Supplementary Information

Tuning Electron Affinity of Cobalt Oxide Catalysts for Robust Acidic Oxygen Evolution

Ruo-Zi Fang^a, Xin-Yi Wan^a, Jun-Sheng Chen^a, Youmin Hou^b, Bin Hua^{a,*}

^a Key Lab of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
* Corresponding author: <u>bin.hua@whu.edu.cn</u>

^b School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China.

Figure S1. SEM images of (a,b) Carbon paper, (c,d) before and (e,f) after testing 180h of Mo-Co₃O₄ catalyst.

Figure S2. TEM image of $Mo-Co_3O_4$ catalyst and the corresponding particle size distribution map.

Figure S3. (a) TEM images, (b) HRTEM images, (c) SEAD pattern, (d-f) HAADF-STEM and corresponding elemental mappings of Co₃O₄.

Figure S4. UPS of (a) Co₃O₄, (b) Mo-Co₃O₄ and (c) Schematic of the calculated Fermi level.

Figure S5. XPS survey spectra of prepared samples.

Figure S6. XPS Mo 3d spectra of before and after testing 20h of Mo-Co₃O₄ catalyst.

Figure S7. Cyclic voltammograms of (a) Mo-Co₃O₄, (b) Co₃O₄, (c) MoO₃-Co₃O₄ at different scan rates, and (d) Double layer capacitance (C_{dl}).

Figure S8. (a) LSV curves and (b) Tafel slope plots of. (c) LSV curves and (d) EIS profiles of $Mo-Co_3O_4$ in H_2SO_4 (pH 0.3) and H_2SO_4 with 0.5 M K₂SO₄ (pH 0.3).

Figure S9. Elemental leaching assessed by ICP-OES of Mo-Co₃O₄ for the electrolyte after a continuous test at 10 mA·cm⁻² for 80 h.

Figure S10. The Faraday efficiency (FE) of (a) Co_3O_4 and (b)Mo-Co₃O₄ was calculated by collecting the current of the disk electrode and the ring electrode.

Figure S11. UV-Vis absorption spectra of the electrolyte of (a) Co3O4 (b) Mo-Co3O4 at 1.26-2.26 V vs. RHE.

Figure S12. EIS Nyquist fitting curves of (a) Co_3O_4 and (b) Mo- Co_3O_4 recorded from 1.36 V to 1.76 V vs. RHE

Figure S13. (a) Bode plots (b) Nyquist plots and (c) CV for Pt/Ti

Figure S14. CV curves of Mo-Co $_3O_4$ and Co $_3O_4$ tested on a rotating ring-disk electrode.

Figure S15. (a) Mo-Co₃O₄ and (b) Co_3O_4 in acid electrolytes with different pH values.

$$AEM: O-Co-O \xrightarrow{+H_2O}_{-H^+-e^-} O-Co-O \xrightarrow{-O_2}_{-H^+-e^-} O-CO-O \xrightarrow{-$$

Figure S16. Diagram of AEM and LOM paths.

Figure S17. The curves of density of states of Co 3d and O 2p orbitals in (a) Co_3O_4 and (b) Mo- Co_3O_4 .

	20	W	Interfacial spacing (nm)	Lattice parameter (nm)	Mean particle size (nm)	Cell
Mo-Co ₃ O ₄	31.3140	0.3517	0.28543	0.80730	23.1980	Cultin
Co_3O_4	31.3124	0.3433	0.28544	0.80734	23.7649	Cubic

Table S1. The fitting results of XRD tests on (220) planes

Sama la	C0 ²⁺	C0 ³⁺
Sample	2p _{3/2} /2p _{1/2} (eV)	2p _{3/2} /2p _{1/2} (eV)
Co ₃ O ₄	781.3eV/796.5eV	780eV/795eV
Mo-Co ₃ O ₄	781.5eV/796.7eV	780.2eV/795.2eV
Mo-Co ₃ O ₄ after testing 50h	780.8eV/796.3eV	779.6eV/794.7eV

Table S2. Different peak positions and contents of Co 2p XPS spectra for samples

Comple	Mo ⁴⁺	M0 ⁶⁺
Sample	3d _{3/2} /3d _{1/2} (eV)	3d _{3/2} /3d _{1/2} (eV)
Mo-Co ₃ O ₄	232eV/235.1eV	233.2eV/235.7eV
Mo-Co ₃ O ₄ after testing 50h	231.5eV/234.6eV	232.4eV/235.5eV

Table S3. Different peak positions of Mo 3d XPS spectra for samples

Sample	O _{M-O} (eV/100%)	O _V (eV/100%)	О _{м-он} (eV/100%)	O _V / O _{M-O}
Co ₃ O ₄	529.6eV/81.9	531.2eV/13.3	532.2eV/4.8	0.16
Mo-Co ₃ O ₄	530.1eV/64.7	531.6eV/28.5	532.7eV/6.8	0.44
Mo-Co ₃ O ₄ after testing 50h	530.1eV/64.1	531.3eV/27.5	532.8eV/8.4	0.43

Table S4. Different peak positions and contents of O 1s XPS spectra for samples

Catalysts	η ₁₀ (mV)	Tafel slope (mV dec ⁻¹)	$R_{ m ct}$ (Ω)	Cdl (mF cm ⁻²)	Durable time @10mA cm ⁻² (h)
Co ₃ O ₄	432	107.01	1.70	18.69	50
MoO ₃ -Co ₃ O ₄	496	127.02	2.23	6.91	40
Mo-Co ₃ O ₄	348	84.32	1.32	20.22	More than 180

Table S5. OER performance of as-synthesized electrodes in this work

		Stability @ Current	
Catalysts	Electrolyte	density	References
		(h@ mA cm ⁻²⁾	
Mo-Co ₃ O ₄	$0.5M H_2 SO_4$	180/10	This work
Mo-Co ₃ O ₄	$0.5M H_2 SO_4$	300/50	This work
Amorphous CoFeO _x	pH 2 in Pi	2/1	2[2]
Amorphous CoPbO _x	pH 2.5 in Pi	8/1	2[2]
Amorphous CoFePbO _x	pH 2 in Pi	50/1	2[2]
Co ₂ TiO ₄	$0.5M H_2 SO_4$	10/5	3[3]
Crystalline Co ₃ O ₄	$0.5M H_2 SO_4$	15/10	4[4]
Mn-doped FeP/Co ₃ (PO ₄) ₂	$0.5M H_2 SO_4$	8.3/5	5[5]
$Co_3O_4@C$	$1 M H_2 SO_4$	40/10	6[6]
Co ₃ O ₄ /CeO ₂	$0.05M H_2SO_4$	100/10	7[7]
CoFePbO _x	$1 M H_2 SO_4$	13/100	8[8]
CoFe	$1 M H_2 SO_4$	2/10	9[9]
$Co_{0.05}Fe_{0.95}O_y$	pH 0.3 H ₂ SO ₄	50/10	10 ^[10]
CoFePbO _x	$pH \ 0 \ H_2 SO_4$	14/10	8[8]
Ag-doped Co ₃ O ₄	$0.5M H_2 SO_4$	10/6.5	$11^{[11]}$
$Co_3(PO_4)_2$	1M H ₃ PO ₄	30/1.8	12[12]
Ir-Co ₃ O ₄	$0.5M H_2SO_4$	6/50	13[13]
La and Mn doped Co ₃ O ₄	0.1M HClO ₄	300/10	$14^{[14]}$
Co ₂ MnO ₄	pH 1 H ₂ SO ₄	200/100	15 ^[15]
Co _{3-x} Ba _x O ₄	$0.5M H_2SO_4$	100/10	16 ^[16]

Table S6. A summary of Stability of $Mo-Co_3O_4$ and other reported Co based catalysts in acidic electrolyte

Test time	Concentration of dissolved elements in electrolyte (ppm)		Degradation	Dissolution rate of Co
(h)	Со	Мо	rate (mV h ⁻¹)	(ppm h ⁻¹)
10	12.7	1.2		
20	25	1.7	0.47	1 009
30	30.2	1.7	0.47	1.098
50	54.9	2.2		

Table S7. The detailed data of ICP-OES after the stability test of $Mo-Co_3O_4$

Test time (h)	Concentration of dissolved Co in electrolyte (ppm)	Degradation rate (mV h ⁻¹)	Dissolution rate of Co (ppm h ⁻¹)
10	13.6		
20	27.2	2 175	1 226
30	41.2	2.175	1.336
50	66.8		

Table S8. The detailed data of ICP-OES after the stability test of Co_3O_4

Ε	Rs	R1	R2
(V vs. RHE)	(Ω)	(Ω)	(Ω)
1.36	2.587	1.105	1.925×10 ⁹
1.46	2.283	0.674	3.438×10 ⁷
1.56	2.313	0.483	135.3
1.66	2.315	0.533	16.17
1.76	2.328	0.352	2.099

Table S9. Optimum fit parameters for the impedance date of Co_3O_4 during OER in 0.5M H_2SO_4

E	Rs	R1	R2
(V vs. RHE)	(Ω)	(Ω)	(Ω)
1.36	2.931	3.933	1.797×10^{10}
1.46	2.704	4.262	3.739×10 ⁸
1.56	2.639	4.046	19.122
1.66	2.673	3.257	2.815
1.76	2.508	0.601	1.530

Table S10. Optimum fit parameters for the impedance date of Mo-Co₃O₄ during OER in 0.5M H_2SO_4

Reference

Li, R.-Q.; Wang, B.-L.; Gao, T.; Zhang, R.; Xu, C.; Jiang, X.; Zeng, J.; Bando, Y.; Hu, P.;
 Li, Y.; Wang, X.-B. Monolithic Electrode Integrated of Ultrathin NiFeP on 3D Strutted
 Graphene for Bifunctionally Efficient Overall Water Splitting. *Nano Energy* 2019, *58*, 870–876.

(2) Huynh, M.; Ozel, T.; Liu, C.; Lau, E. C.; Nocera, D. G. Design of Template-Stabilized Active and Earth-Abundant Oxygen Evolution Catalysts in Acid. *Chem. Sci.* **2017**, *8* (7), 4779–4794.

(3) Anantharaj, S.; Karthick, K.; Kundu, S. Spinel Cobalt Titanium Binary Oxide as an All-Non-Precious Water Oxidation Electrocatalyst in Acid. *Inorg. Chem.* 2019, *58* (13), 8570–8576.

(4) Mondschein, J. S.; Callejas, J. F.; Read, C. G.; Chen, J. Y. C.; Holder, C. F.; Badding, C. K.; Schaak, R. E. Crystalline Cobalt Oxide Films for Sustained Electrocatalytic Oxygen Evolution under Strongly Acidic Conditions. *Chem. Mater.* 2017, *29* (3), 950–957.

(5) Liu, H.; Peng, X.; Liu, X.; Qi, G.; Luo, J. Porous Mn-doped FeP/Co₃ (PO₄)₂ Nanosheets as Efficient Electrocatalysts for Overall Water Splitting in a Wide pH Range. *ChemSusChem* 2019, *12* (7), 1334–1341.

(6) Yu, J.; Garcés-Pineda, F. A.; González-Cobos, J.; Peña-Díaz, M.; Rogero, C.; Giménez, S.; Spadaro, M. C.; Arbiol, J.; Barja, S.; Galán-Mascarós, J. R. Sustainable Oxygen Evolution Electrocatalysis in Aqueous 1 M H2SO4 with Earth Abundant Nanostructured Co3O4. *Nat Commun* 2022, *13* (1), 4341.

(7) Huang, J.; Sheng, H.; Ross, R. D.; Han, J.; Wang, X.; Song, B.; Jin, S. Modifying Redox Properties and Local Bonding of Co3O4 by CeO2 Enhances Oxygen Evolution Catalysis in Acid. *Nat Commun* **2021**, *12* (1), 3036.

(8) Chatti, M.; Gardiner, J. L.; Fournier, M.; Johannessen, B.; Williams, T.; Gengenbach, T. R.; Pai, N.; Nguyen, C.; MacFarlane, D. R.; Hocking, R. K.; Simonov, A. N. Intrinsically Stable in Situ Generated Electrocatalyst for Long-Term Oxidation of Acidic Water at up to 80 °C. *Nat. Catal.* 2019, *2* (5), 457–465.

(9) McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F. Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. *J. Am. Chem. Soc.* **2015**, *137* (13), 4347–4357.

(10)Kwong, W. L.; Lee, C. C.; Shchukarev, A.; Messinger, J. Cobalt-Doped Hematite Thin Films for Electrocatalytic Water Oxidation in Highly Acidic Media. *Chem. Commun.* **2019**, *55* (34), 5017–5020.

(11) Yan, K.-L.; Chi, J.-Q.; Xie, J.-Y.; Dong, B.; Liu, Z.-Z.; Gao, W.-K.; Lin, J.-H.; Chai, Y.-M.; Liu, C.-G. Mesoporous Ag-Doped Co3O4 Nanowire Arrays Supported on FTO as Efficient Electrocatalysts for Oxygen Evolution Reaction in Acidic Media. *Renewable Energy* 2018, *119*, 54–61.

(12)Bloor, L. G.; Molina, P. I.; Symes, M. D.; Cronin, L. Low pH Electrolytic Water Splitting Using Earth-Abundant Metastable Catalysts That Self-Assemble in Situ. *J. Am. Chem. Soc.* **2014**, *136* (8), 3304–3311.

(13)Zhu, Y.; Wang, J.; Koketsu, T.; Kroschel, M.; Chen, J.-M.; Hsu, S.-Y.; Henkelman, G.; Hu, Z.; Strasser, P.; Ma, J. Iridium Single Atoms Incorporated in Co3O4 Efficiently Catalyze the Oxygen Evolution in Acidic Conditions. *Nat. Commun.* **2022**, *13* (1), 7754.

(14)Chong, L.; Gao, G.; Wen, J.; Li, H.; Xu, H.; Green, Z.; Sugar, J. D.; Kropf, A. J.; Xu, W.; Lin, X.-M.; Xu, H.; Wang, L.-W.; Liu, D.-J. La- and Mn-Doped Cobalt Spinel Oxygen Evolution Catalyst for Proton Exchange Membrane Electrolysis. *Science* **2023**, *380* (6645), 609–616.

(15)Li, A.; Kong, S.; Guo, C.; Ooka, H.; Adachi, K.; Hashizume, D.; Jiang, Q.; Han, H.; Xiao, J.; Nakamura, R. Enhancing the Stability of Cobalt Spinel Oxide towards Sustainable Oxygen Evolution in Acid. *Nat. Catal.* **2022**, *5* (2), 109–118.

(16) Wang, N.; Ou, P.; Miao, R. K.; Chang, Y.; Wang, Z.; Hung, S.-F.; Abed, J.; Ozden, A.;
Chen, H.-Y.; Wu, H.-L.; Huang, J. E.; Zhou, D.; Ni, W.; Fan, L.; Yan, Y.; Peng, T.; Sinton,
D.; Liu, Y.; Liang, H.; Sargent, E. H. Doping Shortens the Metal/Metal Distance and
Promotes OH Coverage in Non-Noble Acidic Oxygen Evolution Reaction Catalysts. *J. Am. Chem. Soc.* 2023, *145* (14), 7829–7836.