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Experimental Section:

Materials:

2-Methylimidazole (2-MiM), hexadecyl trimethyl ammonium Bromide (CTAB),
Zn(CH3COO),-2H,0, chloroplatinic acid, sodium borohydride, titanium (IV) butoxide,

methanol, selenium were commercial available and used as received.

Synthesis of Poz3F:

Methyl  4-(3,7-bis(4-(trifluoromethyl)phenyl)-10H-phenoxazin-10-yl)benzoate:
Compound 1 methyl 4-(3,7-dibromo-10H-phenoxazin-10-yl)benzoate (0.475 g, 1.00
mmol), 4-Trifluoromethylphenylboronic acid (0.475 g, 2.50 mmol), potassium
carbonate (2 M, 6.0 mL), and tetrahydrofuran were added to the reaction flask to fully
stir and dissolve and the gas was pumped three times, Tetrakis (triphenylphosphine)
palladium (23.10 g, 0.20 mmol) was added in a nitrogen atmosphere and reacted at 70
°C overnight to obtain compound, and finally water was added to stop the reaction, and
dichloromethane was extracted. The organic layer was washed three times with water
and brine, dried with anhydrous sodium sulfate, the solvent was removed by rotary
evaporation, and purified with petroleum ether/ethyl acetate (volume ratio = 15/1) as
an eluent to obtain 2 0.47 g (77%) of yellow solid. 'H NMR (400 MHz, Chloroform-d)
08.32(d, J=8.5Hz, 2H), 7.64 (d, ] = 8.3 Hz, 4H), 7.58 (d, J = 8.2 Hz, 4H), 7.49 (d, J
= 8.5 Hz, 2H), 7.02 (d, J = 2.1 Hz, 2H), 6.88 (dd, J = 8.3, 2.1 Hz, 2H), 6.03 (d, J = 8.3

Hz, 2H), 3.99 (s, 3H).



4-(3,7-bis(4-(trifluoromethyl)phenyl)-10H-phenoxazin-10-yl) benzoic acid:The
compound formula 2 (0.605 g, 1.00 mmol) was dissolved in a mixed solution of
MeOH/THF (the volume ratio of the two is 1:1), and then sodium hydroxide aqueous
solution was added, stirred at 50 °C overnight, the reaction was gradually cooled to
room temperature, the solution was concentrated under vacuum, acidified and filtered
with 2M HCI, and 3 (Poz3F) 0.56 g (94%) of yellow solid was obtained after drying.
'"H NMR (400 MHz, DMSO-d6) & 13.28 (s, 1H), 8.26 (d, J = 8.0 Hz, 2H), 7.94-7.71
(m, 8H), 7.66 (d, J=8.1 Hz, 2H), 7.22 (d, J = 2.1 Hz, 2H), 7.17-7.08 (m, 2H,), 6.03 (d,
J=28.4 Hz, 2H).

Synthesis of Catalysts:

Synthesis of ZIF-8 particles: Typically, 0.74 mM CTAB was added to 5 mL of
2.72 M 2-MiM aqueous solution. Then, 5 mL 0f 0.273 M Zn(CH;COOQ),-2H,0 aqueous
solution was added into the mixed solution of 2-MiM and CTAB while stirring. The
transparent mixture turned to milky within ~ 30 s. After two hours, the suspension was
transferred to a Falcon tube and the ZIF-8 particles were washed three times with

deionized water upon centrifuging at 9000 rpm , then dried at 80 °C.

Synthesis of ZIF-8/Pt: 150 mg ZIF-8 was added to 20 ml methanol. Then, 0.8 mL
0.0192 M chloroplatinic acid solution was added into the methanol dispersion of ZIF-
8 while stirring. After two hours, 1 mg sodium borohydride was added into the mixed
solution of ZIF-8 and chloroplatinic acid while stirring. After 10 min, the suspension
was transfer to a Falcon tube and the ZIF-8/Pt particles were washed three times with

methanol upon centrifugation at 9000 rpm, then dried at 80 °C.



Synthesis of ZIF-8/Pt@TiO,: 150 mg ZIF-8/Pt and 0.6 mL deionized water was
added to 60 mL methanol and then stirred for 30 min. A solution of titanium (IV)
butoxide (Ti(OBu)4, 0.3 ml, 0.5 ml, 0.7 ml or 0.9 ml in ethanol (total volume 6.0 mL)
was then injected into the mixture using a syringe at a rate of 0.5 mL min-'. Then the
temperature was increased to 80 °C. After 90 min, the suspension was transferred to a
Falcon tube and the ZIF-8/Pt@TiO, particles were washed three times with methanol

upon centrifugation at 9000 rpm., then dried at 80 °C.

Synthesis of h-ZnO/Pt@TiO,: 150 mg ZIF-8/Pt@Ti0, was weighed in a crucible

and heated to 550 °C at a rate of 5 °C/min and held for 2 hours in Air in a muffle furnace.

Synthesis of h-ZnSe/Pt@TiO;: 50 mg ZnO/Pt@TiO, and 50 mg Selenium was
weighed in a crucible and heated at 550 °C for 2 hours with a temperature increasement

of 5 °C/min in 5% H, + 95% Ar.

Synthesis of h-ZnSe/Pt@Ti0,-Poz3F: 100 mg h-ZnSe/Pt@Ti10, was dispersed in
a solution of Poz3F in DMF solvent for 240 min, followed by washing in DMF three

times. The concentration of Poz3F solution was 1, 3, 5. 7, 10 mM.

Synthesis of ZnSe: The as obtained ZIF-8 was put in a crucible and heated to 550
°C atarate of 5 °C/min and held for 2 hours in air in a muffle furnace. Then the obtained
powder was mixed with Selenium in a crucible and heated at 550 °C for 2 hours with a

temperature increasement of 5 °C/min in 5% H; + 95% Ar.

Synthesis of TiO,: The as obtained ZIF-8@TiO, was washed in 1 M HCI to

remove ZIF-8. Then the TiO, were annealed at 550 °C for 2 hours in a muffle furnace



and then treated in 5% H, + 95% Ar with atemperature increasement of 5 °C/min for 2

hours.

General Methods:

X-ray diffraction (XRD) measurements were carried out on a Rigaku Smartlab
9kW X-ray diffractometer. Scanning electron microscope (SEM) characterization was
carried out on a Thermo Fisher Apero C scanning electron microscope. Transmission
electron microscope (TEM) measurements were carried out on a FEI Talos F200S
200kV scanning/transmission electron microscope. Atomic force microscopy (AFM)
measurements were carried out on a Multimode 8 AFM (Bruker, SO#47233). X-ray
photoelectron spectroscopy (XPS) characterization was carried out on a Thermo Fisher
Escalab 250Xi X-ray photoelectron spectrometer. Raman spectroscopy was carried out
on a Renishaw plc Raman spectrometer. Electron paramagnetic resonance (EPR)
measurements were performed on a Bruker A300 electron paramagnetic resonance
instrument. The Ultraviolet—visible diffuse reflectance spectra were measured by a UV-
vis spectrophotometer (Shimadzu UV-3600), and BaSO, was used as a reflectance
standard material and the scanning range was 200-900 nm. The Fourier transform
infrared spectra (FT-IR) of the samples were analyzed by infrared spectrometer (Nicolet
IS50 Thermo fisher) using KBr disk. The Photo-luminescence (PL) spectrum was
performed wusing a Fuorolog-3 fluorescence lifetime spectrophotometer. N,
physisorption surface area using the Brunauer—Emmett—Teller (BET) method was
recorded on a Micromeritics ASAP 2460 tool. Raman spectra (633 nm) were collected

with Renishaw in via. Elemental analysis was performed on an Elemantar: Vario EL



cube. Hall effect was measured by a Ecopia HMS-7000 Hall Effect measuement
(measurement) System. The charge carrier mobility and sample resistance were
measured using an Ecopia HMS-7000 Hall Effect Measurement System with the
following parameters: test current: 1x10-10 A, magnetic field: 0.5 T, integration time:

20 s, and actual test time: 27 min.

All of the photoelectrochemical measurements were measured on a CHI 760E
electrochemical station (Shanghai Chenhua, China) in ambient conditions. Generally,
3 mg of photocatalyst were dispersed in 1 mL 1% nafion ethanol solution. A glassy
carbon electrode with a photocatalyst deposited served as the working electrode, while
a platinum sheet and an Ag/AgCl electrode served as the counter and reference
electrode, respectively. The electrolyte was a 0.2 M Na,SO, solution and a 300 W Xe
lamp was used as the visible light source. Determination of Soluble Compounds using
an Agilent 1260 infinity HPLC system equipped with a refractive index detector
(HPLC-RI) and a Rezex ROA-organic acid H+ column (300 x 7.8 mm) to determine if
soluble compounds (such as glucose and cellobiose) were present in the filtrate as a
result of the pretreatment. The flow rate of the isocratic mobile phase (5 mM H,SO,)

was set at 0.5 mL min~!, and the RI and column temperatures were both 40 °C.

Photocatalytic Cellulose Reforming Experiments

The time-dependent photocatalytic hydrogen production experiments were
performed in Labsolar-6A online system (Beijing Perfectlight) at 5 °C. A Xenon arc

lamp (300 W) was employed as light source to trigger the photocatalytic reaction. The



photocatalyst and cellulose was dispersed in deionized water in the reaction cell by
using a magnetic stirrer. Prior to the reaction, the mixture was degassed under vacuum
to remove air. The generated gas phase products were characterized by Agilent 8860
gas chromatography (a molecular sieve SA column, two Hayesep Q column, a thermal
conductivity detector, a flame ionization detector, argon was used as carrier gas)
connected with Perfectlight 6A system. The liquid phase products were tested using
LC-MS (thermo scientific Q Exactive Ultimate 3000 UPLC). MS: Spray Voltage: 3200
V; Capillary Temperature: 300.00 °C; Sheath Gas: 40.00 Arb; Aux Gas: 8.00  Arb;
Max Spray Current: 100.00 pA; Probe Heater Temp.: 300.00 °C; Ion Source: ESI+/-
ms. LC: column: ZORBAX SB-AQ 150x4.6mm, S5um Agilent; Temp.: 10 °C; u=0.3

mL/min; Mobile phase: CH3CN: 0.1% formic acid aqueous solution = 1:99.

Computational Details

The first-principles calculations are performed in the framework of the density
functional theory with the projector augmented plane-wave method, as implemented in
the Vienna ab initio simulation package.! The generalzied gradient approximation of
Perdew, Burke, and Ernzerhof (PBE) functional is employed for the exchange-
correlation potential.? The long range van der Waals interaction is described by the
DFT-D3 approach.? The plane-wave basis with a kinetic energy cutoff of 500 eV and
the Monkhorst-Pack scheme* with a k-point grid spacing of 2mx0.04 A-l, were
employed to ensure convergence of the total energy. The converged conditions for ionic
and electronic optimizations were chosen as 0.02 eV/A and 1x1075 eV, respectively.

The adsorption energy E _ads is defined as: E_ads =E_ad/sub—(E_ad + E_sub), where



E ad/sub, E ad, and E_sub are the total energies of the adsorbate/substrate system, the

adsorbate in the structure, and the clean substrate, respectively.
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Figure S1. (A) Decarbonylation and decarboxylation pathway of sugar and (B)

dehydrogenation and dehydration pathway of formic acid.

F1 ir Ful F
Br. o. Br F F F @ O F
o ° °
N 4-Trifluoromethylphenylborenic acid O @ NaOH O O
K2C03(2M) THF Pd(PPhy), N MeOH-THF(1:1) N
70°C, overnight 50°C, overnight
~
0”0 ) HO™ ™0
1 2, Yield: 77% 3, Yield: 94%

Figure S2. Synthetic route of Poz3F.
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Figure S3. NMR spectrum of Poz3F.
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Figure S4. Schematic diagram displays the synthesis procedures of h-ZnSe/Pt@TiO,

samples.
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Figure S5. FT-IR spectra of Poz3F before and after adsorbed on h-ZnSe/Pt@TiO,,

respectively.

Figure S6. SEM image of h-ZnSe/Pt@Ti0O,.



Figure S7. SEM image of h-ZnSe/Pt@Ti0O,-Poz3F.

HAADE |17 B2

200 nm

Figure S8. EDS mapping of SEM image of h-ZnSe/Pt@TiO,. Zn: red, Ti: yellow, Se:

purple, Pt: blue.



Figure S9. High-resolution TEM image of h-ZnSe/Pt@TiO,.

Lattice fringes of ZnSe, TiO,, and PtSe, are observed in the high-resolution TEM
image. As revealed, the adjacent lattice spacing of 0.508 nm and 0.320 nm as shown in
are corresponding to the (001) and (111) plane of PtSe, and ZnSe, respectively, showing
the overlapped location of PtSe, and ZnSe. Metallic Additionally, lattice spacing of
0.352 nm corresponding to the (101) plane of TiO, is also observed next to ZnSe with

distorted boundary, implying the heterojunction formation.
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Figure S10. (A) Specific surface area and (B) pore distribution of h-ZnSe/Pt@TiO,,

respectively. (C) Specific surface area and (D) pore distribution of h-ZnSe/Pt@TiO,-

Poz3F, respectively.
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Figure S11. XPS full survey spectrum of (A) h-ZnSe/Pt@TiO,-Poz3F and (B) h-
ZnSe/Pt@Ti0,, respectively.
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ZnSe/Pt@Ti0,-Poz3F and h-ZnSe/Pt@TiO,, respectively.

For both samples, four peaks were observed in the narrow scan Ti 2p XPS
spectrum, which are located at 458.3, 457.9, 464.3, and 463.6 eV corresponding to the
Ti*" 2pssp, Ti3* 2psp, Ti*t 2p1s, and Ti3* 2py,, respectively.>® The presence of Ti** on
the surface indicates partial loss of the lattice oxygen, which can be further confirmed
by the narrow scan O 1s XPS spectrum.’® Three peaks at with binding energies of
529.5,531.5, and 533.0 eV related to the lattice oxygen, oxygen vacancies, and the O-
H of surface hydroxyl group, respectively, were observed in the O 1s XPS spectra of
both samples.’ Consistent with the observed Ti** species, oxygen vacancies also present
in the samples, further confirming partial loss of the lattice oxygen. Two peaks at

1044.7 and 1021.7 eV ascribed to Zn** 2p,, and Zn?" 2ps,, respectively, are identified



in both samples (Figure S10C).”-® Narrow scan Pt 4f XPS in Figure S10D reveals that
there are two chemical states of Pt, Pt*" and Pt°, in both samples. Notably, the peak area
corresponding to Pt*" is much higher than that of Pt°, suggesting that the majority of Pt
is in Pt*" form. Additionally, the Pt*" is like originated from PtSe, as revealed by the

high-resolution TEM images (Figure 1D and S12).
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Figure S13. UV-vis spectra of h-ZnSe/Pt@Ti0,-Poz3F and h-ZnSe/Pt@TiO,.
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Figure S15. Photos of the contact angle measurements of samples treated in Poz3F

with a concentration of (A) 1 mM, (B) 3mM, (C) 5 mM, and (D) 10 mM, respectively.
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Figure S16. TEM images of samples treated in Poz3F with a concentration of (A) 1

mM, (B) 7 mM, and (C) 10 mM, respectively.
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Figure S18. GC-MS of the isotopic tracing using '*C labeled glucose.
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Figure S20. Photocatalytic cycling stability test of h-ZnSe/Pt@TiO,-Poz3F.
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Figure S22. (A) Photo of contact angle measurement and (B) EDX element mapping

images after photocatalysis, respectively.
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Figure S23. Extracted-ion chromatograms from the LC-MS analysis of deprotonated
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Figure S24. Extracted-ion chromatograms from the LC-MS analysis of deprotonated

compounds in the after a-cellulose 6 hours irradiation solution with (A) h-

ZnSe/Pt@Ti0,-Poz3F and (B) h-ZnSe/Pt@TiO,, respectively.
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Figure S25. Extracted-ion chromatograms from the LC-MS analysis of deprotonated

compounds in the after a-cellulose 18

hours irradiation solution with (A) h-

ZnSe/Pt@Ti0,-Poz3F and (B) h-ZnSe/Pt@TiO,, respectively.
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Figure S26. Extracted-ion chromatograms from the LC-MS analysis of deprotonated

compounds in the after a-cellulose 48

ZnSe/Pt@Ti0O,

Table S1. The content of Pt. Zn and Ti in h-ZnSe/Pt@TiO,

hours irradiation solution with (A) h-

Poz3F and (B) h-ZnSe/Pt@TiO,, respectively.

Poz3F via ICP-MS.

Pt

/n Ti

Content(%)

0.75

24.86 17.43




Table S2. Chemical formula and mass charge ratio of deprotonation compounds.

Chemical formular Base peak m/z
CsH 1107 195.04992
CsH 1106 179.05521
CsHyOq 165.03936
CsHyOs 149.04436
C4H-0s5 135.02879
C4H,04 119.03372
C;5H50,4 105.01823
C;H;50;5 89.02311
CoH;30; 75.00746
C,H50, 59.01256
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Figure S27. (A) GC-MS spectra (B) gas productivity after 10 min photocatalysis in
glucose solution. (C) GC-MS spectra (B) gas productivity after 10 min photocatalysis
in glyceraldehyde solution. The green ovals in (A) and (C) indicate the signal

corresponding to formic acid in GC-MS. The inset in (A) is the standard GC-MS spectra



of formic acid.

To confirm the decarbonylation pathway, the gas and liquid phase products after
only 10 min photocatalysis have been analyzed using glucose and glyceraldehyde as
the substrates. As shown in Figure S18A and B, obvious CO production can be detected
using h-ZnSe/Pt@Ti0,-Poz3F, while no signal for CO,, H,, and formic acid, further
supporting the occurrence of decarbonylation pathway. In contrast, CO,, H,, and formic
acid were produced in the early stage of photocatalysis using h-ZnSe/Pt@TiO,, while
no CO can be detected, indicating domination of decarboxylation pathway. These
results further support that the Poz3F modification boost the decarbonylation pathway

which is desired for CO production.
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Figure S28. Formic acid reforming into CO, CO,, H, productivity of ZnSe/Pt@TiO,-

Poz3F and h-ZnSe/Pt@TiO,.
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Figure S29. (A-C) EPR spectra of radical adducts signal labeled by DMPO for «OH
generated by h-ZnSe/Pt@TiO,-Poz3F prepared with different concentration of Poz3F.

(D) Relationship between *OH generation and the measured contact angle.
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Figure S30. Comparison of CO/CO, ratio and formic acid productivity from (A)
glycerol, (B) glyceraldehyde, and (C) glyceric acid using ZnSe/Pt@Ti0,-Poz3F and h-

ZnSe/Pt@Ti0,, respectively.
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