1

Electronic Supplementary Information (ESI)

One-Pot Electrocatalytic Lignin Depolymerization with *In-Situ* Extraction: A Feasible Approach Toward Biomass-Based Oils

Lucie M. Lindenbeck,^a Silas Brand,^a Finn Schatz,^a Franka Stallmann,^a Nele Petersen,^a Björn B. Beele,^a Jessica Pichler,^b Marcella Frauscher,^b Raphaela Süss,^c Pascal Olschowski,^c Serhiy Budnyk,^d Adam Slabon,^{a,e*} and Bruno V. M. Rodrigues^{a*}

^a Chair of Inorganic Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany

^b AC2T research GmbH, Viktor-Kaplan-Straße 2 C, 2700 Wiener Neustadt, Austria

^c Kompetenzzentrum Holz GmbH - Wood K plus, Altenbergerstraße 69, 4040 Linz, Austria

^d Schoeller - Bleckmann Nitec GmbH, Christof Group, Hauptstraße 2, 2630 Ternitz, Austria

^e Wuppertal Center for Smart Materials & Systems, University of Wuppertal, 42119 Wuppertal, Germany

*Corresponding author e-mail: slabon@uni-wuppertal.de; manzolli@uni-wuppertal.de

Reference reactions	2
Characterization of depolymerization products derived from the aqueous phase	5
Characterization of depolymerization products derived from the MIBK phase	7
Investigation of viscosity, oxidation stability, and thermal stability	8

Reference reactions

Figure S 1. ¹H NMR spectrum (DMSO-d⁶, 600.13 MHz) of MIBK (-350 mA/20h/WM/NL) before (fresh) and after (used) reaction.

Figure S 2. ¹H NMR spectrum (DMSO-d⁶, 400.13 MHz) of the MIBK-soluble fraction of lignin (0 mA/20h/LS).

Figure S 3. ¹H NMR spectrum (DMSO-d⁶, 400.13 MHz) of the MIBK-soluble fraction of lignin without the application of current and directly following the combination of reactants (0 mA/0h/WM).

Figure S 4. ¹H NMR spectrum (DMSO-d⁶, 400.13 MHz) of the MIBK-soluble fraction of lignin without the application of current and after 20 h stirring (0 mA/20h/WM).

Figure S 5. 1 H NMR spectrum (D₂O, 400.13 MHz) of DL without a MIBK layer (–350 mA/20h/NM).

Figure S 6. Decolorization of the reference reaction (-350mA/20h/NM) subsequent to 20 h of depolymerization.

0 h

20 h

Figure S 7. Color change of the MIBK phase during the electrochemical reaction.

Figure S 8. ¹H NMR spectrum (D₂O, 400.13 MHz) of DL.

Characterization of depolymerization products derived from the aqueous phase

Figure S 9. ^{1}H ^{1}H -COSY NMR spectrum (D₂O, 400.13 MHz) of DL.

200

220

0.5

Characterization of depolymerization products derived from the MIBK phase

Figure S 11. ^1H $^{13}\text{C}\text{-HSQC}$ NMR spectrum (DMSO-d⁶, 600.13/150.94 MHz) of LO.

11.5

10.5

9.5

8.5

7.5

f2 (ppm)

6.5

5.5

4.5

3.5

2.5

1.5

13.5

12.5

Investigation of viscosity, oxidation stability, and thermal stability

Figure S 12. Temperature-dependent kinematic viscosity of the depolymerized lignin-based oil (blue circles) compared to a commercial mineral base oil (orange squares).

Figure S 13. Temperature-dependent density of the depolymerized lignin-based oil (blue circles) and a commercial mineral base oil (orange squares).

Figure S 14. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of LO were measured under synthetic air (SynAir) atmospheres using a NETZSCH STA 449 F1 Jupiter[®] device. The protocol encompassed an initial isothermal step at 30 °C for 10 min, followed by heating from 30 °C to 500 °C at a rate of 10 °C min⁻¹. This was succeeded by a final isothermal step at 500 °C for 10 min.

Figure S 15. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of LO were measured under nitrogen atmospheres using a NETZSCH STA 449 F1 Jupiter[®] device. The protocol encompassed an initial isothermal step at 30°C for 10 min, followed by heating from 30 °C to 500 °C at a rate of 10 °C min⁻¹. This was succeeded by a final isothermal step at 500 °C for 10 min.

Figure S 16. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of the mineral base oil were measured under synthetic air (SynAir) atmospheres using a NETZSCH STA 449 F1 Jupiter[®] device. The protocol encompassed an initial isothermal step at 30 °C for 10 min, followed by heating from 30 °C to 500 °C at a rate of 10 °C min⁻¹. This was succeeded by a final isothermal step at 500 °C for 10 min.

10

Figure S 17. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) curves of the mineral base oil were measured under nitrogen atmospheres using a NETZSCH STA 449 F1 Jupiter[®] device. The protocol encompassed an initial isothermal step at 30 °C for 10 min, followed by heating from 30 °C to 500 °C at a rate of 10 °C min⁻¹. This was succeeded by a final isothermal step at 500 °C for 10 min.