaction conditions: 300°C, 4 h, atmospheric Ar, 0.1 g catalyst, and 0.2 g PE.

Figure S12. Physicochemical characterization of Ce/HY-WI. (a) N_2 adsorption-desorption isotherms and BJH pore size distribution of zeolites, and (b) NH_3 -TPD profile.

Figure S13. Ce 3d XPS spectra of fresh, used, and regenerated Ce_meso_Y catalysts.

Figure S14. Representative TEM and STEM-EDX images of Ce_meso_Y.

Figure S15. (a) PE catalytic cracking results over H_Y with different Si/Al ratios. (b) Product distributions for H_Y(80). Reaction conditions: 300° C, 4 h, atmospheric Ar, 0.1 g catalyst, and 0.2 g PE. (c-e) Physicochemical characterization of H_Y (80). (c) NH₃-TPD profile, (d) N₂ adsorption-desorption isotherms and BJH pore size distribution, and (e) Pyridine-DRIFTS spectra at different desorption temperatures.

Table S6. Catalytic characterization results of H Y(80).

Catalyst	a Surface	^b Pore volume (cm ³ g ⁻¹)	° A	° Total acid		
	area (m ² g ⁻¹)		Weak (50-250 °C)	Medium (250-400 °C)	Strong (400-600 °C)	site density (mmol NH ₃ g ⁻¹)
H_Y(80)	580	0.527	82.1	9.2	8.7	0.79

a BET surface area evaluated using the standard multipoint method at $P/P_0 = 0.05-0.3$. b Total pore volume at $P/P_0 = 0.995$, and c Acid site density determined by NH₃-TPD analysis.

	At 50 °C		At 300 °C			At 450 °C			
Catalyst	BAS	LAS	BAS/LA	BAS	LAS	BAS/LA	BAS	LAS	BAS/LA
	(%)	(%)	S	(%)	(%)	S	(%)	(%)	S
H Y(80)	27.3	72.7	0.376	89.3	10.7	8.330	91.4	8.6	10.586

 Table S7. Pyridine-DRIFTS analysis results of Brønsted and Lewis acid sites at different desorption temperatures.

Figure S16. Thermogravimetric analysis (TGA) of fresh Ce_meso_Y and fresh Ce/HY-WI catalysts.

Figure S17. (a) Differential thermal analysis (DTA) of spent Ce_meso_Y and spent Ce/HY-WI catalysts. (b) NH₃-TPD profile of spent Ce_meso_Y.

Figure S18. Product distribution from resuability test. (a) 1st reuse, (b) 2nd reuse, and (c) 3rd reuse. Reaction conditions: 300°C, 4 h, atmospheric Ar, 0.1 g catalyst, and 0.3 g PE.

Figure S19. Product distribution from catalytic cracking reaction for post-consumer plastic wastes. (a) HDPE bottle, (b) Commercial LDPE, (c) PP, and (d) PP file case. Reaction conditions: 320 °C, 4 h, atmospheric Ar, 0.1 g catalyst, and 0.2 g reactant.

Figure S20. Product distribution from catalytic cracking reaction for mixture of PP and ABS. (a) product distributions, and (b) GC-MS analysis results.