Electrochemical Ni–H Catalysis for Selective Tail-to-Tail Reductive Dimerization of Terminal Alkynes to 2,3-Dibranched Butadienes

Shide Lv^{†,a}, Mingming Yu^{†,*,b}, Yinglong Ni^{†,a}, Tiantian Huang^a, Hong Yi^{*,a} and Aiwen Lei^{*,a} ^aInstitute for Advanced Studies (IAS), College of Chemistry and Molecular Sciences, Wuhan

University, Wuhan 430072, Hubei, P. R. China.

^bSchool of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, P. R. China.

†These authors contributed equally.

*Corresponding author. Email: yumm@zstu.edu.cn; aiwenlei@whu.edu.cn; hong.yi@whu.edu.cn.

Table of content

General information1
General procedure1
General procedure for the synthesis of 43-522
General procedure for the synthesis of 53-562
Procedure for substrates synthesis
Application and product derivatizations4
Optimization of reaction parameters5
Reductive cross-dimerization6
Unsuccessful substrates7
CV and SWV tests
Procedure for the kinetic electricity on/off experiments of the model reaction10
Hammett plot analysis
Reaction order analysis12
Kinetic Study15
Contral experiment
Procedure and analytical data of compounds17
Reference
NMR spectra of products

General information

All reactions were run under a nitrogen atmosphere on an undivided cell. All glassware was oven dried at 110 °C for hours and cooled down under vacuum. The instrument for electrolysis was dual display potentiostat (DJS-292B) (made in China). Cyclic voltammograms were obtained on a CHI 760E potentiostat. The anodic electrode was zinc plate (1.5 cm × 1.5 cm × 0.03 cm) and cathodic electrode was nickel sheet (1.5 cm × 1.5 cm × 0.05 cm). These electrodes were commercially available from Gaoss Union China. Unless otherwise noted, all the substrates were obtained from commercial suppliers and used without further purification. Thin layer chromatography (TLC) employed glass 0.25 mm silica gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum (bp. 60-90 °C). All new compounds were characterized by ¹H NMR, ¹³C NMR and **HRMS**. The known compounds were characterized by ¹H NMR, ¹³C NMR data were recorded with ADVANCE III 400 MHz with tetramethylsilane as an internal standard. High resolution mass spectra (**HRMS**) were measured with a Waters Micromass GCT instrument. All chemical shifts (δ) were reported in ppm and coupling constants (*J*) in Hz. All chemical shifts were reported relative to tetramethylsilane (0 ppm for ¹H), CDCl₃ (77.16 ppm for ¹³C).

General procedure

The synthesis of **9** is representative: Phenylacetylene (**1**, 0.3 mmol, 1.0 equiv.), ${}^{n}Bu_{4}NBF_{4}$ (197.6 mg, 0.6 mmol, 2.0 equiv.), NiCl₂·DME (0.06 mmol, 20 mol%), dppp (0.072 mmol, 24 mol%) were placed in an oven-dried undivided three-necked bottle (10 mL). The bottle was equipped with a stir bar, zinc plate (1.5 cm × 1.5 cm × 0.03 cm) as anode and nickel plate (1.5 cm × 1.5 cm × 0.05 cm) as cathode. The bottle was flushed with argon. Degased dry tetrahydrofuran (THF, 6 mL) and commercially pivalic acid (PivOH) (synthesis of **4-24**, 10.0 equiv.; synthesis of **25-42**, 30.0 equiv.) were added in order. Lastly, methanesulfonic acid (0.45 mmol, 1.5 equiv.) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature for 5 h. After completion of the reaction, the product was identified by TLC. The solvent was removed under reduced pressure by an aspirator, then the pure product was obtained by flash column chromatography on silica gel.

General procedure for the synthesis of 43-52

The synthesis of **43** is representative: 4-Ethynylanisole (0.15 mmol, 1.0 equiv.), "Bu₄NBF₄ (197.6 mg, 0.6 mmol), NiCl₂·DME (0.06 mmol), dppp (0.072 mmol) were placed in an oven-dried undivided three-necked bottle (10 mL). The bottle was equipped with a stir bar, zinc plate (1.5 cm \times 1.5 cm \times 0.03 cm) as anode and nickel plate (1.5 cm \times 1.5 cm \times 0.05 cm) as cathode. The bottle was flushed with argon. Degased dry tetrahydrofuran (THF, 6 mL), commercially pivalic acid (PivOH, 3.0 mmol) and phenylacetylene (0.45 mmol) were added in order. Lastly, methanesulfonic acid (0.45 mmol) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature for 5 h. After completion of the reaction, the product was identified by TLC. The solvent was removed under reduced pressure by an aspirator, then the pure product was obtained by flash column chromatography on silica gel.

General procedure for the synthesis of 53-56

The synthesis of **53** is representative: 3-Ethynylthiophene (0.15 mmol, 1.0 equiv.), "Bu₄NBF₄ (197.6 mg, 0.6 mmol), NiCl₂·DME (0.06 mmol), dppp (0.072 mmol) were placed in an oven-dried undivided three-necked bottle (10 mL). The bottle was equipped with a stir bar, zinc plate (1.5 cm \times 1.5 cm \times 0.03 cm) as anode and nickel plate (1.5 cm \times 1.5 cm \times 0.05 cm) as cathode. The bottle was flushed with argon. Degased dry tetrahydrofuran (THF, 6 mL), commercially pivalic acid (PivOH, 1 mL) and alkyl alkynes (0.225 mmol) were added in order. Lastly, methanesulfonic acid (0.45 mmol) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature for 5 h. After completion of the reaction, the product was identified by TLC. The solvent was removed under reduced pressure by an aspirator, then the pure product was obtained by flash column chromatography on silica gel.

Procedure for substrates synthesis

Method A¹⁻²: The corresponding aryl iodide or aryl bromide (10 mmol, 1.0 equiv.), PdCl₂(PPh₃)₂ (140.4 mg, 2 mol%), CuI (76.2 mg, 4 mol%) and Et₃N (50 mL) were added to a 100 mL schlenk flask with a stir bar under an atmosphere of nitrogen. Then the ethynyltrimethylsilane (12 mmol, 1.2 equiv.) was added. If substrate is aryl iodide, then the mixture stirred at room temperature overnight. If substrate is aryl bromide, then the mixture was stirred at 80 °C overnight. Afterwards, 60 mL water was added and the reaction mixture was extracted with EtOAc (3×15 mL), washed with brine and dried over MgSO₄. After filtration, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether and ethyl acetate as the eluent. Then the obtained trimethyl(phenylethynyl)silane (8 mmol, 1.0 equiv.) were added to the solution of KOH (32 mmol, 4.0 equiv.) in DCM (15 mL) and MeOH (3 mL) at room temperature for 4 hours to go silyl deprotection. Finally, purify the crude product by silica gel column chromatography using petroleum ether.

Method B³: The corresponding aryl iodide (10 mmol, 1 equiv.), $PdCl_2(PPh_3)_2$ (140.4 mg, 2 mol%), CuI (76.2 mg, 4 mol%) and Et₃N (50 mL) were added to a 100 mL schlenk flask with a stir bar under an atmosphere of nitrogen. Then the ethynyltrimethylsilane (12 mmol, 1.2 equiv.) was added and the reaction mixture stirred at room temperature overnight. Afterwards, 60 mL water was added and the reaction mixture was extracted with ethyl acetate (EtOAc) (3 × 15 mL), washed with brine and dried over MgSO₄. After filtration, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography using petroleum ether and ethyl acetate as the eluent. Then the obtained trimethyl(phenylethynyl)silane were added to the solution of KOH (6.0 equiv.) in DCM (15 mL) and MeOH (15 mL) at room temperature for 4 hours to go silyl deprotection. Purify the crude product by silica gel column chromatography using petroleum ether. Then using EDC (1.5 equiv.), DMAP (1.2 equiv.), and corresponding alcohol (1 equiv.) and acid

(1.2 equiv.) in dry DCM (0.5 M), Purify the crude product by silica gel column chromatography using petroleum ether and ethyl acetate (PE : EA = 5:1).

Application and product derivatizations

An oven-dried 25 mL schlenk tube equipped with a magnetic stir bar was charged with a mixture of 47 (0.2 mmol, 1.0 equiv.), hydroquinone (0.04 mmol, 20 mol%), and CH₃CN (1 mL). Then, diethyl but-2-ynedioate (0.6 mmol, 3.0 equiv.) was added to the mixture via syringe under a nitrogen atmosphere. After the reaction mixture was stirred at 80 °C for 24 h, the solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography using petroleum ether-ethyl acetate (10:1 v/v) as the eluent to afford the desired product 57.

NC
$$CF_3SO_3H (25 \text{ mol}\%)$$

An oven-dried 25 mL schlenk tube equipped with a magnetic stir bar was charged with a mixture of **47** (0.5 mmol, 1.0 equiv.) and trifluoromethanesulfonic acid (CF₃SO₃H, 10 μ L, 0.125 mmol, 25 mol%). Then DCM (5 mL) was added to the mixture via syringe under air .After the reaction mixture was stirred at rt for 2 h, the solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography using petroleum ether-ethyl acetate (50:1 v/v) as the eluent to afford the desired product **58**.

Hydrosilylation of 12 with dimethyldichlorosilane

An oven-dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with a mixture of 4,4'-(buta-1,3-diene-2,3-diyl)bis(methoxybenzene) **12** (0.2 mmol, 1.0 equiv.), magnesium powder (0.5 mmol, 2.5 equiv.), and hexamethylphosphoric triamide (HMPA, 1 mL). Then, 1,1-dimethyldichlorosilane (1.2 mmol, 6.0 equiv.) was added to the mixture via syringe under a nitrogen atmosphere. After the reaction mixture was stirred at 240 °C for 1 h, the solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography using petroleum ether-ethyl acetate (20:1 v/v) as the eluent to afford the desired product **59**.

An oven-dried 25 mL Schlenk tube equipped with a magnetic stir bar was charged with a mixture of 4,4'-(buta-1,3-diene-2,3-diyl)bis(methoxybenzene) **12** (0.2 mmol, 1.0 equiv.), magnesium powder (0.5 mmol, 2.5 equiv.), and hexamethylphosphoric triamide (HMPA, 1 mL). Then, 1,1-dichlorosilinane (1.2 mmol, 6.0 equiv.) was added to the mixture via syringe under a nitrogen atmosphere. After the reaction mixture was stirred at 240 °C for 1 h, the solvent was removed under reduced pressure and the crude product was purified by silica gel column chromatography using petroleum ether-ethyl acetate (20:1 v/v) as the eluent to afford the desired product **60**.

Optimization of reaction parameters

Entry	Deviation from standard condition ^[a]	Yield[%] ^[b]
1	none	82 ^[c]
2	Mg, Al plate instead of Ni plate	5, 12
3	Ni(COD) ₂ , NiBr ₂ , NiI ₂ instead of	23-41
	NiCl ₂ • (DME)	
4	no NiCl ₂ ·(DME)	n.d.
5	L2 instead of L1	n.d.
6	L3 instead of L1	38
7	L4 instead of L1	53
8	L5 instead of L1	n.d.
9	L6 instead of L1	n.d.
10	L7 instead of L1	n.d.

11	L8 instead of L1	38
12	L9 instead of L1	38
13	L10 instead of L1	n.d.
14	L11 instead of L1	38
15	MeCN	trace
16	DMF	23
17	DMSO	n.d.
18	No MeSO ₃ H	42
19	No PivOH	54
20	under air atmosphere	trace
21	without current	n.d.
22 ^[d]	Zn, Mg, Mn, Al as chemical reducing agent	trace - 9

Table S1: ^[a]Standard reaction conditions: zinc plate (1.5 cm × 1.5 cm × 0.03 cm) as the anode and the nickel plate (1.5 cm × 1.5 cm × 0.05 cm) as the cathode, constant current = 10 mA, **1** (0.3 mmol), NiCl₂·(DME) (20 mol%), 1,3-bis(diphenylphosphaneyl)propane(dppp) (24 mol%), "Bu₄NBF₄ (0.6 mmol), THF (6.0 mL), MeSO₃H (1.5 equiv.), PivOH (10.0 equiv.), undivided cell, N₂, 28 °C, 5 h. ^[b]Yields were determined by ¹⁹F NMR analysis with fluorobenzene as the internal standard. ^[c]Isolated yield. ^[d]Without current.

Reductive cross-dimerization

∥ R¹	+ <u>star</u> R ²	idard conditions	\sim R^1 R^1	+ R^1 R^2	+ $R^2 R^2$
R ¹ = bei	nzene R ² = be	enzonitrile			
n1	n2		3	43	16
Entry	n1 / mmol	n2 / mmol	Yield of 43 ^[a]	Yield of 3 ^[a]	Yield of 16 ^[a]
1	0.15	0.15	11%	21%	n.d.
2	0.15	0.225	20%	19%	n.d.
3	0.15	0.3	25%	12%	n.d.
4	0.15	0.45	40%	13%	n.d.
5	0.15	0.75	37%	9%	n.d.

Table S2: Standard reaction conditions: zinc plate ($1.5 \text{ cm} \times 1.5 \text{ cm} \times 0.03 \text{ cm}$) as the anode and the nickel plate ($1.5 \text{ cm} \times 1.5 \text{ cm} \times 0.05 \text{ cm}$) as the cathode, constant current = 10 mA, terminal

acetylene (**n1** and **n2**), NiCl₂·(DME) (20 mol%), 1,3-bis(diphenylphosphaneyl)propane(dppp) (24 mol%), ${}^{n}Bu_{4}NBF_{4}$ (0.6 mmol), THF (6.0 mL), MeSO₃H (1.5 equiv.), PivOH (10.0 equiv.), undivided cell, N₂, 28 °C, 5 h. ^[a]Yields were determined by ¹H NMR analysis with 1,3,5-trimethoxybenzene as the internal standard.

Unsuccessful substrates

Scheme S1: Standard reaction conditions: zinc plate (1.5 cm \times 1.5 cm \times 0.03 cm) as the anode and the nickel plate (1.5 cm \times 1.5 cm \times 0.05 cm) as the cathode, constant current = 10 mA, 1 (0.3 mmol), NiCl₂·(DME) (20 mol%), 1,3-bis(diphenylphosphaneyl)propane(dppp) (24 mol%), *n*Bu₄NBF₄ (0.6 mmol), THF (6.0 mL), MeSO₃H (1.5 equiv.), PivOH (10.0 equiv.), undivided cell, N₂, 28 °C, 5 h.

CV and SWV tests

Cyclic voltammetry tests were performed in a three-electrode cell connected to a schlenk line under nitrogen at room temperature. The working electrode was a platinum plate electrode, the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. Anhydrous degassed THF (6 mL) containing 0.6 mmol "Bu₄NBF₄ were poured into the electrochemical cell in all experiments. Unless otherwise stated, the concentration of all substances to be measured is 0.01 M. The scan rate was 0.1 V/s.

Figure S1: Effect of adding different concentrations of PivOH on CV curve of Ni(dppp)Cl₂

Figure S2: The effect of adding PivOH and phenylacetylene on the CV curve of Ni(dppp)Cl₂

Figure S3: The effect of adding PivOH and 1-hexyne on the CV curve of Ni(dppp)Cl₂

Square-wave voltammetry tests were performed in a three-electrode cell connected to a schlenk line under nitrogen at room temperature. The working electrode was a platinum plate electrode, the

counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in saturated aqueous KCl solution. Anhydrous degassed THF (6 mL) containing 0.6 mmol $^{n}Bu_{4}NBF_{4}$ were poured into the electrochemical cell in all experiments. Unless otherwise stated, the concentration of all substances to be measured is 0.01 M. SWV test parameters were voltage increment 0.02V, amplitude 0.05V and frequency 50 Hz respectively.

Figure S4: The SWV curve of Ni(dppp)Cl₂, PivOH and Ni(dppp)Cl₂ with PivOH

Figure S5: Effect of adding different concentrations of PivOH on SWV curve of Ni(dppp)Cl₂

Figure S6: The effect of adding PivOH and phenylacetylene on the SWV curve of Ni(dppp)Cl₂

Procedure for the kinetic electricity on/off experiments of the model reaction

Under N₂, to an oven-dried undivided three-necked bottle (10 mL) equipped with a magnetic stir bar were added parafluoroacetylene (0.05 M), "Bu₄NBF₄ (0.1 M), NiCl₂·DME (0.06 mmol), fluorobenzene as internal standard. zinc plate (15 mm × 15 mm × 0.3 mm) as anode and nickel plate (15 mm × 15 mm × 0.5 mm) as cathode. The bottle was flushed with argon. Degased dry tetrahydrofuran (THF, 6 mL) and commercially pivalic acid (PivOH, 10.0 equiv.) were added in order. Lastly, methanesulfonic acid (0.45 mmol, 1.5 equiv.) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature. After that, the electricity was switched off and the mixture was stirred for the designed time interval without electricity before another aliquot was taken. During the reaction, the reaction was monitored by ¹⁹F NMR to determine the yield of the product with fluorobenzene as the internal standard.

Fig S7. Electricity On-Off Experiment.

Hammett plot analysis.

Fig S8. Hammett Plot determination.

Hammett parameter data were collected from the following sources⁴. The corresponding substituted phenylacetylene (0.3 mmol, 1.0 equiv.), ^{*n*}Bu₄NBF₄ (0.6 mmol, 2.0 equiv.), NiCl₂·DME (0.06 mmol, 20 mol%) were placed in an oven-dried undivided three-necked bottle (10 mL). The bottle was equipped with a stir bar, zinc plate (15 mm × 15 mm × 0.3 mm) as anode and nickel plate (15 mm × 15 mm × 0.5 mm) as cathode. The bottle was flushed with argon. Degased dry tetrahydrofuran (THF, 6 mL) and commercially pivalic acid (PivOH, 10.0 equiv.) were added in order. Lastly, methanesulfonic acid (0.45 mmol, 1.5 equiv.) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature for 1 h. During the reaction, the reaction was monitored by ¹⁹F NMR to determine the yield of the product with fluorobenzene as the internal standard.

Reaction order analysis.

Dependence of the reaction rate on concentration of 1.

Under N₂, to an oven-dried undivided three-necked bottle (10 mL equipped with a magnetic stir bar were added parafluoroacetylene (0.0375 M, 0.045 M, 0.05 M, 0.0625 M, 0.075 M), "Bu₄NBF₄ (2.0 equiv.), NiCl₂·(DME) (20 mol%), fluorobenzene as internal standard. zinc plate (15 mm × 15 mm × 0.3 mm) as anode and nickel plate (15 mm × 15 mm × 0.5 mm) as cathode. The bottle was flushed with argon. Degased dry tetrahydrofuran (THF, 6 mL) and commercially pivalic acid (PivOH, 10.0 equiv.) were added in order. Lastly, methanesulfonic acid (0.45 mmol, 1.5 equiv.) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature for 1 h. During the reaction, the reaction was monitored by ¹⁹F NMR to determine the yield of the product.

	2 F-	n (+) I Ni (-) <u>h</u> , NiCl ₂ •(DME), dppp ₃ H, THF / PivOH D mA, 1 h, rt F 9	F
Entry	Concentration of 1 / mol/L	Concentration of 9 / mol/L ^[a]	Yield[%] ^[a]
1	0.0375	0.0133	53
2	0.045	0.0134	53
3	0.05	0.0135	54
4	0.0625	0.0133	53
5	0.075	0.0134	53

Table S3: ^[a]The concentration and yields of **9** were determined by ¹⁹F NMR analysis with fluorobenzene as the internal standard.

Fig S9. Reaction rate on concentration of 1.

Dependence of the reaction rate on concentration of CAT.

Under N₂, to an oven-dried undivided three-necked bottle (10 mL equipped with a magnetic stir bar were added parafluoroacetylene (0.05 M), ${}^{n}Bu_{4}NBF_{4}$ (0.6 mmol), NiCl₂·DME (from 0.005 M to 0.030 M), dppp (from 0.006 M to 0.036 M), fluorobenzene as internal standard. zinc plate (15 mm × 15 mm × 0.3 mm) as anode and nickel plate (15 mm × 15 mm × 0.5 mm) as cathode. The bottle was flushed with argon. Dry THF (6 mL) and commercially PivOH (10.0 equiv.) were added in order. Lastly, methanesulfonic acid (0.45 mmol, 1.5 equiv.) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature for 1 h. During the reaction, the reaction was monitored by ¹⁹F NMR to determine the yield of the product.

	Zn 2 F- 1 2 F- MeSO ₃ I 10	(+) I Ni (-) <u>NiCl₂•(DME), dppp</u> H, THF / PivOH mA, 1 h, rt F 9	F
Entry	Concentration of CAT / mol/L	Concentration of 9 / mol/L ^[a]	Yield[%] ^[a]
1	0.005	0.0027	11
2	0.01	0.0067	26
3	0.015	0.01	39
4	0.02	0.0135	54
5	0.03	0.0177	71

Table S4: ^[a]The concentration and yields of **9** were determined by ¹⁹F NMR analysis with fluorobenzene as the internal standard.

Fig S10. Reaction rate on concentration of CAT.

Dependence of the reaction rate on current.

Under N₂, to an oven-dried undivided three-necked bottle (10 mL equipped with a magnetic stir bar were added parafluoroacetylene (0.05 M), ${}^{n}Bu_{4}NBF_{4}$ (0.6 mmol), NiCl₂•DME (0.01M), dppp (from 0.012 M), fluorobenzene as internal standard. zinc plate (15 mm × 15 mm × 0.3 mm) as anode and nickel plate (15 mm × 15 mm × 0.5 mm) as cathode. The bottle was flushed with argon. Dry THF (6 mL) and commercially PivOH (1 mL) were added in order. Lastly, methanesulfonic acid (0.45 mmol, 1.5 equiv.) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current (from 2 mA to 8 mA) at room temperature for 1 h. During the reaction, the reaction was monitored by ¹⁹F NMR to determine the yield of the product.

	2 F-	Zn (+) I Ni (-) u_4NBF_4 , NiCl ₂ •(DME), dppp MeSO ₃ H, THF / PivOH I / mA, 1 h, rt F 9	F
Entry	Current / mA	Concentration of 9 / mol/L ^[a]	Yield[%] ^[a]
1	2	0.0027	11
2	4	0.0039	16
3	5	0.0049	20
4	6	0.0071	28
5	8	0.009	36

Table S5: ^[a]The concentration and yields of **9** were determined by ¹⁹F NMR analysis with fluorobenzene as the internal standard.

Fig S11. Reaction rate on concentration of current.

Kinetic Study

Figure 12. Kinetic study. The yields of products were determined by 1H-NMR analysis using 1,3,5-trimethoxybenzene as the internal standard.

4-*Tert*-butylphenylacetylene (0.3 mmol, 1.0 equiv.), "Bu₄NBF₄ (197.6 mg, 0.6 mmol, 2.0 equiv.), NiCl₂·DME (0.06 mmol, 20 mol%) were placed in an oven-dried undivided three-necked bottle (10 mL). The bottle was equipped with a stir bar, zinc plate (1.5 cm \times 1.5 cm \times 0.03 cm) as anode and nickel plate (1.5 cm \times 1.5 cm \times 0.05 cm) as cathode. The bottle was flushed with argon. Degased dry tetrahydrofuran (THF, 6 mL) and commercially PivOH (10.0 equiv.) were added in order. Lastly, methanesulfonic acid (0.45 mmol, 1.5 equiv.) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature for 5 h. After completion of the reaction, the product was identified by TLC. The yields of products were determined by ¹H-NMR analysis using 1,3,5-trimethoxybenzene as the internal standard during 30 min, 1 h, 2 h, 3h, and 5 h after initiation.

Contral experiment.

4-Ethynylanisole-*d* (0.3 mmol, 1.0 equiv.), ${}^{n}Bu_{4}NBF_{4}$ (197.6 mg, 0.6 mmol, 2.0 equiv.), NiCl₂·DME (0.06 mmol, 20 mol%), dppp (0.072 mmol, 24 mol%), and phenylboronic acid (0.3 mmol, 1.0 equiv.) were placed in an oven-dried undivided three-necked bottle (10 mL). The bottle was equipped with a stir bar, zinc plate (1.5 cm × 1.5 cm × 0.03 cm) as anode and nickel plate (1.5 cm × 1.5 cm × 0.05 cm) as cathode. The bottle was flushed with argon. Degased dry tetrahydrofuran (THF, 6 mL) and PivOH (10.0 equiv.) were added in order. Lastly, methanesulfonic acid (0.45 mmol, 1.5 equiv.) was injected. The reaction mixture was stirred for 30 min firstly and then electrolyzed at a constant current of 10 mA at room temperature for 5 h. After completion of the reaction, the product was identified by TLC. The solvent was removed under reduced pressure by an aspirator, then the pure product was obtained by flash column chromatography on silica gel.

Figure S13. ¹H NMR spectrum of 12-d (CDCl₃, 400 MHz).

Procedure and analytical data of compounds.

Buta-1,3-diene-2,3-diyldibenzene (**3**)⁵. White solid was obtained in 69% isolated yield, 21.4 mg, Rf = 0.4 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (dd, *J* = 8.1, 1.7 Hz, 4H), 7.29 – 7.19 (m, 6H), 5.54 (t, *J* = 1.3 Hz, 2H), 5.31 (t, *J* = 1.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9, 140.3, 128.3, 127.6, 116.5.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(methylbenzene) (**4**)⁵. White solid was obtained in 55% NMR yield, Rf = 0.4 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (d, *J* = 8.2 Hz, 4H), 7.06 (d, *J* = 7.9 Hz, 4H), 5.51 (d, *J* = 1.8 Hz, 2H), 5.26 (d, *J* = 1.8 Hz, 2H), 2.29 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9, 137.4, 137.3, 129.0, 127.4, 115.5, 21.3.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(ethylbenzene) (**5**). Colorless oil was obtained in 54% NMR yield, Rf = 0.4 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (d, *J* = 8.2 Hz, 4H), 7.10 (d, *J* = 8.3 Hz, 4H), 5.52 (d, *J* = 1.8 Hz, 2H), 5.25 (d, *J* = 1.7 Hz, 2H), 2.60 (q, *J* = 7.6 Hz, 4H), 1.20 (t, *J* = 7.6 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.8, 143.7, 137.7, 127.8, 127.4, 115.6, 28.6, 15.6.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(propylbenzene) (6)⁶. Colorless oil was obtained in 50% ¹H-NMR yield, Rf = 0.4 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 8.2 Hz, 4H), 7.07 (d, *J* = 8.2 Hz, 4H), 5.53 (d, *J* = 1.7 Hz, 2H), 5.25 (d, *J* = 1.8 Hz, 2H), 2.53 (dd, *J* = 8.6, 6.7 Hz, 4H), 1.66 – 1.56 (m, 4H), 0.92 (t, *J* = 7.3 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9, 142.2, 137.7, 128.4, 127.4, 115.5, 37.9, 24.6, 14.0.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(pentylbenzene) (7)⁷. Colorless oil was obtained in 43% ¹H-NMR yield, Rf = 0.4 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.31 (d, *J* = 8.2 Hz, 4H), 7.07 (d, *J* = 8.2 Hz, 4H), 5.52 (d, *J* = 1.8 Hz, 2H), 5.25 (d, *J* = 1.7 Hz, 2H), 2.54 (dd, *J* = 8.8, 6.8 Hz, 4H), 1.64 - 1.50 (m, 4H), 1.40 - 1.23 (m, 8H), 0.91 - 0.80 (m, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.7, 142.3, 137.5, 128.2, 127.2, 115.3, 35.6, 31.5, 31.0, 22.5, 14.0.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(tert-butylbenzene) (8)⁵. Colorless oil was obtained in 52% ¹H-NMR yield, Rf = 0.4 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 – 7.33 (m, 4H), 7.32 – 7.27 (m, 4H), 5.55 (d, *J* = 1.7 Hz, 2H), 5.23 (d, *J* = 1.7 Hz, 2H), 1.29 (s, 18H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.4, 149.4, 137.3, 126.9, 125.1, 115.5, 34.5, 31.3.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(fluorobenzene) (9)⁵. White solid was obtained in 72% ¹⁹F-NMR yield, Rf = 0.7 (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.28 (m, 4H), 6.99 – 6.91 (m, 4H), 5.49 (d, J = 1.5 Hz, 2H), 5.30 (d, J = 1.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.5 (d, $J_{C-F} = 247.5$ Hz), 148.8, 136.1 (d, $J_{C-F} = 3.0$ Hz), 129.2 (d, $J_{C-F} = 8.1$ Hz),116.5, 115.2 (d, $J_{C-F} = 22.2$ Hz). ¹⁹F NMR (377 MHz, Chloroform-d) δ -114.67.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(chlorobenzene) (10)⁵. Yellow solid was obtained in 52% isolated yield, 21.5 mg, Rf = 0.6 (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.26 (m, 4H), 7.25 – 7.19 (m, 4H), 5.53 (d, *J* = 1.5 Hz, 2H), 5.33 (d, *J* = 1.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.5, 138.4, 133.7, 128.9, 128.6, 117.1.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(bromobenzene) (11)5. Yellow solid was obtained in 55%

isolated yield, 30.3 mg, Rf = 0.6 (PE:EA = 5:1). ¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.35 (m, 4H), 7.24 – 7.19 (m, 4H), 5.54 (d, *J* = 1.4 Hz, 2H), 5.34 (d, *J* = 1.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.5, 138.8, 131.6, 129.2, 121.9,117.2.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(methoxybenzene) (12)⁵. White solid was obtained in 69% isolated yield, 27.5 mg, Rf = 0.4 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 (d, *J* = 8.8 Hz, 4H), 6.79 (d, *J* = 8.8 Hz, 4H), 5.47 (d, *J* = 1.8 Hz, 2H), 5.24 (d, *J* = 1.7 Hz, 2H), 3.76 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.0, 149.3, 132.6, 128.5, 127.6, 125.9, 114.3, 113.5, 55.2.

4,4'-(Buta-1,3-diene-2,3-diyl)bis((trifluoromethoxy)benzene) (13)⁶. Colorless oil was obtained in 52% isolated yield, 29.1 mg, Rf = 0.4 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.39 (d, J = 8.8 Hz, 4H), 7.12 (d, J = 8.3 Hz, 4H), 5.55 (d, J = 1.4 Hz, 2H), 5.34 (d, J = 1.4 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.7 (q, $J_{C-F}= 2.0$ Hz), 148.2, 138.5, 128.8, 127.0, 127.0, 120.4 (q, $J_{C-F}= 258.6$ Hz), 117.5. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -57.82.

N,*N*'-(buta-1,3-diene-2,3-diylbis(4,1-phenylene))diacetamide (14). Colorless oil was obtained in 42% ¹H-NMR yield, Rf = 0.4 (DCM : MeOH = 100:1). ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.92 (s, 2H), 7.46 (d, *J* = 8.4 Hz, 4H), 7.26 (d, *J* = 8.7 Hz, 4H), 5.57 (d, *J* = 1.8 Hz, 2H), 5.23 (d, *J* = 1.7 Hz, 2H), 2.00 (s, 7H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 168.2, 148.7, 138.8, 133.7, 127.2, 118.7, 114.5, 24.0. HRMS (ESI) m/z calcd for C₂₀H₂₁N₂O₂ (M+H)⁺: 321.1598, found : 321.1591.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylsulfane) (15). Yellow oil was obtained in 55% isolated yield, 24.5 mg, Rf = 0.4 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 4H), 7.16 – 7.11 (m, 4H), 5.54 (d, *J* = 1.6 Hz, 2H), 5.30 (d, *J* = 1.6 Hz, 2H), 2.45 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.2, 137.9, 136.9, 127.9, 126.3, 115.8, 15.8. HRMS (ESI) m/z calcd for C₁₈H₁₉S₂ (M+H)⁺: 299.0923, found : 299.0922.

4,4'-(Buta-1,3-diene-2,3-diyl)dibenzonitrile (16)⁵. White solid was obtained in 8% ¹H-NMR yield, Rf = 0.4 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.1 Hz, 4H), 7.44 (d, *J* = 8.0 Hz, 4H), 5.68 (s, 2H), 5.48 (s, 2H).¹³C NMR (101 MHz, Chloroform-*d*) δ 147.6, 144.0, 132.4, 128.1, 119.8, 118.7, 111.8.

4,4'-(Buta-1,3-diene-2,3-diyl)bis(1,2-dimethoxybenzene) (17). White solid was obtained in 43% isolated yield, 21.0 mg, Rf = 0.3 (PE:EA=5:1). m.p. 108-110 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.96 - 6.92 (m, 4H), 6.76 (d, *J* = 8.3 Hz, 2H), 5.50 (s, 2H), 5.28 (s, 2H), 3.85 (s, 6H), 3.82 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.5, 148.5, 148.4, 133.0, 120.0, 114.7, 110.7, 110.5, 55.8, 55.7. HRMS (ESI) m/z calcd for C₂₀H₂₃O₄(M+H)⁺: 327.1591, found : 327.1591.

5,5'-(Buta-1,3-diene-2,3-diyl)bis(1,3-dimethoxybenzene) (18). Colorless oil was obtained in 43% isolated yield, 20.7 mg, Rf = 0.3 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 6.55 (d, *J* = 2.3 Hz, 4H), 6.35 (t, *J* = 2.3 Hz, 2H), 5.53 (d, *J* = 1.7 Hz, 2H), 5.32 (d, *J* = 1.6 Hz, 2H), 3.75 (s, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 160.4, 149.5, 142.3, 116.7, 105.7, 99.5, 55.3. HRMS (ESI) m/z calcd for C₂₀H₂₃O₄ (M+H)⁺: 327.1591, found : 327.1590.

2,2'-(Buta-1,3-diene-2,3-diyl)bis(methoxybenzene) (19)⁵. White solid was obtained in 50% ¹H-NMR yield, Rf = 0.4 (PE:EA=3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 – 7.14 (m, 4H), 6.86 (t, *J* = 7.4 Hz, 2H), 6.80 (d, *J* = 8.1 Hz, 2H), 5.05 (d, *J* = 1.2 Hz, 2H), 5.00 (d, *J* = 1.3 Hz, 2H), 3.72 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.1, 147.3, 131.3, 131.0, 128.6, 120.4, 117.2, 111.1, 55.9.

2,2'-(Buta-1,3-diene-2,3-diyl)bis(chlorobenzene) (20)⁵. Colorless oil was obtained in 34% ¹H-NMR yield, $R_f = 0.6$ (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 – 7.41 (m, 2H), 7.39 – 7.35 (m, 2H), 7.30 – 7.26 (m, 4H), 5.16 (d, J = 1.0 Hz, 2H), 4.98 (s, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.4, 139.8, 133.5, 131.6, 129.6, 128.8, 126.7, 119.6.

2,2'-(Buta-1,3-diene-2,3-diyl)dithiophene (21). Colorless oil was obtained in 25% isolated yield, 8.2 mg, Rf = 0.8 (PE:EA=20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (dd, *J* = 5.0, 1.2 Hz, 2H), 6.95 (dd, *J* = 3.6, 1.3 Hz, 2H), 6.90 (dd, *J* = 5.1, 3.6 Hz, 2H), 5.62 (d, *J* = 1.0 Hz, 2H), 5.25 (d, *J* = 1.0 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 143.6, 142.5, 127.4, 126.0, 124.9, 114.2. HRMS (ESI) m/z calcd for C₁₂H₁₁S₂ (M+H)⁺: 219.0296, found : 219.0292.

3,3'-(Buta-1,3-diene-2,3-diyl)dithiophene (22). Colorless oil was obtained in 56% isolated yield, 18.3 mg, Rf = 0.6 (PE:EA=20:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (dd, *J* = 5.0, 2.9 Hz, 2H), 7.20 (dd, *J* = 5.1, 1.4 Hz, 2H), 7.12 (dd, *J* = 2.9, 1.4 Hz, 2H), 5.57 (d, *J* = 1.6 Hz, 2H), 5.26 (d, *J* = 1.6 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.5, 141.5, 126.4, 125.6, 122.9, 114.3. HRMS (ESI) m/z calcd for C₁₂H₁₁S₂ (M+H)⁺: 219.0296, found : 219.0293.

5,5'-(Buta-1,3-diene-2,3-diyl)bis(benzo[b]thiophene) (23). Colorless oil was obtained in 43% isolated yield, 20.5 mg, Rf = 0.5 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (d, *J* = 1.8 Hz, 2H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.45 (dd, *J* = 8.4, 1.7 Hz, 2H), 7.39 (d, *J* = 5.4 Hz, 2H), 7.27 (d, *J* = 5.2 Hz, 2H), 5.64 (d, *J* = 1.7 Hz, 2H), 5.40 (d, *J* = 1.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9, 139.7, 138.9, 136.5, 126.7, 124.0, 124.0, 122.5, 122.1, 116.5. HRMS (ESI) m/z calcd for C₂₀H₁₈NS₂ (M+NH₄)⁺: 336.0876, found: 336.0879.

5,5'-(Buta-1,3-diene-2,3-diyl)bis(benzofuran) (24). Colorless oil was obtained in 75% isolated yield, 32.2 mg, Rf = 0.5 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.63 (s, 2H), 7.56 (d, J = 2.2 Hz, 2H), 7.38 (d, J = 1.2 Hz, 4H), 6.69 (d, J = 2.2 Hz, 2H), 5.55 (d, J = 1.7 Hz, 2H), 5.34 (d, J = 1.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.5, 150.3, 145.3, 135.3, 127.3, 124.2, 120.2, 115.9, 110.9, 106.7. HRMS (ESI) m/z calcd for C₂₀H₁₈NO₂ (M+NH₄)⁺: 304.1333, found: 304.1336.

3,3'-(Buta-1,3-diene-2,3-diyl)bis(9H-carbazole) (25). Colorless oil was obtained in 75% isolated

yield, 25.1 mg, Rf = 0.3 (PE:EA=3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 1.7 Hz, 2H), 8.16 – 8.09 (m, 2H), 7.85 – 7.78 (m, 2H), 7.75 (d, *J* = 8.3 Hz, 2H), 7.56 (dd, *J* = 8.3, 1.8 Hz, 2H), 7.43 (dd, *J* = 6.0, 3.2 Hz, 4H), 5.73 (d, *J* = 1.5 Hz, 2H), 5.49 (d, *J* = 1.5 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.8, 139.7, 138.7, 136.7, 135.6, 135.4, 126.7, 126.5, 124.3, 122.8, 122.5, 121.6, 120.5, 116.9. HRMS (ESI) m/z calcd for C₂₈H₂₁N₂⁺ (M+H)⁺: 385.1700, found: 385.1701.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylene) dicyclopropanecarboxylate (26). Colorless oil was obtained in 47% isolated yield, 28.4 mg, Rf = 0.3 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 8.0 Hz, 4H), 7.29 – 7.22 (m, 4H), 5.56 (d, *J* = 1.6 Hz, 2H), 5.32 (d, *J* = 1.6 Hz, 2H), 5.07 (s, 4H), 1.64 (dq, *J* = 8.0, 4.6, 4.1 Hz, 2H), 1.01 (dt, *J* = 6.7, 3.5 Hz, 4H), 0.86 (tt, *J* = 7.0, 3.2 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.8, 149.2, 139.9, 135.4, 128.1, 127.6, 116.7, 65.9, 12.9, 8.6. HRMS (ESI) m/z calcd for C₂₆H₃₀O₄N (M+NH₄)⁺: 420.2170, found: 420.2159.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylene)bis(tetrahydro-2H-pyran-4-
carboxylate) (27). Colorless oil was obtained in 45% isolated yield, 33.1 mg, Rf = 0.3 (PE:EA=5:1).¹H NMR (400 MHz, Chloroform-d) δ 7.38 (d, J = 8.2 Hz, 5H), 7.24 (d, J = 8.2 Hz, 4H), 5.56 (d, J= 1.6 Hz, 2H), 5.32 (d, J = 1.5 Hz, 2H), 5.09 (s, 4H), 3.95 (dt, J = 11.6, 3.6 Hz, 4H), 3.45 – 3.37 (m,4H), 2.63 – 2.52 (m, 2H), 1.88 – 1.79 (m, 8H). ¹³C NMR (101 MHz, Chloroform-d) δ 174.2, 149.0,139.9, 135.2, 127.9, 127.6, 116.8, 67.0, 65.9, 40.1, 28.6. HRMS (ESI) m/z calcd for C₃₀H₃₅O₆ (M+H)⁺: 491.2428, found: 491.2429.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylene) bis(4-oxopentanoate) (28). Colorless oil was obtained in 40% isolated yield, 27.9 mg, Rf = 0.6 (PE:EA=1:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 (d, *J* = 8.2 Hz, 4H), 7.24 (d, *J* = 8.2 Hz, 4H), 5.55 (d, *J* = 1.6 Hz, 2H), 5.32 (d, *J* = 1.6 Hz, 2H), 5.07 (s, 4H), 2.76 (t, *J* = 6.5 Hz, 4H), 2.61 (t, *J* = 6.3 Hz, 4H), 2.17 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 206.6, 172.6, 149.2, 134.0, 135.1, 128.1, 127.6, 116.8, 66.2, 37.9, 29.9, 28.0. HRMS (ESI) m/z calcd for C₂₈H₃₄NO₆(M+NH₄)⁺: 480.2380, found: 480.2383.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylene)bis(3-oxocyclobutane-1-
carboxylate) (29). Colorless oil was obtained in 45% isolated yield, 31.1 mg, Rf = 0.3 (PE:EA=5:1).¹H NMR (400 MHz, Chloroform-d) δ 7.39 (d, J = 8.3 Hz, 4H), 7.26 (d, J = 8.3 Hz, 4H), 5.58 (d, J = 1.5 Hz, 2H), 5.34 (d, J = 1.5 Hz, 2H), 5.14 (s, 4H), 3.49 – 3.36 (m, 4H), 3.34 – 3.20 (m, 6H). ¹³CNMR (101 MHz, Chloroform-d) δ 203.5, 173.8, 148.9, 140.2, 134.7, 128.2, 127.6, 117.0, 66.7, 51.6, 27.4. HRMS (ESI) m/z calcd for C₂₈H₃₀NO₆(M+NH₄)⁺: 476.2067, found: 476.2066.

4-(3-(4-((((*E*)-pent-2-en-1-yl)oxy)methyl)phenyl)buta-1,3-dien-2-yl)benzyl (*Z*)-hex-3-enoate (30). Colorless oil was obtained in 52% isolated yield, 35.8 mg, Rf = 0.4 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 8.2 Hz, 4H), 7.28 – 7.21 (m, 4H), 5.65 – 5.46 (m, 6H), 5.32 (d, *J* = 1.6 Hz, 2H), 5.07 (s, 4H), 3.06 (dd, *J* = 6.6, 1.1 Hz, 4H), 2.08 – 1.99 (m 4H), 0.98 (t, *J* = 7.4 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.0, 149.1, 139.9, 136.5, 135.2, 128.1, 127.5, 120.3, 116.7, 66.0, 38.0, 25.5, 13.41. HRMS (ESI) m/z calcd for C₃₀H₃₈NO₄(M+NH₄)⁺: 476.2795, found: 476.2790.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylene) bis(4-chlorobutanoate) (31). Colorless oil was obtained in 60% isolated yield, 42.8 mg, Rf = 0.8 (PE:EA=1:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 8.3 Hz, 4H), 7.29 – 7.23 (m, 4H), 5.56 (d, *J* = 1.5 Hz, 2H), 5.33 (d, *J* = 1.6 Hz, 2H), 5.08 (s, 4H), 3.58 (t, *J* = 6.3 Hz, 4H), 2.54 (t, *J* = 7.2 Hz, 4H), 2.10 (tt, *J* = 7.1, 6.3 Hz, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172. 5, 149.0, 140.0, 135.0, 128.1, 127.6, 116.8, 66.1, 44.0, 31.2, 27.6. HRMS (ESI) m/z calcd for C₂₆H₃₂C₁₂NO₄(M+NH₄)⁺: 492.1702, found: 492.1695.

4-(3-(4-((((*Tert*-butoxycarbonyl)(methyl)carbamoyl)oxy)methyl)phenyl)buta-1,3-dien-2yl)benzyl *N*-(*tert*-butoxycarbonyl)-*N*-methylglycinate (32). Colorless oil was obtained in 45% isolated yield, 41.3 mg, Rf = 0.2 (PE:EA=2:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.38 (dd, *J* = 8.2, 2.3 Hz, 4H), 7.26 (dt, *J* = 7.9, 4.0 Hz, 4H), 5.55 (d, *J* = 2.0 Hz, 2H), 5.32 (d, *J* = 2.0 Hz, 2H), 5.13 (d, J = 5.2 Hz, 4H), 3.96 (d, J = 38.8 Hz, 4H), 2.92 (d, J = 8.7 Hz, 6H), 1.46 (s, 9H), 1.34 (s, 9H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 156.0, 155.3, 149.0, 140.2, 140.0, 134.7, 128.3, 128.1, 127.6, 127.6, 116.8, 66.3, 51.1, 50.3, 35.6, 28.3, 28.1. HRMS (ESI) m/z calcd for C₃₄H₄₈N₃O₈(M+NH₄)⁺: 626.3435, found: 627.3452.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylene) bis(2-(2-fluoro-[1,1'-biphenyl]-4yl)propanoate) (33). Colorless oil was obtained in 45% isolated yield, 48.7 mg, Rf = 0.6 (PE:EA=2:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.52 (d, J = 7.6 Hz, 4H), 7.43 (t, J = 7.5 Hz, 4H), 7.38 – 7.31 (m, 8H), 7.16 (d, J = 8.1 Hz, 4H), 7.13 – 7.05 (m, 4H), 5.53 (s 2H), 5.29 (s, 2H), 5.08 (q, J = 12.6 Hz, 4H), 3.78 (q, J = 7.2 Hz, 2H), 1.53 (d, J = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 173.8, 159.6 (d, J_{C-F} = 249.5 Hz), 149.0, 141.6 (d, J_{C-F} = 7.1 Hz), 139.9, 135.5, 135.0, 130.8 (d, J_{C-F} = 3.0 Hz), 128.9 (d, J_{C-F} = 3.0 Hz), 128.4, 127.9, 127.7, 127.5, 123.6, 123.5 (d, J_{C-F} = 3.0 Hz), 116.8, 115.2 (d, J_{C-F} = 24.2 Hz), 66.4, 45.0, 18.3. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -117.58. HRMS (ESI) m/z calcd for C₄₈H₄₄F₂NO₄ (M+NH₄)⁺: 736.3232, found: 736.3227.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylene) bis(2-(6-methoxynaphthalen-2-yl)propanoate) (34). Colorless oil was obtained in 61% isolated yield, 63.2 mg, Rf = 0.5 (PE:EA=2:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 – 7.58 (m, 6H), 7.37 (dd, J = 8.5, 1.9 Hz, 2H), 7.29 (d, J = 8.3 Hz, 4H), 7.16 – 7.09 (m, 8H), 5.51 (d, J = 1.6 Hz, 2H), 5.27 (d, J = 1.6 Hz, 2H), 5.13 – 4.99 (m, 4H), 3.91 – 3.85 (m, 8H), 1.57 (d, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.4, 157.61, 149.1, 139.8, 135.5, 135.2, 133.7, 129.3, 128.9, 127.8, 127.5, 127.1, 126.2, 126.0, 118.9, 116.6, 105.5, 66.2, 55.3, 45.4, 18.5. HRMS (ESI) m/z calcd for C₄₆H₄₆NO₆ (M+NH₄)⁺: 708.3319, found: 708.3303.

(Buta-1,3-diene-2,3-diylbis(4,1-phenylene))bis(methylene)

isobutylphenyl)propanoate) (35). Colorless oil was obtained in 42% isolated yield, 40.7 mg, Rf = 0.5 (PE:EA=2:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 – 7.28 (m, 4H), 7.20 – 7.15 (m, 4H), 7.12 (d, *J* = 8.3 Hz, 4H), 7.07 (d, *J* = 8.2 Hz, 4H), 5.52 (d, *J* = 1.6 Hz, 2H), 5.28 (d, *J* = 1.6 Hz, 2H), 5.12 – 5.00 (m, 4H), 3.73 (q, *J* = 7.2 Hz, 2H), 2.44 (d, *J* = 7.2 Hz, 4H), 1.90 – 1.78 (m, 2H), 1.49 (d, *J* = 7.2 Hz, 6H), 0.89 (d, *J* = 6.6 Hz, 12H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 174.5, 149.1, 140.6, 139.7, 137.6, 135.3, 129.3, 127.6, 127.4, 127.2, 116.6, 66.0, 45.1, 45.0, 30.2, 22.4, 18.4. HRMS (ESI) m/z calcd for C₄₄H₅₄NO₄(M+NH₄)⁺: 660.4048, found: 660.4042.

5,6-Dimethylenedecane (36)⁵. Colorless oil was obtained in 41% isolated yield, 10.3 mg, Rf = 0.5 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.07 – 5.03 (m, 2H), 4.93 – 4.89 (m, 2H), 2.23 (t, *J* = 7.4 Hz, 4H), 1.44 – 1.29 (m, 8H), 0.91 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.0, 111.2, 34.0, 30.9, 22.6, 14.0.

6,7-Dimethylenedodecane (37)⁷. Colorless oil was obtained in 41% isolated yield, 12.1 mg, Rf = 0.4 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.04 (s, 2H), 4.91 (s, 2H), 2.22 (t, *J* = 7.7 Hz, 4H), 1.48 – 1.40 (m, 4H), 1.33 – 1.26 (m, 8H), 0.89 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.1, 111.2, 34.2, 31.8, 28.4, 22.6, 14.1.

(3,4-Dimethylenehexane-1,6-diyl)dibenzene (38). Colorless oil was obtained in 41% isolated yield, 16.1 mg, Rf = 0.3 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 – 7.27 (m, 4H), 7.22 – 7.17 (m, 6H), 5.17 (s, 2H), 5.00 (s, 2H), 2.83 – 2.75 (m, 4H), 2.59 – 2.51 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.7, 142.2, 128.4, 128.3, 125.8, 112.2, 36.2, 35.2. HRMS (ESI) m/z calcd for C₂₀H₂₃ (M+H)⁺: 263.1795, found: 263.1798.

7,8-Dimethylenetetradecane (39)⁵. Colorless oil was obtained in 58% isolated yield, 19.3 mg, Rf = 0.4 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.04 (d, *J* = 1.6 Hz, 2H), 4.90 (s, 2H), 2.22 (t, *J*

= 7.8 Hz, 4H), 1.45 – 1.39 (m, 4H), 1.34 – 1.26 (m, 12H), 0.88 (t, *J* = 6.9 Hz, 6H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 148.07, 111.24, 34.30, 31.76, 29.22, 28.64, 22.66, 14.09.

1,8-Dichloro-4,5-dimethyleneoctane (40). Colorless oil was obtained in 54% isolated yield, 16.8 mg, Rf = 0.3 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.14 (d, *J* = 0.9 Hz, 2H), 5.01 (s, 2H), 3.54 (t, *J* = 6.4 Hz, 6H), 2.44 – 2.37 (m, 4H), 1.96 – 1.88 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.5, 113.1, 44.6, 31.4, 31.2. HRMS (ESI) m/z calcd for C₁₀H₁₇Cl₂ (M+H)⁺: 207.0701, found: 207.0690.

Buta-1,3-diene-2,3-diyldicyclohexane (41)⁷. Colorless oil was obtained in 38% ¹H-NMR yield, Rf = 0.7 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 4.90 (s, 2H), 4.77 (s, 2H), 2.06 (dd, J = 13.1, 10.0 Hz, 2H), 1.83 – 1.73 (m, 9H), 1.69 (d, J = 13.5 Hz, 3H), 1.32 – 1.05 (m, 14H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 156.3, 108.3, 41.1, 32.9, 27.1, 26.7.

1,1'-(buta-1,3-diene-2,3-diyl)dicyclohex-1-ene (42)⁵. Colorless oil was obtained in 38% ¹H-NMR yield, Rf = 0.7 (PE). ¹H NMR (400 MHz, Chloroform-*d*) δ 5.75 – 5.70 (m, 2H), 5.10 (d, *J* = 1.9 Hz, 2H), 4.82 (d, *J* = 1.9 Hz, 2H), 2.18 (td, *J* = 6.3, 3.3 Hz, 4H), 2.08 (dp, *J* = 6.4, 3.4, 3.0 Hz, 4H), 1.71 – 1.63 (m, 4H), 1.58 – 1.51 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*). δ 151.6, 135.9, 127.6, 110.5, 26.0, 25.7, 23.1, 22.4.

1-Methoxy-4-(3-phenylbuta-1,3-dien-2-yl)benzene (43)⁸. Colorless oil was obtained in 25% ¹H-NMR yield, Rf = 0.6 (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.36 (m, 2H), 7.34 – 7.29 (m, 2H), 7.27 – 7.18 (m, 3H), 6.80 – 6.75 (m, 2H), 5.53 (d, *J* = 1.8 Hz, 1H), 5.47 (d, *J* = 1.7 Hz, 1H), 5.31 (d, *J* = 1.7 Hz, 1H), 5.23 (d, *J* = 1.7 Hz, 1H), 3.74 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.2, 150.1, 149.3, 140.3, 132.7, 128.7, 128.3, 127.6, 127.5, 116.1, 114.9, 113.7, 55.3.

1-Methoxy-2-(3-phenylbuta-1,3-dien-2-yl)benzene (44). Colorless oil was obtained in 34% ¹H-NMR yield, Rf = 0.6 (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-d) δ 7.44 (d, *J* = 7.2 Hz, 2H), 7.34 - 7.28 (m, 3H), 7.27 - 7.23 (m, 2H), 6.94 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* = 8.2 Hz, 1H), 5.34 (s, 1H), 5.28 (s, 1H), 5.21 (s, 1H), 4.99 (s, 1H), 3.79 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d)

δ 157.1, 150.8, 147.6, 141.6, 131.1, 130.9, 128.9, 128.7, 128.0, 127.4, 120.6, 118.9, 115.5, 111.2, 55.8. **HRMS** (ESI) m/z calcd for C₁₇H₁₇O (M+H)⁺: 237.1274, found: 237.1273.

1,2-Dimethoxy-4-(3-phenylbuta-1,3-dien-2-yl)benzene (45). Colorless oil was obtained in 34% ¹H-NMR yield, Rf = 0.5 (PE:DCM = 1:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.36 (m, 2H), 7.23 (dd, *J* = 12.4, 7.4 Hz, 3H), 6.97 – 6.89 (m, 2H), 6.75 (d, *J* = 8.3 Hz, 1H), 5.54 (d, *J* = 1.7 Hz, 1H), 5.50 (d, *J* = 1.6 Hz, 1H), 5.34 (d, *J* = 1.8 Hz, 1H), 5.26 (d, *J* = 1.6 Hz, 1H), 3.81 (d, *J* = 8.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.1, 149.5, 148.7, 148.6, 140.4, 133.0, 128.3, 127.6, 127.5, 120.2, 116.2, 115.0, 110.9, 110.8, 55.9, 55.9. HRMS (ESI) m/z calcd for C₁₈H₁₉O₂ (M+H)⁺: 267.1380, found: 267.1372.

Methyl(4-(3-phenylbuta-1,3-dien-2-yl)phenyl)sulfane (46). Colorless oil was obtained in 32% ¹H-NMR yield, $R_f = 0.6$ (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-d) δ 7.38 (d, J = 7.4 Hz, 2H), 7.31 (d, J = 7.8 Hz, 2H), 7.25 - 7.19 (m, 3H), 7.14 (d, J = 8.2 Hz, 2H), 5.54 (d, J = 6.4 Hz, 2H), 5.32 (s, 1H), 5.29 (s, 1H), 2.45 (s, 3H). ¹³C NMR (101 MHz, Chloroform-d) δ 128.4, 128.0, 127.7, 127.5, 126.3, 116.4, 115.9, 15.8. HRMS (ESI) m/z calcd for $C_{17}H_{17}S$ (M+H)⁺: 253.1046, found: 253.1033.

4-(3-Phenylbuta-1,3-dien-2-yl)benzonitrile (47)⁸. Colorless oil was obtained in 40% ¹H-NMR yield, Rf = 0.6 (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.1 Hz, 2H), 7.36 – 7.31 (m, 2H), 7.30 – 7.24 (m, 3H), 5.64 (d, *J* = 1.4 Hz, 1H), 5.60 (d, *J* = 1.3 Hz, 1H), 5.48 (d, *J* = 1.3 Hz, 1H), 5.33 (t, *J* = 1.2 Hz, 1H).¹³C NMR (101 MHz, Chloroform-*d*) δ 149.0, 148.6, 144.8, 139.5, 132.3, 128.5, 128.2, 128.1, 127.5, 119.0, 117.2, 111.3.

Methyl 4-(3-phenylbuta-1,3-dien-2-yl)benzoate (48)⁶. White solid was obtained in 50% ¹H-NMR yield, Rf = 0.5 (PE:EA = 10:1).⁻¹H NMR (400 MHz, Chloroform-d) δ 7.93 (d, J = 7.9 Hz, 2H), 7.44 (d, J = 7.9 Hz, 2H), 7.36 (d, J = 7.5 Hz, 2H), 7.29 - 7.16 (m, 3H), 5.62 (s, 1H), 5.57 (s, 1H), 5.43 (s, 1H), 5.33 (s, 1H), 3.88 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.0, 149.5, 149.2, 144.9, 139.9, 129.7, 129.2, 128.4, 127.8, 127.6, 127.6, 118.1, 116.9, 52.2.

1-Methoxy-4-(3-(4-(trifluoromethyl)phenyl)buta-1,3-dien-2-yl)benzene (49)⁹. White solid was obtained in 37% isolated yield, 16.9 mg, Rf = 0.5 (PE:EA = 5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (dd, *J* = 8.6, 5.4 Hz, 4H), 7.30 (d, *J* = 8.8 Hz, 2H), 6.80 (d, *J* = 8.9 Hz, 2H), 5.61 (s, 1H), 5.51 (s, 1H), 5.44 (s, 1H), 5.24 (s, 1H), 3.78 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.4, 149.1, 148.7, 132.2, 129.6 (q, *J*_{C-F}= 32.3 Hz), 128.7, 127.8, 125.3 (q, *J*_{C-F}= 4.0 Hz), 124.3 (q, *J*_{C-F}= 272.7 Hz), 117.9, 115.4, 113.8, 55.4. ¹⁹F NMR (377 MHz, Chloroform-*d*) δ -62.48.

4-(3-(4-Methoxyphenyl)buta-1,3-dien-2-yl)benzonitrile (50). White solid was obtained in 47% isolated yield, 18.4 mg, Rf = 0.4 (PE:EA=5:1). m.p. 71-72 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 – 7.51 (m, 2H), 7.50 – 7.42 (m, 2H), 7.29 – 7.24 (m, 2H), 6.82 – 6.76 (m, 2H), 5.63 (d, *J* = 1.3 Hz, 1H), 5.52 (d, *J* = 1.5 Hz, 1H), 5.49 (d, *J* = 1.3 Hz, 1H), 5.24 (d, *J* = 1.5 Hz, 1H), 3.77 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.4, 148.7, 148.2, 144.7, 132.1, 131.7, 128.5, 128.0, 118.6, 115.5, 113.8, 111.0, 55.3. HRMS (ESI) m/z calcd for C₁₈H₁₆ON (M+H)⁺: 262.1226, found: 262.1221.

1-(6-Chloro-3-methylenehex-1-en-2-yl)-4-methoxybenzene (51). Colorless oil was obtained in 25% ¹H-NMR yield, Rf = 0.5 (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.20 (m, 2H), 6.88 – 6.83 (m, 2H), 5.20 (d, *J* = 1.6 Hz, 1H), 5.15 (d, *J* = 1.5 Hz, 1H), 5.12 – 5.09 (m, 1H), 5.05 (d, *J* = 2.0 Hz, 1H), 3.81 (s, 3H), 3.53 (t, *J* = 6.6 Hz, 2H), 2.39 (dd, *J* = 7.4, 1.3 Hz, 2H), 1.94 – 1.85 (m, 2H).¹³C NMR (101 MHz, Chloroform-*d*) δ 159.3, 149. 8, 147.8, 133.3, 129.2, 116.3, 113.6, 113.0, 55.4, 44.6, 31.8, 31.1. HRMS (ESI) m/z calcd for C₁₄H₁₈ClO (M+H)⁺: 237.1041, found: 237.1033.

1-(3-Cyclopropylbuta-1,3-dien-2-yl)-4-methoxybenzene (52). Colorless oil was obtained in 37% ¹H-NMR yield, $R_f = 0.6$ (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.32 - 7.20 (m, 2H), 6.90 - 6.81 (m, 2H), 5.41 (d, J = 1.8 Hz, 1H), 5.17 (d, J = 1.3 Hz, 1H), 4.96 (d, J = 1.2 Hz, 1H), 4.86 (d, J = 1.7 Hz, 1H), 3.82 (s, 3H), 1.54 - 1.45 (m, 1H), 0.75 - 0.67 (m, 2H), 0.52 - 0.47 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 159.1, 150.4, 134.0, 129.4, 113.5, 113.0, 112.4, 55.4, 15.2, 7.0. HRMS (ESI) m/z calcd for C₁₄H₁₇O (M+H)⁺: 201.1274, found: 201.1268.

3-(3-Methylenchept-1-en-2-yl)thiophene (53). Colorless oil was obtained in 50% isolated yield, 14.4 mg, Rf = 0.6 (PE:DCM = 3:1). ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.27 – 7.23 (m, 1H), 7.16 (dd, *J* = 3.0, 1.3 Hz, 1H), 7.09 (dd, *J* = 5.0, 1.3 Hz, 1H), 5.26 (d, *J* = 1.5 Hz, 1H), 5.18 (d, *J* = 1.6 Hz, 1H), 5.05 (d, *J* = 1.8 Hz, 1H), 5.02 (d, *J* = 2.0 Hz, 1H), 2.28 (t, *J* = 7.7 Hz, 2H), 1.49 – 1.39 (m, 3H), 1.36 – 1.29 (m, 3H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.2, 145.2, 142.2, 127.6, 124.9, 122.3, 114.5, 112.6, 34.6, 30.4, 22.4, 14.0. **HRMS** (ESI) m/z calcd for C₁₂H₁₇S (M+H)⁺: 193.1045, found: 193.1041.

3-(3-Methyleneoct-1-en-2-yl)thiophene (54). Colorless oil was obtained in 47% isolated yield, 14.5 mg, Rf = 0.6 (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (dd, *J* = 4.8, 3.2 Hz, 1H), 7.16 (dd, *J* = 3.1, 1.3 Hz, 1H), 7.09 (dd, *J* = 4.9, 1.3 Hz, 1H), 5.26 (s, 1H), 5.19 (s, 1H), 5.05 (s, 1H), 5.02 (s, 1H), 2.27 (t, *J* = 7.6 Hz, 2H), 1.50 – 1.40 (m, 2H), 1.32 – 1.28 (m, 4H), 0.89 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.2, 145.2, 142.2, 127.6, 124.9, 122.3, 114.5, 112.6, 34.8, 31.5, 27.9, 22.5, 14.1. HRMS (ESI) m/z calcd for C₁₃H₁₉S (M+H)⁺: 207.1202, found: 207.1197.

3-(3-Methylenenon-1-en-2-yl)thiophene (55). Colorless oil was obtained in 55% isolated yield, 18.2 mg, Rf = 0.6 (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.16 (dd, *J* = 3.0, 1.2 Hz, 1H), 7.09 (dd, *J* = 5.0, 1.2 Hz, 1H), 5.25 (d, *J* = 1.6 Hz, 1H), 5.18 (d, *J* = 1.6 Hz, 1H), 5.05 (d, *J* = 2.0 Hz, 1H), 5.01 (d, *J* = 2.0 Hz, 1H), 2.27 (t, *J* = 7.5 Hz, 2H), 1.50 – 1.40 (m, 2H), 1.30 – 1.29 (m, 6H), 0.88 – 0.86 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.2, 145.2, 142.2, 127.6, 124.9, 122.3, 114.5, 112.6, 34.9, 31.7, 29.0, 28.2, 22.6, 14.1. HRMS (ESI) m/z calcd for C₁₄H₂₁S (M+H)⁺: 221.1359, found: 221.1353.

3-(3-(Cyclohexylmethyl)buta-1,3-dien-2-yl)thiophene (56). Colorless oil was obtained in 40% isolated yield, 13.9 mg, Rf = 0.6 (PE:DCM = 3:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 (dd, J = 5.0, 3.1 Hz, 1H), 7.16 (dd, J = 3.0, 1.3 Hz, 1H), 7.09 (dd, J = 4.9, 1.3 Hz, 1H), 5.26 (d, J = 1.6 Hz, 1H), 5.17 (d, J = 1.6 Hz, 1H), 5.04 (d, J = 2.4 Hz, 1H), 5.01 (d, J = 2.3 Hz, 1H), 2.16 (d, J = 7.0 Hz, 2H), 1.80 – 1.58 (m, 8H), 1.42 (dtt, J = 14.6, 7.2, 3.6 Hz, 2H), 1.30 – 1.09 (m, 5H), 0.95 – 0.80 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 147.5, 145.2, 142.3, 127.6, 124.9, 122.3, 115.9, 112.9, 43.1, 35.9, 33.3, 26.6, 26.3. HRMS (ESI) m/z calcd for C₁₅H₂₁S (M+H)⁺: 233.1359, found:

233.1352.

Diethyl 4-cyano-3',6'-dihydro-[1,1':2',1''-terphenyl]-4',5'-dicarboxylate (57). Yellow oil was obtained in 40% isolated yield, 32 mg, Rf = 0.4 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (d, *J* = 7.8 Hz, 2H), 7.19 – 7.13 (m, 3H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.00 – 6.94 (m, 2H), 4.27 (q, *J* = 7.2 Hz, 4H), 3.53 – 3.42 (m, 4H), 1.32 (t, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 167.5, 167.4, 146.2, 140.2, 133.2, 132.7, 132.0, 131.7, 129.7, 129.3, 128.7, 128.5, 127.5, 118.9, 110.5, 61.6, 35.0, 34.2, 14.2. HRMS (ESI) m/z calcd for C₂₅H₂₄NO₄ (M+H)⁺: 402.1700, found: 402.1704.

4-(3-Methyl-1*H***-inden-2-yl)benzonitrile (58).** Colorless oil was obtained in 68% isolated yield, 78.2 mg, Rf = 0.5 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.51 (d, *J* = 7.3 Hz, 1H), 7.44 (d, *J* = 7.5 Hz, 1H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.30 (d, *J* = 7.5 Hz, 1H), 3.75 (s, 2H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 146.9, 142.5, 142.3, 138.2, 138.2, 132.3, 128.7, 126.8, 125.9, 123.6, 119.8, 119.2, 109.9, 40.7, 12.4. HRMS (ESI) m/z calcd for C₁₇H₁₄N (M+H)⁺: 232.1121, found: 232.1116.

3,4-Bis(4-methoxyphenyl)-1,1-dimethyl-1*H***-silole (59).** Colorless oil was obtained in 89% isolated yield, 57.8 mg, Rf = 0.4 (PE:EA=5:1). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.19 (d, *J* = 8.8 Hz, 4H), 6.87 (d, *J* = 8.8 Hz, 4H), 3.93 (s, 6H), 2.08 (s, 4H), 0.46 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.5, 136.5, 135.5, 129.9, 113.0, 55.1, 26.4, -1.9. HRMS (ESI) m/z calcd for C₂₀H₂₅O₂Si (M+H)⁺: 325.1618, found: 325.1619.

2,3-Bis(4-methoxyphenyl)-5-silaspiro[4.5]deca-1,3-diene (60). Colorless oil was obtained in 87% isolated yield, 63.4 mg, Rf = 0.4 (PE:EA=5:1)). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.04 – 6.97 (m, 4H), 6.70 – 6.65 (m, 4H), 3.74 (s, 6H), 1.91 (s, 4H), 1.81 – 1.67 (m, 4H), 1.51 – 1.41 (m, 2H), 0.88 – 0.79 (m, 4H).¹³C NMR (101 MHz, Chloroform-*d*) δ 157.7, 136.7, 135.7, 129.9, 113.1, 55.2, 30.0, 25.4, 24.3, 12.7. HRMS (ESI) m/z calcd for C₂₃H₂₉O₂S (M+H)⁺: 365.1931, found: 365.1931.

Reference

1. Songis, O.; Míšek, J.; Schmid, M. B.; Kollárovič, A.; Stará, I. G.; Šaman, D.; Císařová, I.; Starý, I., A Versatile Synthesis of Functionalized Pentahelicenes. *J. Org. Chem.* **2010**, *75*, 6889-6899.

2. Guo, J.; Shen, X.; Lu, Z., Regio- and Enantioselective Cobalt-Catalyzed Sequential Hydrosilylation/Hydrogenation of Terminal Alkynes. *Angew. Chem. Int. Ed.* **2017**, *56*, 615-618.

3. Xi, Y.; Dong, B.; McClain, E. J.; Wang, Q.; Gregg, T. L.; Akhmedov, N. G.; Petersen, J. L.; Shi, X., Gold-Catalyzed Intermolecular C-S Bond Formation: Efficient Synthesis of α-Substituted Vinyl Sulfones. *Angew. Chem. Int. Ed.* **2014**, *53*, 4657-4661.

4. Hansch, C.; Leo, A.; Taft, R. W., A survey of Hammett substituent constants and resonance and field parameters. *Chem. Rev.* **1991**, *91*, 165-195.

5. Guo, H.; Zhang, S.; Li, Y.; Yu, X.; Feng, X.; Yamamoto, Y.; Bao, M., Palladium-Catalyzed Tail-to-Tail Reductive Dimerization of Terminal Alkynes to 2,3-Dibranched Butadienes. *Angew. Chem. Int. Ed.* **2022**, *61*, e202116870.

6. Li, A.; Han, F.-S., Synthesis of Five-Membered Cyclic Phosphinic Acids via the [4C+1P] Cyclization of 1,3-Dienes with a Combination of PBr₃ and P(OMe)₃ as the P(III) Source. *J. Org. Chem.* **2023**, *88*, 12224-12235.

7. Araki, S.; Ohmura, M.; Butsugan, Y., A Facile Synthesis of 2,3-Dialkyl-1,3-butadienes. *Synthesis* **1985**, *1985*, 963-964.

8. Abderrezak, M.K.; Kabouche, Z.; Bruneau, C.; Fischmeister, C. Ene-yne Cross-Metathesis for the Preparation of 2,3-Diaryl-1,3-dienes. *Catalysts* **2017**, *7*, 365.

9. Liu, S.; Liu, Y.; Flaget, A.; Zhang, C.; Mazet, C., Cu-Catalyzed Enantioselective Protoboration of 2,3-Disubstituted 1,3-Dienes. *Org. Lett.* **2023**, 25, 6897-6901.

NMR spectra of products

f1 (ppm)

f1 (ppm)

${}^{\rm l} H \text{ NMR Spectra of compound } 9$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

¹³C NMR Spectra of compound **10**

148.54	138.37 133.67 128.87 128.60	117.12
1	$\langle \langle \vee \rangle$	

¹³C NMR Spectra of compound **11**

¹³C NMR Spectra of compound **12**

159.13	149.42	132.64	114.41 113.61	55.23
1	1		52	1

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

0.0

f1 (ppm)

^{1}H NMR Spectra of compound 31

 $\bigwedge^{3.59}_{3.56}$

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

- 3.88

 $\frac{5.62}{5.57}$ 5.435.33

7.94 7.92 7.45 7.45 7.43 7.43 7.43 7.23 7.23 7.23 7.22 7.22 7.22

ny1-2-0408-1.3.fid

100 90 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

