SUPPLEMENTARY MATERIAL

Boosting the Sustainable Recycling of Spent Lithium-ion Batteries through Mechanochemistry

Shubin Wang^a[†], Shuxuan Yan^b[†], Zihao Chen^{c,d}, Yudie Ou^b, Binod Mahara^{c,d}, Xiangping

Chen^{c,d*}, Ying Yang^b and Tao Zhou^{b*}

^a State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, P.R. China;

^b Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China;

^c College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081,
 P.R. China.

^d National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, P.R. China.

Table and Text legend

Table S1 XPS spectral peak sites (eV) and regions (%) fitting of Fe 2p in products with different milling rotation speeds.

Table S2 XPS spectral peak sites (eV) and regions (%) fitting of Ni 2p in products with different milling rotation speeds.

Table S3 XPS spectral peak sites (eV) and regions (%) fitting of Co 2p in products with different milling rotation speeds.

Table S4 XPS spectral peaks of Mn 3s in products with different milling rotation speeds.

Table S5 Thermodynamic data for the related species at 298.15 K.

Table S6 Gibbs free energy values $(\Delta_r G_m)$ for Eq. (4)-(15) at 298.15 K.

Table S7 Lattice parameters (a, b, c) and unit cell volume (V).

 Table S8 Preprocessing and Critical Materials (CM) Recovery.

Table S9 Material requirements (kg) to recycle 1 kg of spent batteries through different

recycling technologies. (N = No need).

Table S10 Energy requirements (MJ) to recycle 1 kg of spent batteries through different

recycling technologies. (N = No need).

 Table S11 Life-cycle environmental impacts of different recycling methods (per kg

 feedstock processed).

 Table S12 Horizontal comparisons using multi-indicator evaluation systems of different technologies.

Text S1 DFT calculations.

Figure legend

Figure S1 The flow chart of proposed green route for recovery of valuable metals from spent LIBs.

Figure S2 Pore width distribution of samples before and after MR.

Figure S3 XPS spectra of P 2p in products without and after MR.

Figure S4 Schematic Diagram of Product Properties.

Figure S5 Effect of (a) rotation speed and (b) milling time on the water leaching efficiency of milling product.

Figure S6 Effect of milling rotation speed on the water leaching efficiency of milling products. (Factorial experiments, other than the exploratory factor, were conditioned on solid-liquid ratio: 5 g/L, temperature: 90 °C, time: 60 min, ball powder ratio: 50: 1, rotation speed: 750 rpm, milling time: 7 h).

Figure S7 Leaching efficiency of samples at different acid concentrations (a) without and (b) after MR.

Figure S8 Effect of (a) ball powder ratio, (b) leaching time, and (c) molar ratio of LFP: NCM on leaching efficiency.

Figure S9 Effect of (a) rotation speed, and (b) temperature on leaching efficiency.

Figure S10 Comparison of leaching effect of different samples before and after MR:

(a) NCM811, (b) NCM333 (b), and (c) LCO.

Figure S11 Structural diagrams of NCM, CoO, MnO, NiO, LFP, FP, and Li₂O.

Figure S12 XRD pattern of recovered Li₂CO₃.

Figure S13 XRD pattern water leaching residues.

Figure S14 SEM-EDS images of leaching residues after roasting at 600°C for 20 min.

Figure S15 SEM-EDS images of leaching residues after roasting at 600°C for 20 min.

Figure S16 XPS spectra of (a) Fe2p and (b) P 2p of leaching residues after roasting at 600°C for 20 min.

Figure S17 configurations of tetrahedral PO₄ in LFP and FP.

Figure S18 (a) XRD pattern and (b) SEM image of the $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$.

Figure S19 Schematic of Pyro recycling.

Figure S20 Schematic of Hydro recycling.

Figure S21 Schematic of this work.

		Ea 2m				Ea 2m				Conte	ent
Detetional		re 2p	3/2			re zp	1/2			(wt.%	b)
speed (mm)		Pea	Pea	C 1	52	Pea	Pea	62	S1		
speed (Ipili)		k1	k2	51	52	k3	k4	33	54	Fe ²⁺	Fe^{3+}
		Fe^{2^+}	Fe ³⁺	Fe^{2+}	Fe^{3+}	Fe^{2^+}	Fe^{3+}	Fe^{2^+}	Fe ³⁺		
	Sites	710.	711.	713.	715.	723.	725.	726.	729.		
0	(eV)	33	75	09	82	67	23	78	62	77.3	22.6
0	Regions	14.9	1 37	11.4	14.9	17.8	5 23	13.6	17.7	1	9
	(%)	0	4.37	0	0	1	5.25	3	6		
	Sites	710.	712.	715.	719.	723.	725.	728.	732.		
450	(eV)	71	11	18	14	51	51	41	94	46.6	53.3
450	Regions	13.6	15.6	10.2	5 00	16.3	18.6	12.2	7 15	7	3
	(%)	7	2	8	5.90	4	7	8	/.13		
	Sites	710.	711.	714.	718.	723.	725.	727.	732.		
550	(eV)	43	79	67	75	23	17	97	55	38.2	61.7
550	Regions	11.2	18.2	10.7	5 2 1	13.4	21.7	12.8	6.25	5	5
	(%)	9	2	3	5.51	9	8	2	0.55		
	Sites	710.	711.	714.	718.	723.	725.	727.	732.		
650	(eV)	30	64	44	65	10	05	97	45	36.7	63.2
050	Regions	10.0	18.0	10.7	5.06	12.8	21.5	12.9	7 1 2	5	5
	(%)	8	1	9	5.90	9	2	0	7.15		
	Sites	710.	711.	714.	718.	722.	725.	727.	732.		
750	(eV)	06	54	41	53	86	95	92	33	33.8	66.1
750	Regions	10.0	19.5	10.4	5 5 2	11.9	23.3	12.5	6.61	7	3
	(%)	1	4	8	5.52	6	5	3	0.01		
	Sites	709.	711.	714.	718.	722.	724.	727.	732.		
850	(eV)	95	27	08	40	75	65	52	20	35.4	64.5
050	Regions	10.4	19.1	10.8	5.00	12.5	22.8	13.0	6.00	2	8
	(%)	8	0	8	5.09	2	3	0	6.09		

Table S1 XPS spectral peak sites (eV) and regions (%) fitting of Fe 2p in products withdifferent milling rotation speeds.

Notes: $C(Fe^{2+}) = (S_{P1} + S_{P3})/(S_{P1} + S_{P2} + S_{P3} + S_{P4}), C(Fe^{3+}) = (S_{P2} + S_{P4})/(S_{P1} + S_{P2} + S_{P3} + S_{P4}),$ $I(Fe^{3+}/Fe^{2+}) = C(Fe^{3+})/C(Fe^{2+})$

		Ni 2p ₃	3/2			Ni 2p	/2		Cor	ntent %)
Rotational speed (rpm)		Peak 1 Ni ²⁺	Peak 2 Ni ³⁺	S1 Ni ²⁺	S2 Ni ³⁺	Peak 3 Ni ²⁺	Peak 4 Ni ³⁺	S3 Ni ²⁺	Fe ²⁺	Fe ³⁺
	Sites	855.	856.	861.	864.	872.	875.	879.		
0	(eV)	05	81	22	49	54	22	63	68.0	31.9
0	Regions	21.0	0.07	14.4	2.14	22.0	11.2	16.4	4	6
	(%)	1	9.8/	2	3.14	23.9	3	3		
	Sites	855.	857.	861.	865.	873.	875.	879.		
450	(eV)	4	22	63	38	93	63	5	71.2	28.8
430	Regions (%)	18.6 4	7.54	21.1 8	2.94	20.0 2	7.61	23.9 6	0	0
	Sites	855.	857.	861.	865.	873.	875.	879.		
	(eV)	5	35	43	17	07	76	81	71.6	28.3
550	Regions (%)	20.4 9	8.1	16.5 4	3.48	23.3 1	9.32	18.8 5	7	3
	Sites	855.	857.	861.	864.	872.	875.	879.		
	(eV)	27	1	16	42	83	51	44	72.9	27.0
650	Regions (%)	19.9	7.37	18.4 6	2.03	22.6 4	8.59	21	7	3
	Sites	855.	857.	861.	864.	872.	876.	879.		
750	(eV)	22	65	15	8	85	06	45	74.6	25.3
/50	Regions (%)	22.7 2	7.73	14.9 5	2.75	25.8 5	8.96	17.0 3	1	9
	Sites	855.	857.	861.	864.	872.	875.	879.		
950	(eV)	04	01	08	6	82	42	49	72.4	27.5
830	Regions (%)	20.5 8	7.84	17.1 5	2.52	23.4 3	8.93	19.5 4	1	9

Table S2 XPS spectral peak sites (eV) and regions (%) fitting of Ni 2p in products withdifferent milling rotation speeds.

Notes: $C(Ni^{2+}) = (S_{P1} + S_{P3})/(S_{P1} + S_{P2} + S_{P3} + S_{P4}), C(Ni^{3+}) = (S_{P2} + S_{P4})/(S_{P1} + S_{P2} + S_{P3} + S_{P4}),$ $I(Ni^{2+}/Ni^{3+}) = C(Ni^{2+})/C(Ni^{3+})$

		$C_0 2n$	2.0			$C_0 2n$	11/2			Cor	itent
Rotational		C0 2p	3/2			C0 2p	1/2			(<i>wt</i> .	%)
speed (rpm)		Pea	Pea	S1	<u>82</u>	Pea	Peak	S 3	S4		Co^2
Sheen (1111)		k1	k2	51	52	k3	4	55	51	Co ³⁺	+
		Co ³⁺	Co ²⁺								
	Sites	779.	780.	781.	789.	795.	796.	797.	804.		
0	(eV)	94	78	37	84	01	09	16	96	70.0	29.
0	Regions	17.0	7 12	19.9	1 97	17.5	7 50	20.4	5.00	7	93
	(%)	4	7.42	6	т.) /	6	7.50	6	5.07		
	Sites	780.	782.	786.	789.	795.	797.	801.	805.		
450	(eV)	51	78	05	44	2	53	84	23	58.8	41.
450	Regions	17.2	12.0	11.9	8 04	17.7	12.3	12.2	8 24	8	12
	(%)	9	9	6	0.04	5	8	6	0.24		
	Sites	780.	782.	785.	789.	794.	797.	801.	805.		
550	(eV)	3	56	83	38	99	25	62	17	56.7	43.
330	Regions	16.0	12.2	12.5	9 6 1	16.4	12.5	12.8	0 07	4	26
	(%)	1	2	4	0.01	3	1	5	0.03		
	Sites	780.	782.	785.	788.	794.	797.	801.	804.		
650	(eV)	05	12	43	96	74	1	22	75	50.9	49.
630	Regions	13.6	13.1	13.6	0.01	13.9	13.4	13.9	0.24	4	06
	(%)	2	3	2	9.01	8	5	6	9.24		
	Sites	779.	780.	785.	788.	794.	796.	800.	804,		
750	(eV)	71	75	07	47	4	81	86	26	31.9	68.
/50	Regions	0.1	17.2	14.2	0.9	0.7	17.6	14.5	10.0	5	05
	(%)	0.1	6	4	9.8	8.3	7	9	5		
	Sites	779.	781.	785.	788.	794.	796.	800.	804.		
850	(eV)	74	64	05	45	43	833	84	24	40.4	59.
030	Regions	10.4	15.3	14.7	0.07	10.7	15.7	15 1	0.05	9	51
	(%)	4	8	3	8.82	4	5	15.1 9.05	9.05		

Table S3XPS spectral peak sites (eV) and regions (%) fitting of Co 2p in products withdifferent milling rotation speeds.

Notes: $C(Co^{3+}) = (S_{P1} + S_{P3})/(S_{P1} + S_{P2} + S_{P3} + S_{P4}), C(Co^{2+}) = (S_{P2} + S_{P4})/(S_{P1} + S_{P2} + S_{P3} + S_{P4}),$

 $I(Co^{2+}/Co^{3+}) = C(Co^{2+})/C(Co^{3+})$

	Rotational	Sites	s (eV)	$\Delta \mathbf{E}$ (aV)	405	
	speed (rpm)	Peak1	Peak2	$\Delta E_{3s}(ev)$	AOS	
-	0	84.27	89.06	4.79	3.59	
	450	83.41	88.45	5.04	3.27	
	550	83.07	88.19	5.12	3.17	
	650	83.10	88.31	5.21	3.05	
	750	82.72	88.62	5.90	2.18	
	850	82.71	88.27	5.56	2.61	

 S4 XPS spectral peaks of Mn 3s in products with different milling rotation speeds.

Substance	$\Delta_f G_m^{\ heta}$ (kJ/mol)	Ref.	Substance	$\Delta_{\rm f} {\rm G_m}^{\theta}$ (kJ/mol)	Ref.
LiFePO ₄	-1480.97	[1]	FePO ₄	-1179.3	[1]
$LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$	-640.04	[2]	FeO	-251.4	[3]
CoO	-214.00	[3]	LiCoPO ₄	-5660.10	[4]
Li ₂ O	-561.20	[3]	LiNiPO ₄	-5881.77	[4]
Co_3O_4	-774.00	[3]	LiMnPO ₄	-5096.46	[4]
Mn_3O_4	-1283.2	[3]	$\mathrm{H}_2\mathrm{SO}_4$	-689.90	[3]
Ni ₂ O ₃	-469.74	[5, 6]	$CoSO_4$	-782.40	[3]
MnO	-362.9	[3]	Li_2SO_4	-1331.20	[3]
NiO	-211.7	[3]	NiSO ₄	-790.30	[3]
Li ₃ PO ₄	-2127.45	HSC 6.0	MnSO ₄	-972.80	[3]
Fe ₂ O ₃	-742.2	[3]	H ₂ O	-237.14	[3]

Table S5 Thermodynamic data for the related species at 298.15 K.

No.	Reaction equation	$\Delta_{\rm r}G_{\rm m}$ (kJ/mol)				
(4)	$10 LiFePO_4 + 10 LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 = 10FePO_4 + 3MnO + 5NiO + 2CoO + 10Li_2O$	1229.9				
(5)	$10 LiFePO_4 + 10 LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 + 20H_2SO_4 = 10FePO_4 + 2CoSO_4 + 10Li_2SO_4 + 5NiSO_4 + 3Mn_2NiSO_4 + 3Mn_2Ni$	-3274 4				
(5)	SO_4+20H_2O					
(6)	$8 LiFePO_4 + 120 LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 = 8FePO_4 + 12Mn_3O_4 + 30Ni_2O_3 + 8Co_3O_4 + 64Li_2O + 3O_2 + 8Co_3O_4 + 64Li_2O + 3O_2 + 8Co_3O_4 + 64Li_2O + 3O_2 + 8Co_3O_4 + 8Co_3O_3O_4 + 8Co_3O_3O_4 + 8Co_3O_3O_4 + 8Co_3O_3O_4 + 8Co_3O_3O_3O_3O_4 + 8Co_3O_3$	7618.76				
(7)	2LiFePO ₄ +Co ₃ O ₄ =2FePO ₄ +3CoO+Li ₂ O	174.14				
(8)	2LiFePO ₄ +Mn ₃ O ₄ =2FePO ₄ +3MnO+Li ₂ O	236.64				
(9)	2LiFePO ₄ +Ni ₂ O ₃ =2FePO ₄ +2NiO+Li ₂ O	88.48				
(10)	$30 LiFePO_4 + 30 LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 = 20 Li_3PO_4 + 10FePO_4 + 6CoO + 9MnO + 5NiO + 10Fe_2O_3 + 10FePO_4 + 6CoO + 9MnO + 5NiO + 5NiO + 10FePO_4 + 6CoO + 9MnO + 5NiO + $	-3742.3				
(11)	$60 LiFePO_4 + 120 LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 = 60 Li_3PO_4 + 12 Mn_3O_4 + 30 Ni_2O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 = 60 Li_3PO_4 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 19O_2 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 120 LiNi_{0.5}O_3 + 8Fe_3O_4 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 120 LiNi_{0.5}O_3 + 8Co_3O_4 + 8Fe_3O_4 + 120 LiNi_{0.5}O_3 + 8Fe_3O_4 + 8Fe_3O_5 + 8Fe_3O_5 + 8Fe_3O_5 + 8Fe_3O_5 + 8F$	-5615.4				
(12)	3LiFePO ₄ +Co ₃ O ₄ =Li ₃ PO ₄ +3CoO+2FePO ₄ +FeO	-162.54				
(13)	3LiFePO ₄ +Mn ₃ O ₄ =Li ₃ PO ₄ + 3MnO+2FePO ₄ +FeO	-100.04				
(14)	3LiFePO ₄ +Ni ₂ O ₃ =Li ₃ PO ₄ +2NiO+2FePO ₄ +FeO	-248.2				
(15)	$10 LiFePO_4 + 10 LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 = 2 LiCoPO_4 + 5 LiNiPO_4 + 3 LiMnPO_4 + 5Fe_2O_3 + 5Li_2O_4 + 10LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 = 2 LiCoPO_4 + 5LiNiPO_4 + 3LiMnPO_4 + 5Fe_2O_3 + 5Li_2O_4 + 5LiNiPO_4 + 3LiMnPO_4 + 5Fe_2O_3 + 5Li_2O_4 + 5LiNiPO_4 + 3LiMnPO_4 + 5Fe_2O_3 + 5Li_2O_4 + 5LiNiPO_4 + 5LiNiPO_4$	-41325.33				

Table S6 Gibbs free energy values $(\Delta_r G_m)$ for Eqs. (4)-(15) at 298.15 K.

Materials	a/Å	b/Å	c/Å	V/Å ³
LiFePO ₄	10.42233	6.06186	4.74113	299.538459
$LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$	2.94763	2.94763	14.48677	109.005722
FePO ₄	5.15897	5.15897	11.47868	264.574758
NiO	2.97764	2.97764	2.97764	18.668089
CoO	3.00037	3.00037	3.00037	19.098898
MnO	3.19334	3.19334	3.19334	23.025998
Li ₂ O	3.26613	3.26613	3.26613	24.636770

Table S7 Lattice parameters (a, b, c) and unit cell volume (V).

Feedstock chemistry	Feedstock type	Feedstock tonnage	Geographic location	
I coustoek enemistry	recusioek type	(tonne/yr)		
S NCM	End-of-life battery:	1580	China	
5-INCIVI	cell	1580	Cinina	
	End-of-life battery:			
S-LFP	cell	1000	China	

Table S8 Preprocessing and Critical Materials (CM) Recovery.

Note: Preprocessed feedstock composition: NCM523-27.6% , LFP-17.7% , Graphite-

25.1% , Carbon black-0.9% , Binder: PVDF-0.9% , Copper-8.6% , Aluminum-5.5% \circ

	Pyrometallurgy	Hydrometallurgy	This work
Limestone	0.2	Ν	Ν
Sand	0.31	Ν	Ν
Sulfuric Acid	0.33	1.04	0.78
Lime	0.076	0.001	Ν
Hydrogen Peroxide	Ν	0.07	Ν
Sodium Hydroxide	Ν	0.63	Ν
Soda Ash	Ν	0.29	Ν

Table S9 Material requirements (kg) to recycle 1 kg of spent batteries through different

recycling technologies. (N = No need).

	Pyrometallurgy	Hydrometallurgy	This work
Diesel	0.60	0.60	3
Natural gas	0.20	1.81	1.6
Electricity	1.12	0.90	10

Table S10 Energy requirements (MJ) to recycle 1 kg of spent batteries through different

recycling technologies. (N = No need).

	1	eedstoek processed).	
Feedstock	Pyrometallurgy	Hydrometallurgy	This work
Cost	5.79	4.81	2.14
Energy use in MJ			
Total Energy	4.38	23.72	30.17
Fossil fuels	3.83	21.75	25.62
Coal	2.47	8.25	18.73
Natural gas	0.54	14.47	3.15
Petroleum	0.82	4.23	3.74
Water use in gallon	1.51	3.41	5.33
Total emissions in	g		
VOC	0.07	0.28	0.36
СО	0.27	1.18	1.42
NO _x	0.68	2.18	3.67
PM10	0.07	0.21	0.40
PM2.5	0.05	0.15	0.24
SO _x	0.93	2.23	3.56
BC	0.01	0.03	0.07
OC	0.01	0.04	0.04
CH_4	0.54	3.57	3.75
N ₂ O	0.01	0.03	0.06
CO ₂	1643.96	1754.79	2231.74
CO ₂ (w/ C in VOC & CO)	1644.60	1757.51	2235.08
GHGs	1662.62	1873.32	2361.99

Table S11 Life-cycle environmental impacts of different recycling methods (per kg

feedstock processed).

Revenue (\$)	3.56	4.76	11.02
Profit (\$)	-2.23	-0.05	8.87

Table S12 Horizontal comparisons using multi-indicator evaluation systems of different	

. 1 1	· ·
technol	ogles
ce e mio	logies.

technologies.				
	Pyrometallurgy	Hydrometallurgy	This work	
Energy intensity	Medium	Low	Medium	
Carbon emissions	Medium	Medium	Medium	
Waste solid	High	Medium	Low	
Waste water	Low	High	Low	
Waste gas	High	Low	Low	
Process complexity	Simplicity	Complexity	Simplicity	
Recovery rate	Low	High	High	
Profit	Low	Low	High	

Text S1 DFT calculations.

The calculations employed a projector-augmented wave (PAW) pseudopotential for core electrons, with a 500-eV cutoff energy for valence electrons, and the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) for the exchange–correlation potential. Structural relaxations were carried out until the force and energy convergence thresholds were below 0.02 eV/Å and 10^{-5} eV, respectively. The Monkhorst–Pack k-point meshes were set as follows: $10 \times 10 \times 10$ for Li₂O, CoO, MnO, and NiO; $9 \times 9 \times 2$ for FePO₄ (FP); $3 \times 5 \times 7$ for LFP; and $12 \times 12 \times 12$ for LiNi₁/₃Co₁/₃Mn₁/₃O₂ (NCM111).

Figure S1 The flow chart of proposed green route for recovery of valuable metals from

spent LIBs.

The process can be divided into three parts: part (I): Experimental process of mechanochemical reaction and stoichiometric acid leaching for recovering different cathodes from spent LIBs, in which pretreatments include discharging, dismantling, and exfoliation; part (II): Separation and recovery of valuable metals compo; part (III): Recovery of FePO₄.

Operators need to take precautions during the pretreatment process, as harmful components of the electrolyte, such as LiPF₆, can quickly decompose into LiF and PF₅. The gaseous PF₅

can be absorbed by specific adsorbents and the solid LiF will usually flow into the slag due to its high melting point (848 °C) and boiling point (1681 °C).

Figure S2 Pore width distribution of samples before and after MR.

Figure S3 XPS spectra of P 2p in products without and after MR.

Figure S4 Schematic Diagram of Product Properties.

Figure S5 Effect of (a) rotation speed and (b) milling time on the water leaching

efficiency of milling product.

Figure S6 Effect of milling rotation speed on the water leaching efficiency of milling products. (Factorial experiments, other than the exploratory factor, were conditioned on solid-liquid ratio: 5 g/L, temperature: 90 °C, time: 60 min, ball powder ratio: 50: 1,

rotation speed: 750 rpm, milling time: 7 h).

Figure S7 Leaching efficiency of samples at different acid concentrations (a) without and

(b) after MR.

Figure S8 Effect of (a) ball powder ratio, (b) leaching time, and (c) molar ratio of LFP:

NCM on leaching efficiency.

Figure S9 Effect of (a) rotation speed, and (b) temperature on leaching efficiency.

Figure S10 Comparison of leaching effect of different samples before and after MR:

(a) NCM811, (b) NCM333 (b), and (c) LCO.

Figure S11 Structural diagrams of NCM, CoO, MnO, NiO, LFP, FP, and Li₂O.

Figure S12 XRD pattern of recovered Li₂CO₃.

Figure S13 XRD pattern water leaching residues.

Figure S14 SEM-EDS images of leaching residues after roasting at 600°C for 20 min.

Figure S15 SEM-EDS images of leaching residues after roasting at 600°C for 20 min.

Figure S16 XPS spectra of (a) Fe2p and (b) P 2p of leaching residues after roasting at 600°C for 20

min.

Figure S17 configurations of tetrahedral PO_4 in LFP and FP.

Figure S18 (a) XRD pattern and (b) SEM image of the $Ni_{0.5}Co_{0.2}Mn_{0.3}(OH)_2$.

Figure S20 Schematic of Hydro recycling.

Figure S21 Schematic of this work.

References

- [1] A.V. Churikov, A.V. Ivanishchev, A.V. Ushakov, I.M. Gamayunova, I.A. Leenson, Journal of Chemical & Engineering Data, 58 (2013) 1747-1759.
- [2] Y. Lixin, in, Lanzhou University of Technology, 2019.
- [3] J.A. Dean, Lange's Handbook of Chemistry, New York, 1999.
- [4] S.L. Shang, Y. Wang, Z.G. Mei, X.D. Hui, Z.K. Liu, J. Mater. Chem., 22 (2012) 1142-1149.
- [5] H. Zhu, Y. Ai, J. Li, J. Min, D. Chu, J. Zhao, J. Chen, Advanced Powder Technology, 22 (2011) 629-633.
- [6] P.R. Roberge, Handbook of Corrosion Engineering, New York, 2000.