Supplementary Information

Rational design of direct and indirect electron transfer pathways to engineer efficient electroactive *Escherichia coli* for green bioelectrochemical system applications

Jiao Feng, Wenjing Yang, Yao Liu, Yan Zhao, Sheng Xu, Xin Wang and Kequan Chen

J. Feng, W. J. Yang, Y. Zhao, Y. Liu, S. Xu, X. Wang, K. Q. Chen State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China E-mail: kqchen@njtech.edu.cn

Strains	Feature	Source
<i>E. coli</i> Trans1-T1	Conventional clone host bacteria	Transgen
E. coli BA102	E. coli K12 (Δldh, Δpfl, ΔptsG)	Lab stock
S. oneidensis MR-1	Wils-type	Lab stock
P. aeruginosa PAO1	Wils-type	Lab stock
E. coli PCA	E. coli BA102 harboring pTrc99a-phz plasmid	This study
E. coli Mtr	E. coli BA102 harboring pBBR1MCS-mtr	This study
E. coli PCA+Mtr	<i>E. coli</i> BA102 harboring pTrc99a-phz and pBBR1MCS-mtr	This study
E. coli PCA+Mtr-TL	<i>E. coli</i> BA102 harboring pTrc99a-tac-phz and pBBR1MCS-mtr	This study
E. coli PCA+Mtr-L5L	<i>E. coli</i> BA102 harboring pTrc99a-lacUV5-phz and pBBR1MCS-mtr	This study
E. coli PCA+Mtr-LL	<i>E. coli</i> BA102 harboring pTrc99a-lac-phz and pBBR1MCS-mtr	This study
E. coli PCA+Mtr-LL5	<i>E. coli</i> BA102 harboring pTrc99a-lac-phz and pBBR1MCS-lacUV5-mtr	This study
E. coli MtrC	E. coli BA102 harboring pCWJ-mtrC	This study
E. coli MtrC-H500A	E. coli BA102 harboring pCWJ-mtrC-H500A	This study
<i>E. coli</i> BW25113	F-,DE(araD-araB)567, lacZ4787(del)::rrnB-3, LAM-, rph-1, DE(rhaD-rhaB)568, hsdR514	Datsenko and Wanner (2000)
E. coli BW25113-∆pdeH	Single-gene <i>pdeH</i> deletion in <i>E. coli</i> BW25113	Lab stock
E. coli BW25113-ДрdeC	Single-gene <i>pdeC</i> deletion in <i>E. coli</i> BW25113	Lab stock
E. coli BW25113-∆pdeD	Single-gene <i>pdeD</i> deletion in <i>E. coli</i> BW25113	Lab stock

 Table S1. Strains and plasmids used in this study

E. coli BW25113-∆pdeI	Single-gene pdel deletion in E. coli BW25113	Lab stock
E. coli BW25113-∆pdeL	Single-gene <i>pdeL</i> deletion in <i>E. coli</i> BW25113	Lab stock
E. coli BW25113-∆pdeK	Single-gene <i>pdeM</i> deletion in <i>E. coli</i> BW25113	Lab stock
E. coli BW25113-∆dgcM	Single-gene <i>dgcM</i> deletion in <i>E. coli</i> BW25113	Lab stock
E. coli BW25113-∆dgcN	Single-gene <i>dgcN</i> deletion in <i>E. coli</i> BW25113	Lab stock
E. coli BW25113-∆bssR	Single-gene bssR deletion in E. coli BW25113	Lab stock
E. coli BW25113-∆bssS	Single-gene bssS deletion in E. coli BW25113	Lab stock
E. coli BW25113-∆bdcA	Single-gene <i>bdcA</i> deletion in <i>E. coli</i> BW25113	Lab stock
E. coli BW25113-∆lsrK	Single-gene <i>lsrK</i> deletion in <i>E. coli</i> BW25113	Lab stock
E. coli BW25113-∆lsrR	Single-gene <i>lsrR</i> deletion in <i>E. coli</i> BW25113	Lab stock
<i>E. coli</i> BW25113- <i>AlsrC</i> Single-gene <i>lsrC</i> deletion in <i>E. coli</i> BW25113		Lab stock
<i>E. coli</i> BW25113- <i>AsdiA</i> Single-gene <i>sdiA</i> deletion in <i>E. coli</i> BW25113		Lab stock
<i>E. coli</i> BW25113- <i>AcsgA</i> Single-gene <i>csgA</i> deletion in <i>E. coli</i> BW25113		Lab stock
<i>E. coli</i> BW25113- $\Delta csgB$ Single-gene $csgB$ deletion in <i>E. coli</i> BW25113		Lab stock
<i>E. coli</i> BW25113- $\Delta dicB$ Single-gene $dicB$ deletion in <i>E. coli</i> BW25113		Lab stock
E. coli BW25113-∆zapC	Single-gene <i>zapC</i> deletion in <i>E</i> . <i>coli</i> BW25113	Lab stock
E. coli-∆pdeH	Single-gene pdeH deletion in E. coli BA102	This study
E. coli-∆lsrK	Single-gene lsrK deletion in E. coli BA102	This study
E. coli PCA+Mtr-	E. coli-ApdeH carrying pTrc99a-lac-phz and	
LL∆pdeH	pBBR1MCS-mtr	This study
E. coli PCA+Mtr-	<i>E.</i> $coli$ - Δ pdeH carrying pTrc99a-lac-phz and	
LLApdeH-sqr	pBBR1MCS-mtr and integrating sqr from	This study
Rhodobacter capsulatus		
Plasmids		
pBBR1MCS-5	Broad-host-range cloning vector; mob ⁺ , Gm ^r	Kovach et

al. (1995)

pTrc99a	Expression vector; Amp ^r	TaKaRa
	pBBR1MCS-5 carrying the <i>mtrCAB</i> gene of <i>S</i> .	Feng et al.
pBBR1MCS-mtr	oneidensis MR-1under Plac control	(2020)
pTrc99a-phz	pTrc99a carrying the <i>phzA1B1C1D1E1F1G1</i> gene cluster of <i>P.aeruginosa</i> PAO1 under Ptrc control	Feng et al. (2018)
pTrc99a-tac	The Ptrc promoter of pTrc99a is replaced with Ptac.	This study
pTrc99a-lacUV5	The Ptrc promoter of pTrc99a is replaced with PlacUV5.	This study
pTrc99a-lac	The Ptrc promoter of pTrc99a is replaced with Plac.	This study
pTrc99a-tac-phz	pTrc99a carrying the <i>phzA1B1C1D1E1F1G1</i> gene cluster of <i>P.aeruginosa</i> PAO1 under Ptac control	This study
pTrc99a-lacUV5-phz	pTrc99a carrying the <i>phzA1B1C1D1E1F1G1</i> gene cluster of <i>P.aeruginosa</i> PAO1 under PlacUV5 control	This study
pTrc99a-lac-phzAG	pTrc99a carrying the <i>phzA1B1C1D1E1F1G1</i> gene cluster of <i>P.aeruginosa</i> PAO1 under Plac control	This study
pBBR1MCS-lacUV5	The Plac promoter of pBBR1MCS-5 is replaced with PlacUV5.	This study
pBBR1MCS-lacUV5-mtr	pBBR1MCS-5 carrying the <i>mtrCAB</i> gene of <i>S</i> . <i>oneidensis</i> MR-1under PlacUV5 control	This study
pCWJ-mtrC-H500A	pCWJ carrying the mtrC-H500A	This study

pCWJ-mtrC	pCWJ carrying the <i>mtrC</i>	This stud	ly
pTargetF-C	Target series harboring apply a Cmr	Feng et	al.
	prarget series narooring sgravas, em	(2020)	
pTargetF-C-pdeH	PTargetF-C carrying pdeH N20 sites	This study	
pTargetF-C-lsrK	PTargetF-C carrying lsrK N20 sites	This stud	ly
pCas	repA101(Ts) kan Pcas-cas9 ParaB-Red lacIq	Jiang	et
	Ptrc-sgRNA-pMB1	al.(2015))

Primers	Oligonucleotides
I D	ttacactttatgcttccggctcgtatgttgtgtggaattgtgagcggataacaatttcacaca
Lac-F	ggaa
	caacatacgagccggaagcataaagtgtaaacagctcatttcagaatatttgccagaac
Lac-R	cgttatgatgtc
Tac-F	tt ga caatta at catcgg ctcgt at a at gtgtgg a at tgtg a gcgg at a a caattt caca
Tac-R	cattatacgagccgatgattaattgtcaacagctcatttcagaatatttgccagaacc
LacUV5-F	tttacactttatgcttccggctcgtataatgtgtggaattgtgagcg
	cattatacgagccggaagcataaagtgtaaacagctcatttcagaatatttgccagaacc
LacUV3-R	gttat
LacUV5-pBB-F	tcgtataatgtgtggaattgtgagcggataacaa
LacUV5-pBB-R	cacacattatacgagccggaagcataaagtg
phz-F	ggggtaccatgaacggtcagcggtacagg
phz-R	tgctctagatcacggttgcaggtagcggtg
Mtr-F	ccgcgaattcatgaacgcacaaaaatcaaaaatcgc
Mtr-R	cgcggatccttagagtttgtaactcatgctc
pdeH-sgRNA-up	cgatctatcaaacatgcggggttttagagctagaaatagcaagttaaaataaggc
pdeH-sgRNA-down	cccgcatgtttgatagatcgactagtattatacctaggactgagctagct
pdeH-donor-1-up	ctcatattcttcctgtgccagtcctaaag
pdeH-donor-1-down	gagagcttgcaagccatcggatggaggttg
pdeH-donor-2-up	tccgatggcttgcaagctctcgatgcttgc
pdeH-donor-2-down	agactgctcactctccagcc
lsrK-sgRNA-up	cttcggcacagaaagcatcggttttagagctagaaatagcaagttaaaaataaggc
lsrK-sgRNA-down	cgatgctttctgtgccgaagactagtattatacctaggactgagctagct
lsrK-donor-1-up	atatcgtactggtgatggaacgatgaat
lsrK-donor-1-down	cgcgttaatcccgtaatgccgatcttctccgac
lsrK-donor-2-up	cggcattacgggattaacgcgcacgttcatttc

Table S2. Primers in this study

lsrK-donor-2-down	tggatgccagagcggc
sqr-donor-up	ctgaacggcagcggct
sqr-donor-down	cgccgtggagctattaacgg

System	MtrC-PCA
Item	Energy(kJ/mol)
$\Delta G_{vdw}(kJ/mol)$	-113.668
$\Delta G_{ele}(kJ/mol)$	1.281
$\Delta G_{PB}(kJ/mol)$	25.328
$\Delta G_{np}(kJ/mol)$	-10.918
$\Delta G_{bind}(kJ/mol)$	-97.978

Table S3. Energy terms of binding free energy between PCA and MtrC protein

System	MtrC-PCA	Fold
MtrC-PCA	2.53	1.00
MtrC-H500A-PCA	19.61	7.75

Table S4. The dissociation constant (K_d) in the interactions between PCA and E. coliMtrC or E. coli MtrC-H500A

*The calculation of K_d was based on Eqs. (1–4) reported by Okamoto et al.

PCA-MtrC(PL)
$$\rightleftharpoons$$
 PCA(L)+MtrC(P) (1)

$$\frac{[P][L]}{K_d = [PL]}$$
(2)

[P], [L], and [PL] are the concentrations of MtrC, soluble PCA, and the MtrC-PCA complex, respectively. Under different PCA concentrations of $[L]_1$ and $[L]_2$, the relationship of peak currents (I_{p1} and I_{p2}) of the bound PCA in DPV measurements between the concentration of MtrC-PCA complex ([PL]₁ and [PL]₂) was shown as Eq.

3.

$$\frac{I_{p2}}{I_{p1}} = \frac{[PL]_2}{[PL]_1} = \alpha$$
(3)

By using these equations, K_d could be described as Eq. 4.

$$K_{d} = \frac{(\alpha - 1)[L]_{1}}{1 - a\frac{[L]_{1}}{[L]_{2}}}$$
(4)

In short, PCA was initially added to the three-electrode test reactor with the Ag/AgCl as the reference electrode, the carbon cloth (1 cm × 1 cm) fixed by the strains MtrC or MtrC-H500A as the working electrode and Pt (1 cm × 1 cm) as the counter electrode at a final concentration of 4 μ M ([L]₁). The DPV measurements were carried out to determine the peak current I_{p1} of the bound PCA. The PCA concentration was subsequently further increased to 10 μ M ([L]₂). Then the I_{p2} was determined by the DPV measurement.

Figure S1. Effects of different induction conditions on PCA production. (a) Induction temperature, (b) Inducer IPTG concentration, and (c) Induction OD_{600.}

Figure S2. SEM images of biofilms. (a) The control strain and (b) engineered electroactive strain.

References

Datsenko, K.A., Wanner, B.L., 2000. One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. PNAS. 97(12), 6640-6645.

Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop II, R.M., Peterson, K.M., 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes, Gene.166, 175-176.

Feng, J., Jiang, M., Li, K., Lu, Q., Xu, S., Wang, X., Chen, K.Q., Ouyang, P.K., 2020. Direct electron uptake from a cathode using the inward Mtr pathway in *Escherichia coli*, Bioelectrochemistry. 138, 107498.

Feng, J., Qian, Y., Wang, Z., Wang, X., Xu, S., Chen, K.Q., Ouyang, P.K., 2018. Enhancing the performance of *Escherichia coli*-inoculated microbial fuel cells by introduction of the phenazine-1-carboxylic acid pathway, J. Biotechnol. 275, 1-6.

Jiang, Y., Chen, B., Duan, C.L., Sun, B.B., Yang, J.J., Yang, S., 2015. Multigene editing in the *Escherichia coli* genome via the CRISPR-Cas9 system, Appl. Environ. Microb. 81, 2506-2514.

Okamoto, A., Nakamura, R., Nealson, K. H., Hashimoto, K., 2014. Effect of ionic strength on the rate of extracellular electron transport in *Shewanella oneidensis* MR-1 through bound-flavin semiquinones, Chemelectrochem, 2014, 1(11): 1808-1812.