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S1. Ionic Liquids Dataset

For IL surface tension, the dataset compiled consists of 2,663 data points taken from our 

previous work,1,2 which was originally collected from the literature and the online ionic liquids 

database ILThermo v2.0.3,4 The data set contains 370 different ILs with surface tensions measured 

at temperatures ranging from 263 to 533 K at constant pressure. The dataset comprises 121 unique 

cations, including imidazolium, ammonium, phosphonium, pyridinium, pyrrolidinium, protic, 

morpholinium, triazolium, piperidinium, sulfonium, quinolinium, and others, and 66 unique 

anions, such as carboxylates, amino acids, sulfates, phosphates, cyanates, fluorides, halides, and 

azolates.

The IL viscosity dataset, also taken from our previous study5, consists of 11,721 data points 

covering 967 distinct ILs. The reported viscosities are at temperatures ranging from 253 K to 573 

K and pressures from 60 kPa to 950000 kPa. The dataset includes 419 unique cations and 172 

unique anions. 

The dataset for ionic conductivity of ILs was obtained from Song et al. (2024)6, which was 

compiled from NIST ILThermo v2.0 database.3,4 This dataset comprises 5,700 data points with 

414 distinct ILs (180 unique cations and 85 unique anions), covering a wide range temperatures 

from 208.15–528.55 K and a pressure range of 95–110 kPa. The dataset categorizes ILs into nine 

classes based on cation types, with imidazolium-based ILs being the most prevalent, constituting 

approximately 56% of the data. 

The IL density dataset was compiled from  NIST ILThermo v2.03,4 and contains a total of 52,278 

data points covering 1,687 ILs (906 cations and 341 anions) at a wide range temperatures from 90 

K to 573 K and a pressure range of 81.5–300000 kPa. The IL density values vary from 780 kg/m3 

to 2150 kg/m3, which reflects extensive experimental effort in designing “task-specific ILs” for 

different research applications.

However, it is important to mention that certain ILs in the ionic conductivity dataset, which 

was obtained from Song et al. (2024)6, contain errors in the SMILES representations. For instance, 

the SMILES for  N-octylethylenediammonium trifluoromethanesulfonate, N-

hexylethylenediammonium trifluoromethanesulfonate,  and N-octylethylenediammonium 

trifluoroacetate are misreported as NCCNCCCCCCCC.O=S([O-])(C(F)(F)F)=O, 
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CCCCCCNCCN.O=S([O-])(C(F)(F)F)=O, and NCCNCCCCCCCC.[O-]C(C(F)(F)F)=O, 

respectively, omitting the cation component. Similarly, the melting temperature dataset from Feng 

et al. (2024)7 also contains SMILES errors. For example, the SMILES for imidazolium triflate, 1-

butyl-3-methylimidazolium hexafluorophosphate, and 1,8-Diazabicyclo(5.4.0)undec-7-ene 2-

nitroimidazol-1-ide are inaccurately reported as  c1c[nH+]c[nH]1.O=S(=O)(O)C(F)(F)F,  

CCCC[n+]1ccn(C)c1.F[PH](F)(F)(F)(F)F, and 

C1CCC2=NCCC[NH+]2CC1.O=[N+](O)c1ncc[n-]1, respectively, with missing anions and a 

misplacement of the cation position for 1,8-Diazabicyclo[5.4.0]undec-7-ene. These charge 

imbalances can compromise the accuracy of ML models, potentially leading to incorrect patterns 

and predict properties inaccurately on new ILs. To mitigate this issue, we have identified and 

corrected the charge imbalances in the SMILES representations used for our ML models.
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Table S1: Number of input features in the different featurization techniques

IL Property Featurization technique Length of 
features

Experimental features 
(T = 1 and T + P = 2) a

Total 
features

σ, mN/m Atom count 11 1 12
Morgan FP 2048 1 2049
σ-profiles 14 1 15
Mol2vec 300 1 301

ln(), mPa.s Atom count 11 2 13
Morgan FP 2048 2 2050
σ-profiles 14 2 16
Mol2vec 300 2 302

κ, S/m Atom count 10 2 11
Morgan FP 2048 2 2050
Mol2vec 300 2 302

, kg/m3 Atom count 11 2 13
Morgan FP 2048 2 2050
Mol2vec 300 2 302

log10EC50 Mol2vec 300 0 300
Tm, (K) Mol2vec 300 0 300

Mol2vec + atom count 311 0 311
Mol2vec + atom count + 
RDKit descriptors 460 0 460

𝛾𝑊𝐼𝐿 Mol2vec 300 2 + mole fraction 303
a T is temperature in K, and P is pressure in kPa.
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Table S2. The search space and results of hyperparameter parameters for the different ML models

Property Search space Optimized value

Viscosity n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)

n_estimators = 2798
l2_leaf_reg = 6
learning_rate = 0.1774
depth = 5
random_strength = 1
boosting_type= Plain
rsm = 0.7875

Surface tension n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)

n_estimators = 2998
l2_leaf_reg = 4
learning_rate = 0.1088
depth = 5
random_strength = 10
boosting_type= Plain
rsm = 0.6928

Ionic conductivity n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)

n_estimators = 2981
l2_leaf_reg = 6
learning_rate = 0.0731
depth = 4
random_strength = 4
boosting_type= Plain
rsm = 0.3162
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Density n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)

n_estimators = 1362
l2_leaf_reg = 1
learning_rate = 0.1894
depth = 8
random_strength = 3
boosting_type= Plain
rsm = 0.3506

Toxicity n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)

n_estimators = 2113
l2_leaf_reg = 2
learning_rate = 0.2766
depth = 6
random_strength = 1
boosting_type= Ordered
rsm = 0.8993

Melting temperature 
(regression)

n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)

n_estimators = 2065
l2_leaf_reg = 3
learning_rate = 0.0422
depth = 6
random_strength = 7
boosting_type= Plain
rsm = 0.6165

Melting temperature 
(classification)

n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)

n_estimators = 2936
l2_leaf_reg = 4
learning_rate = 0.2609
depth = 10
random_strength = 10
boosting_type= Ordered
rsm = 0.2910
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bagging_temperature = trial.suggest_float(0.0, 1.0) bagging_temperature = 0.6599

Water activity in ILs 
(regression)

n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)

n_estimators = 1771
l2_leaf_reg = 1
learning_rate = 0.1080
depth = 10
random_strength = 7
boosting_type= Plain
rsm = 0.7148

Water activity in ILs 
(classification)

n_estimators = trial.suggest_int(500, 3000)
l2_leaf_reg = trial.suggest_int(1, 11)
learning_rate = trial.suggest_float(0.03, 0.30)
depth = trial.suggest_int(1, 11)
random_strength = trial.suggest_int(1, 11)
boosting_type= trial.suggest_categorical('Ordered', 'Plain')
rsm = trial.suggest_float(0.1, 0.9)
bagging_temperature = trial.suggest_float(0.0, 1.0)

n_estimators = 2983
l2_leaf_reg = 1
learning_rate = 0.2288
depth = 9
random_strength = 4
boosting_type= Plain
rsm = 0.8095
bagging_temperature = 0.2543
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Table S3: Top investigated ionic liquids for various research applications and their physiochemical properties predicted by using ML 
models with Mol2vec featurization technique.

IL name ln(), 
mPa.s , kg/m3 κ, S/m σ, 

mN/m log10EC50 Tm, K 𝛾𝑊𝐼𝐿 Reference

Biomass Pretreatment
1-ethyl-3-methylimidazolium 
acetate 4.77 1100.38 0.19 38.17 2.04 Liquid Hydrophilic 8,9

1-ethyl-3-methylimidazolium 
chloride 5.32 1149.23 0.34 62.57 1.86 Solid Hydrophilic 10

1-allyl-3-methylimidazolium 
chloride 6.71 1144.32 0.07 56.66 2.06 Solid Hydrophilic 11

Choline lysinate 7.70 1123.51 0.05 41.59 1.93 Solid Hydrophilic 12,13

CO2 Capture
1-octyl-3-methylimidazolium 
bis(trifluoromethylsulfonyl)amide 4.50 1340.40 0.15 31.64 1.07 Liquid Hydrophilic 14

Choline glycinate 5.10 1144.84 0.06 42.63 2.21 Solid Hydrophilic 15

7-methyl-1,5,7-
triazabicyclo(4.4.0)dec-5-ene 
2,2,2-trifluoroethan-1-olate 

4.42 1316.12 0.36 42.96 2.26 Solid Hydrophilic 16

1,8-diazabicyclo[5,4,0]undec-7-
ene imidazole 4.75 1206.92 0.32 46.11 2.30 Solid Hydrophilic 17

Electrolytes
1-ethyl-3-methylimidazolium 
bis(trifluoromethanesulfonyl)imide 3.53 1453.14 0.58 36.30 1.91 Liquid Hydrophilic

diethyl-N-methyl-N-(2-
methoxyethyl) ammonium 
bis(trifluoromethanesulfonyl)imide

4.26 1403.91 0.24 33.94 2.27 Liquid Hydrophilic

1-butyl-3-methylpyridinium 
bis(trifluoromethanesulfonyl)imide 4.16 1412.61 0.25 28.16 1.56 Liquid Hydrophilic

18-20

1-butyl-3-methylimidazolium 4.02 1070.92 0.50 45.07 1.65 Liquid Hydrophilic
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thiocyanate
1-butyl-1-methylpiperidinium 
bis(trifluoromethanesulfonyl)imide 5.10 1380.40 0.16 34.49 2.27 Liquid Hydrophilic

1-butyl-2,3-dimethylimidazolium 
bis(trifluoromethanesulfonyl)imide 4.59 1417.71 0.29 35.08 1.72 Liquid Hydrophilic
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Table S4: COSMO-RS predicted logarithmic activity coefficient and excess enthalpy of lignin in 
the top literature reported ILs. 

Ionic liquid ln(γ) HE, kcal/mol

1-ethyl-3-methylimidazolium acetate -10.66 -6.43

1-ethyl-3-methylimidazolium chloride -5.43 -3.37

1-allyl-3-methylimidazolium chloride -5.03 -3.05

Choline lysinate -8.06 -5.24

Table S5: Comparison of experimental and ML predicted IL properties, with experimental data 
taken from Qiu et al. (2024)21

Density, kg/m3 Melting temperatures, K
IL Name

Exp. ML pred. Error, % Exp. ML pred

[P4442][MSA]* 1010.37 1013.01 ± 25.70 0.26 -73.2 Liquid

[P66614][MSA]* 939.11 939.15 ± 20.02 0.004 -68.9 Liquid
* The synthesizability scores of [P4442][MSA] and [P66614][MSA] range from 3 to 4, indicating that these 
ionic liquids are relatively easy to synthesize, as experimentally demonstrated by Qiu et al.21 
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Figure S1: Graphical representation of medoid, outlier, and stratified sampling methods. The red colored arrow bar represents the 
chemical space of ILs, the left side of color bar corresponds to Medoid sampling (similar set of molecules), the right side of color bar 
corresponds to Outlier sampling (dissimilar molecules). 



S12

20 30 40 50 60 70 80
−24

−16

−8

0

8

16

24

20 30 40 50 60 70 80
−24

−16

−8

0

8

16

24

20 30 40 50 60 70 80
−24

−16

−8

0

8

16

24

20 30 40 50 60 70 80
−24

−16

−8

0

8

16

24

0 2 4 6 8 10 12 14
−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

0 2 4 6 8 10 12 14
−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

0 2 4 6 8 10 12 14
−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

0 2 4 6 8 10 12 14
−4.5

−3.0

−1.5

0.0

1.5

3.0

4.5

 Training
 Testing

R
es

id
ua

l, 
m

N
/m

Exp., σ (mN/m)

(a)

 Training
 Testing

R
es

id
ua

l, 
m

N
/m

Exp., σ (mN/m)

(b)

 Training
 Testing

R
es

id
ua

l, 
m

N
/m

Exp., σ (mN/m)

(c)

 Training
 Testing

R
es

id
ua

l, 
m

N
/m

Exp., σ (mN/m)

Atom Count Fea tures Morgan FP Fea tures Sigma Profile Fea tures Mol2vec  Fea tures

(d)

 Training
 Testing

R
es

id
ua

l, 
m

Pa
.s

Exp., ln(η) (mPa.s)

(e)

 Training
 Testing

R
es

id
ua

l, 
m

Pa
.s

Exp., ln(η) (mPa.s)

(f)

 Training
 Testing

R
es

id
ua

l, 
m

Pa
.s

Exp., ln(η) (mPa.s)

(g)

 Training
 Testing

R
es

id
ua

l, 
m

Pa
.s

Exp., ln(η) (mPa.s)

(h)

Figure S2: The relationship between residual (predicted–experimental) vs experimental surface tension of ILs using various approaches: 
(a) atom count, (b) Morgan FPs, (c) σ-profiles, and (d) Mol2vec with the CATBoost method. Similarly, the relationship between residual 
vs experimental viscosities of ILs is shown for (e) atom count, (f) Morgan FPs, (g) σ-profiles, and (h) Mol2vec featurization with the 
CATBoost method.
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Figure S3: The relationship between residual (predicted–experimental) vs experimental ionic conductivity of ILs using various 
approaches: (a) atom count, (b) Morgan FPs, and (c) Mol2vec with the CATBoost method. Similarly, the relationship between residual 
vs experimental density of ILs is shown for (d) atom count, (e) Morgan FPs, and (f) Mol2vec featurization with the CATBoost method.
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Figure S4. Experimental and ML-predicted melting temperatures of ILs using various 
featurizations: (a) Mol2vec features, (b) Mol2vec + atom count features, and (c) Mol2vec + atom 
count + RDKit molecular descriptors with the CATBoost method.
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Figure S7: COSMO-RS predicted logarithmic activity coefficient (ln()) and excess enthalpy (HE) 
of lignin in ML developed ionic liquids with desired properties.
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Figure S8: COSMO-RS predicted logarithmic activity coefficient (ln()) and excess enthalpy (HE) 
of cellulose in ML developed ionic liquids with desired properties.
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Figure S9: COSMO-RS predicted logarithmic activity coefficient (ln()) and excess enthalpy (HE) 
of hemicellulose in ML developed ionic liquids with desired properties.
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(E)-but-1-en-1-yltriethylphosphonium
(methylsulfonyl)acetonitrile

ln(η) = 4.18 mPa.s; κ = 0.29 S/m

((2R,3S)-2-aminopentan-3-
yl)((fluorosulfonyl)oxy)dimethylphos
phonium (methylsulfonyl)acetonitrile

ln(η) = 3.98 mPa.s; κ = 0.20 S/m

3-(3-methoxy-3-oxopropyl)-1-
(trifluoromethyl)-1H-imidazol-3-ium

chlorate
ln(η) = 4.42 mPa.s; κ = 0.39 S/m
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ln(η) = 4.48 mPa.s; κ = 0.23 S/m
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Figure S10: viscosity and ionic conductivity of newly engineered ionic liquids for CO2 capture. 
All these ILs are predicted to be easy to synthesize with a SA score below 6.5.
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