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Supplementary Text 
 
Synthesis of ionic liquids 
 
In our experimentation step, we applied the following steps to mitigate impurity of water in the 
ILs: 1) All synthesized ILs were dried under vacuum at elevated temperatures (typically 70 °C) 
overnight before use. Second, we ensured minimal exposure to ambient humidity by storing them 
in a desiccator and minimizing air exposure during weighing and reaction setup. 2) All the reagents 
were dried before the synthesis of the ILs. 
 
[N1111][ZnCl3]: In a 50 mL flask, 10 mmol (1.3630 g)  of ZnCl2 in 10 mL of DI water and 0.05 
mL of concentrated HCl, and 10 mmol (1.0960 g) of [N1111][Cl] was slowly added to the solution. 
The mixture was kept at 60℃ under vigorous stirring for 4 h and dried in the vacuum oven 
overnight. 
 
[N1111]2[ZnCl4]: In a 50 mL flask, 10 mmol (1.3630 g) of ZnCl2 was dissolved in 10 mL of DI 
water and 0.05 mL of concentrated HCl, and 20 mmol (2.1920 g) of [N1111][Cl] was slowly added 
to the solution. The mixture was kept at 60℃ under vigorous stirring for 4 h and dried in the 
vacuum oven overnight. 
 
[TMG][Cl]: In a 100 mL Erlenmeyer flask, 10 mL of concentrated hydrochloric acid (~0.12 mol) 
was added dropwise and slowly to 12.55 mL of 1,1,3,3-tetramethylguanidine under vigorous 
stirring. After the addition, 10 mL of DI water was added to the mixture, and the mixture was kept 
under stirring for 4 h. The mixture was then dried in the vacuum oven overnight.  
 
[TMG]2[ZnCl4]: In a 50 mL flask, 10 mmol (1.3630 g) of ZnCl2 was dissolved in 10 mL of DI 
water and 0.05 mL of concentrated HCl, and 20 mmol (3.0328 g) of [TMG][Cl] was slowly added 
to the solution. The mixture was kept at 60℃ under vigorous stirring for 4 h and dried in the 
vacuum oven overnight. 
 
[TMG][For]: In a 100 mL Erlenmeyer flask, 5 mL of formic acid was added dropwise and slowly 
to 12.55 mL of 1,1,3,3-tetramethylguanidine (liquid) and 20 mL of DI water under vigorous 
stirring. After the addition, the mixture was kept at 70℃ under stirring for 4 hours, and the mixture 
was dried in the vacuum oven overnight. 
 
[Ch][ZnCl3]: In a 50 mL flask, 10 mmol (1.3630g) of ZnCl2 was dissolved in 10 mL of DI water 
and 0.05 mL of concentrated HCl, and 10 mmol (1.3962 g) of [Ch][Cl] was slowly added to the 
solution. The mixture was kept at 60℃ under vigorous stirring for 4 h and dried in the vacuum 
oven overnight. 
 
[Ch]2[ZnCl4]: In a 50 mL flask, 10 mmol (1.3630g) of ZnCl2 was dissolved in 10 mL of DI water 
and 0.05 mL of concentrated HCl, and 20 mmol (2.7924 g) of [Ch][Cl] was slowly added to the 
solution. The mixture was kept at 60℃ under vigorous stirring for 4 h and dried in the vacuum 
oven overnight. 
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[Emim][ZnCl3]: In a 50 mL flask, 10 mmol (1.3630 g) of ZnCl2 was dissolved in 10 mL of DI 
water and 0.05 mL of concentrated HCl, and 10 mmol (1.4617 g) of [Emim][Cl] was slowly added 
to the solution. The mixture was kept at 60℃ under vigorous stirring for 4 h and dried in the 
vacuum oven overnight. 
 
[Emim]2[ZnCl4]: In a 50 mL flask, 10 mmol (1.3630 g) of ZnCl2 was dissolved in 10 mL of DI 
water and 0.05 mL of concentrated HCl, and 20 mmol (2.9324 g) of [Emim][Cl] was slowly added 
to the solution. The mixture was kept at 60℃ under vigorous stirring for 4 h and dried in the 
vacuum oven overnight. 
 
 
 
Bulk sale prices for ionic liquid anion and cation components 
 
Bulk sale prices for anion components in USD: 

• ZnCl2: 1200, https://www.quheqihuo.com/news/202306272957390.html 
• CoCl2: 6800, https://www.mysteel.com/hot/1232742.html 
• CrCl2: 10000, https://www.alibaba.com/product-detail/Chromium-ii-Chloride-CAS-

10049-05_1600599662519.html 
• CuCl2: 8200, https://www.alibaba.com/product-detail/Industrial-grade-Copper-II-

chloride-dihydrate_1600459090540.html 
• Alanine: 3900, https://www.chinabgao.com/jiage/1469574.html 
• Serine: 3400, https://www.alibaba.com/product-detail/High-quality-and-Low-price-

L_1601044123712.html 
• Acetic Acid: 386, https://www.sci99.com/monitor-499-0.html 
• Glycine: 2000, https://www.chinabgao.com/jiage/ganansuan/7.html 
• Formic Acid: 535, https://finance.sina.cn/futuremarket/nyshzx/2023-07-05/detail-

imyzqyat3239520.d.html 
• Aspartic Acid: 6800, https://www.alibaba.com/product-detail/Factory-High-Grade-L-

Aspartic-acid_1600552057471.html 
• MnCl2: 1400, https://www.alibaba.com/product-detail/Factory-Price-Sell-Industrial-

Grade-Manganous_1600236042763.html 
• Co(Ac)2: 9000, https://www.alibaba.com/product-detail/High-Quality-Cobalt-II-Acetate-

Tetrahydrate_1600697473625.html 
• CoCl2: 6900, https://www.mysteel.com/hot/1486340.html 
• Lysine: 1270, Tryptophan: 9500, 

https://ncp.mysteel.com/23/0625/17/DCC221066E75203B.html 
• FeCl3: 2000, https://www.alibaba.com/product-detail/98-Ferric-Chloride-Anhydrous-

IRON-III_1600281287607.html 
• Zn(Ac)2: 2100, https://www.alibaba.com/product-detail/Best-Price-Zinc-Acetate-

Anhydrous-CAS_1600827762025.html 
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• Proline: 18000, https://www.100ppi.com/mprice/detail-5231231.html 
• Cu(Ac)2: 5110, https://www.100ppi.com/news/detail-20230625-2692835.html 
• H3PO4: 870, https://www.100ppi.com/kx/detail-message-558--1.html 
• Histidine: 44000, https://www.100ppi.com/mprice/detail-5231233.html 
• Leucine: 8700, https://www.alibaba.com/product-detail/OEM-Amino-Acid-Powder-

CAS-61_1600515411949.html 
• NiCl2: 6700, https://www.chinabgao.com/jiage/lvhuanie/ 
• Arginine: 9400, https://www.quheqihuo.com/news/202306282959642.html 
• Mn(Ac)2: 2600, https://www.quheqihuo.com/news/202305302938694.html 
• Ni(Ac)2: 9670, https://www.100ppi.com/mprice/detail-4747651.html 
• Butane: 1321, https://www.100ppi.com/mprice/plist-1-1615-1.html 
• NaHCO3: 250, https://www.alibaba.com/product-detail/Bangze-Sodium-Bicarbonate-

Manufacturing-nahco3-Sodium_1600534966474.html 
• NaHSO4: 250, https://www.alibaba.com/product-detail/Sodium-Hydrogen-Sulfate-

sodium-bisulfite-CAS_1600063098933.html 
• Imidazole: 8343, https://detail.1688.com/offer/667148161718.html 
• MsOH: 1600, https://www.alibaba.com/product-detail/Factory-Supply-CAS-75-75-

2_1600886557882.html 

Bulk sale price for cation components in USD: 
• AMIMCl: 2760, https://www.zhaosw.com/product/detail/258728715 
• ChCl: 3000, https://www.alibaba.com/product-detail/Choline-Chloride-Powder-99-CAS-

67_1600612814490.html 
• ChOH: 3000, https://www.zhaosw.com/product/detail/252391238 
• TMG: 5000, https://www.alibaba.com/product-detail/High-Quality-

Tetramethylguanidine-CAS-80-70_10000012371707.html 
• N2222OH: 8290, https://www.zhaosw.com/product/detail/254355183 
• N1111OH: 4000, https://www.alibaba.com/product-detail/High-Quality-

Tetramethylammonium-hydroxide-pentahydrate-TMAH_1600219538414.html 
• BMIMCl: 2000, https://www.alibaba.com/product-detail/High-Quality-99-1-Butyl-

3_11000002467025.html 
• HMIMCl: 2760, https://www.zhaosw.com/product/detail/22723499 
• DMIMCl: 2600, https://www.zhaosw.com/product/detail/243293490 
• EMIM: 2300, https://www.alibaba.com/product-detail/1-Ethyl-3-methylimidazolium-

Chloride-65039_1600278467682.html 
• KOH: 800, https://www.alibaba.com/product-detail/Potassium-Hydroxide-KOH-90-

Flakes_1600695538145.html 
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Emission and price data for simulation 
 

• CO2 emissions for ethylene glycol: 1.418 tCO2e / t 
https://eur-lex.europa.eu/legal-
content/EN/TXT/HTML/?uri=CELEX:32018R2066&rid=1#ntr5-
L_2018334EN.01007901-E0005 
 

• Price of ethylene glycol: 660 USD / t  
https://www.echemi.com/pip/ethylene-glycol-eg-pid_Seven2471/asia.html 

 
• CO2e calculation for electricity and steam and heat: 

CO2e multipliers: CH4=25, N2O=298 
2023 eGrid US Average data for electricity emission in lb/MWh 
CO2=852.3, CH4=0.071, N2O=0.010  
2023 eGrid US Average data for steam and heat emission in kg/mmBtu 
CO2=66.33, CH4=1.250e-3, N2O=0.125e-3 
CO2e electricity = 0.389 kg / kWhr  
CO2e steam = 6.293e-05 kg / kJ 
https://www.epa.gov/climateleadership/ghg-emission-factors-hub 

 
 
Conditions for screening data generation  
 
Ionic liquids are generated using the combinations of existing cations and anions in the database. 
The initial conditions used for case generation are catalyst loading (mass ratio to PET): [0.01, 0.02, 
0.04, 0.06, 0.08, 0.1, 0.15], solvent loading (mass ratio to PET): [4, 6, 8, 10], temperature: [160, 
170, 180, 190, 200], and reaction time: [30, 60, 90, 120, 150, 180]. The minimum solvent loading 
is further limited to 4 after experiment, as lower amounts would make stirring difficult. Reaction 
times below 60 minutes and catalyst loading of 0.01 were excluded due to feasibility reasons as 
the melting time is around 30 to 60 minutes for PET bottles and powder based on observation 
during experiments. The maximum temperature was limited below the boiling point of ethylene 
glycol under atmospheric pressure. 
 
Machine learning implementation details 
 
The reactant quantities are preprocessed as ratios relative to the PET amount. Thus, the PET 
quantity feature can be set to unity for all cases and omitted. The categorical feature, PET source, 
is encoded using one-hot encoding. Each atom in the molecular data is embedded with five 
features: atomic number, formal charge, hybridization, aromaticity (True/False), and molecular 
weight. Each bond is embedded with three features: bond type, stereochemistry, and conjugation 
(True/False). All embeddings are generated using RDKit following the Torch Geometric 
framework, with categorical features encoded via label encoding. 
 
The molecular connectivity is represented using a tuple-based format, where (atomᵢ, atomⱼ) 
indicates a bond between atom i and atom j. For each IL molecule, the cation and anion are 

https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018R2066&rid=1#ntr5-L_2018334EN.01007901-E0005
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018R2066&rid=1#ntr5-L_2018334EN.01007901-E0005
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018R2066&rid=1#ntr5-L_2018334EN.01007901-E0005
https://www.echemi.com/pip/ethylene-glycol-eg-pid_Seven2471/asia.html
https://www.epa.gov/climateleadership/ghg-emission-factors-hub
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embedded in a single graph without connections between them, reflecting their separation. 
Furthermore, only one cation and one anion are embedded per IL molecule, irrespective of their 
ratio, as this information can be inferred from the charge balance of the ions in the dataset. 
 
For graph neural network part of the model, we used 4 graph attention layers of (input features, 
output features, heads) equal to [(5, 16, 4), (64, 32, 4), (128, 32, 4)*5, (128, 32, 2)] followed by a 
linear layer of (64, 32), so that each ionic liquid molecule is featurized into a vector of length 38. 
A 70% dropout of is added to the penultimate graph attention layer to avoid overfitting. The 
featurized ionic liquid molecule is then concatenated with 6 reaction parameters including catalyst 
loading, solvent loading, temperature, reaction time, source of PET, and size of PET. This 
concatenated feature is fed into the fully connected layer of size (38, 80, 96, 1) with dropout 5% 
for each intermediate layers for yield prediction. We applied RAdam optimizer with learning rate 
of 1e-3 and weight decay of 2e-4. 
 
t-SNE plot for GNN-featurized IL outputs. 
 
To analyze the feature representations learned by our GNN, we applied t-distributed stochastic 
neighbor embedding (t-SNE) to the GNN-featurized IL outputs (GNN output before fully 
connected layer). By tuning the perplexity parameter, we found that a value of 48 produced a 
clustered visualization, capturing relationships within the data. 
 
To further investigate the features learned by the GNN, we generated two separate t-SNE plots 
(Fig. S24). In one plot, the points are labeled by their cation names and another is labeled by their 
anion names. These plots show that the GNN can featurize IL molecules based on structural and 
chemical similarities. Specific groups of ILs form distinct clusters, reinforcing the model’s ability 
to capture meaningful molecular features. For example, quaternary ammonium compounds, zinc 
chloride-based ILs, and amino acid-based ILs form their own clusters, indicating that the model 
recognizes underlying molecular patterns. 
 
DBSCAN clustering analysis 
 
We carried out outlier analysis using Density-Based Spatial Clustering of Applications 
(DBSCAN)1 for IL molecules with GNN featurization, shown in Fig. S26. We applied t-SNE 
coordinates with reduced dimensions for better visualization in the plots. Clusters are labelled 
using the same colors. Note that each point/circle in the figures indicates multiple data points as 
we have repeated IL molecules.   
 
Fig. S26A shows the DBSCAN clustering results with raw GNN output features. Using GNN 
without further dimension reduction methods like t-SNE can already provide good clustering 
results for the ILs including both cation and anion. The algorithm identified 21 clusters with 8 
outliers (including AMIM, BMIM based metal-Cl ILs, [Ch][OH], and [TMG] [ZnCl3]). Clustering 
after applying t-SNE to GNN features (Fig. S26B) yielded similar clusters (21) but reduced outliers 
(3), by unsupervised learning on the GNN outputs. Incorporating reaction conditions (Fig. S26C) 
along with IL features resulted in 11 clusters and 7 outliers. Importantly, as detailed in Table S1, 
these outliers were primarily data points associated with extreme reaction conditions, rather than 
unique molecular structures overlapping with the previous outliers. These points, while distinct in 
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feature space, represent valid experimental observations at the tail of the distribution. Such outliers 
often contain crucial information about system limits and should not be removed2. 
 
Hyperparameter tuning 
 
We carried out hyperparameter optimization with Optuna for eight parameters including batch 
size, number of GNN layers, GNN output size (size of vector to embed one IL), fully connected 
layer dimensions, GNN dropout rate, fully connected layer dropout rate, optimizer learning rate, 
optimizer weight decay, and whether to use scheduler. We discretized all the continuous 
parameters, and define their ranges as follows: 
 

• Batch size: 8 to 64, interval = 4 
• Number of GNN layers: 0 to 5, interval = 1 
• GNN output size: 4 to 64, interval = 4 
• Number of fully connected layers: 1 to 5, interval = 1 
• Each fully connected layers size (separately): 16 to 128, interval =16 
• GNN dropout rate: 0 to 0.8, interval = 0.05 
• Fully connected layer dropout rate: 0 to 0.2, interval = 0.05 
• Optimizer learning rate: 1e-4, 1e-3, interval =1e-4 
• Optimizer weight decay: 1e-4, 1e-3, interval =1e-4 
• Scheduler: True/False 

 
Two hundred case studies were carried out with Hyperband pruning method. In this case, a larger 
testing dataset is used, and the dataset was separated randomly in 75% to 25% ratio for training 
and testing. We defined a customized optimization objective using the weight sum of exponentially 
smoothed MAE and R2, which helps to optimize both loss and goodness of fit. We applied an 
exponential smoothing factor of 0.05 to smooth the fluctuations. We define the optimization 
objective as: MAE - 20*R2. The weighting factors are chosen using the value range of MAE (~5-
30) and R2 (0-1). 
  
Fig. S25A showed the sampled points and the progression of the optimization process. Fig. S25B 
showed the importance of the hyperparameters based on the samples. Weight decay for the 
optimizer is the most important factor, as it controls the regularization of the optimization, hence 
affects the degree of overfitting. The GNN featurization size is the second important factor, and it 
controls the complexity of the latent representation of IL molecules. Fig. S25C, showed a 
combined visualization of objective value, trials, and each of the parameters explored.  
 
We then applied stratified 10-fold cross validation on the best hyperparameter set to determine the 
training epoch. The stratification criterion was based on reaction yield, dividing the data into 
intervals of (0, 20, 40, 60, 80, 100) to ensure balanced representation across different yield ranges.  
In the Figure on the left, we plotted the difference of average cross-validation MAE loss (MAEt+1-
MAEt). The curve shows an approximation of speed of decrease of loss. We observe that the delta 
validation loss curve has three stages, where the gradient clearly changes (Fig. S4). We then select 
epoch 2000 as the training epochs, from the right figure, we can see that it gives a reasonable loss 
without a strong difference in training and testing loss, to deal with the potential overfitting issue. 
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Finally, we applied the optimized training epoch and hyperparameters for 10-fold cross validation 
one more time to obtain the performance. We achieved an MAE of 0.12 and R2 of 0.64. 
  
To assess overfitting and model performance limits, we conducted a bias/variance analysis based 
on definitions (Bias = training error; Variance = validation error – Bias)3. As detailed in Figure 
S4, the model achieved a bias of approximately 9.4% and a variance of around 2.8% near epoch 
2000. The low variance suggests that overfitting was effectively controlled. This control was 
achieved through a combination of strong regularization techniques: a large dropout4 value of 70% 
applied to the GNN part of the model, 5% dropout applied to each fully connected layer, optimizer 
regularization, and early stopping. These measures collectively prevent overfitting with limited 
data and enhance model robustness. We also note that a significant portion of the bias likely 
originates from unavoidable experimental error (estimated at ~5% or higher for reaction yields 
under varying conditions), implying a smaller avoidable bias. 
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Table S1. Outliers from DBSCAN clustering. Values at the tails of the population are 
highlighted. 

 
 
 
   

cation_name anion_name catalyst_amount solvent_amount temperature_c reaction_time_min
93 BMIM Cl 0.80 4.0 170 480
167 BMIM Cl 0.05 11.0 190 480
236 DEIM Zn(Ac)3 0.67 6.7 180 150
254 DEIM Zn(Ac)3 0.50 20.0 180 150
281 Ch Gly 0.19 4.0 120 240
293 Ch PO4 0.21 4.0 150 360
298 Ch Cl 0.10 4.0 180 840
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Fig. S1. Node importance for literature ionic liquid cations and anions.  
Darker color indicates comparatively stronger contribution to increasing yield for PET glycolysis 
reaction. 
 
  



 
 

14 
 

 

Fig. S2. Full distribution plot of costs and emissions for process simulation 
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Fig. S3. Scattered and bar plots of predicted and experimental data. 
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Fig. S4. Average metrics of Stratified 10-Fold cross validation for the optimized 
hyperparameters. 
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Fig. S5. NMR spectrum of [N1111][For], 1H NMR (400 MHz, MeOD) δ 8.58 (s, 1H), 3.24 – 
3.19 (m, 12H). 

 

 
Fig. S6. NMR spectrum of [N1111][ZnCl3], 1H NMR (400 MHz, MeOD) δ 3.25 – 3.20 (m, 
12H). 
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Fig. S7. NMR spectrum of [N1111]2[ZnCl4], 1H NMR (400 MHz, MeOD) δ 3.25 (d, 12H). 

 
Fig. S8. NMR spectrum of [TMG]2[ZnCl4], 1H NMR (400 MHz, MeOD) δ 3.01 (s, 12H). 
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Fig. S9. NMR spectrum of [TMG][For], 1H NMR (400 MHz, MeOD) δ 8.49 (s, 1H), 3.06-3.00 
(m, 12H). 

 

 
Fig. S10. NMR spectrum of [Ch][ZnCl3], 1H NMR (400 MHz, MeOD) δ 4.09 – 4.01 (m, 2H), 
3.61 – 3.54 (m, 2H), 3.28 (d, J = 0.9 Hz, 9H). 
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Fig. S11. NMR spectrum of [Ch]2[ZnCl4], 1H NMR (400 MHz, MeOD) δ 4.12 – 3.92 (m, 
2H), 3.59 – 3.43 (m, 2H), 3.26 (d, J = 0.9 Hz, 9H). 

 

 
Fig. S12. NMR spectrum of [Emim][ZnCl3], 1H NMR (400 MHz, MeOD) δ 8.99 (d, J = 1.9 
Hz, 1H), 7.63 (dt, J = 30.4, 1.9 Hz, 2H), 4.32 (q, J = 7.3 Hz, 2H), 3.98 (d, J = 0.6 Hz, 3H), 
1.56 (t, J = 7.3 Hz, 3H). 
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Fig. S13. NMR spectrum of [Emim][ZnCl4], 1H NMR (400 MHz, MeOD) δ 8.98 (d, J = 1.9 
Hz, 1H), 7.63 (dt, J = 31.3, 1.8 Hz, 2H), 4.30 (q, J = 7.3 Hz, 2H), 3.96 (d, J = 0.5 Hz, 3H), 
1.56 (t, J = 7.4 Hz, 3H). 

 
Fig. S14. NMR spectrum of bis(2-hydroxyethyl) terephthalate (BHET), 1H NMR (400 MHz, 
MeOD) δ 8.19 (s, 4H), 4.51 – 4.32 (m, 4H), 4.00 – 3.79 (m, 4H). 
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Fig. S15. UV-Vis spectrum of [N1111][For]. 

 

 
Fig. S16. UV-Vis spectrum of [N1111][ZnCl3]. 
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Fig. S17. UV-Vis spectrum of [N1111]2[ZnCl4]. 
 

 
Fig. S18. UV-Vis spectrum of [TMG]2[ZnCl4]. 
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Fig. S19. UV-Vis spectrum of [TMG][For]. 
 

 
Fig. S20. UV-Vis spectrum of [Ch][ZnCl3]. 
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Fig. S21. UV-Vis spectrum of [Ch]2[ZnCl4]. 
 

 
Fig. S22. UV-Vis spectrum of [Emim][ZnCl3]. 
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Fig. S23. UV-Vis spectrum of [Emim]2[ZnCl4]. 
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Fig. S24. t-SNE plot for GNN-featurized IL outputs. 
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Fig. S25. Hyperparameter tuning via Optuna. 
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Fig. S26. (A) DBSCAN clustering results with raw GNN output features. (B) DBSCAN 

clustering results with t-SNE on GNN outputs. (C) DBSCAN clustering results with t-SNE on 
GNN outputs along with reaction conditions. 
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Data S1. (separate file) 
The PET glycolysis data in the database is collected from paper in the literature5–24. The raw 
dataset consists of entries related to the IL-catalyzed PET glycolysis, structured across the 
following columns: 

• paper: Citations or references for the source of the experimental data. 
• cation_name: Name of the cation associated with the ionic liquid. 
• anion_name: Name of the anion associated with the ionic liquid. 
• cation_smiles: SMILES representation of the cation. 
• anion_smiles: SMILES representation of the anion. 
• catalyst_amount: Quantity of the IL in grams. 
• solvent: Type of solvent, which is EG for all cases. 
• solvent_amount: Quantity of the solvent in grams. 
• PET_amount: Amount of PET in grams. 
• conversion: The percentage of PET converted. 
• selectivity: Percentage of BHET in all converted products. 
• temperature_c: The reaction temperature in degrees Celsius. 
• reaction_time_min: Duration of the reaction in minutes. 
• PET_source: The origin or type of PET used (bottle, powder, or pellet). 
• PET_size_mm: The size of PET particles in millimeters before the reaction. 
• yield: The final yield of BHET in percentage. Numbers are present if the yield is reported 

in the paper. Otherwise, the entries will be calculated by using conversion multiplied by 
selectivity. 
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