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S1. Ionic Liquids Dataset

For IL surface tension, the dataset compiled consists of 2,663 data points taken from our
previous work,"? which was originally collected from the literature and the online ionic liquids
database ILThermo v2.0.># The data set contains 370 different ILs with surface tensions measured
at temperatures ranging from 263 to 533 K at constant pressure. The dataset comprises 121 unique
cations, including imidazolium, ammonium, phosphonium, pyridinium, pyrrolidinium, protic,
morpholinium, triazolium, piperidinium, sulfonium, quinolinium, and others, and 66 unique
anions, such as carboxylates, amino acids, sulfates, phosphates, cyanates, fluorides, halides, and

azolates.

The IL viscosity dataset, also taken from our previous study?, consists of 11,721 data points
covering 967 distinct ILs. The reported viscosities are at temperatures ranging from 253 K to 573
K and pressures from 60 kPa to 950000 kPa. The dataset includes 419 unique cations and 172

unique anions.

The dataset for ionic conductivity of ILs was obtained from Song et al. (2024)°, which was
compiled from NIST ILThermo v2.0 database.’* This dataset comprises 5,700 data points with
414 distinct ILs (180 unique cations and 85 unique anions), covering a wide range temperatures
from 208.15-528.55 K and a pressure range of 95—110 kPa. The dataset categorizes ILs into nine
classes based on cation types, with imidazolium-based ILs being the most prevalent, constituting

approximately 56% of the data.

The IL density dataset was compiled from NIST ILThermo v2.0** and contains a total of 52,278
data points covering 1,687 ILs (906 cations and 341 anions) at a wide range temperatures from 90
K to 573 K and a pressure range of 81.5-300000 kPa. The IL density values vary from 780 kg/m?
to 2150 kg/m3, which reflects extensive experimental effort in designing “task-specific ILs” for

different research applications.

However, it is important to mention that certain ILs in the ionic conductivity dataset, which
was obtained from Song et al. (2024)°, contain errors in the SMILES representations. For instance,
the SMILES  for N-octylethylenediammonium  trifluoromethanesulfonate, = N-
hexylethylenediammonium trifluoromethanesulfonate, and N-octylethylenediammonium

trifluoroacetate are misreported as NCCNCCCCCCCC.O=S([O-D(C(F)(F)F)=0,
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CCCCCCNCCN.O=S(JO-)(C(F)(F)F)=0, and NCCNCCCCCCCC.[O-]C(C(F)(F)F)=0,
respectively, omitting the cation component. Similarly, the melting temperature dataset from Feng
et al. (2024)7 also contains SMILES errors. For example, the SMILES for imidazolium triflate, 1-
butyl-3-methylimidazolium hexafluorophosphate, and 1,8-Diazabicyclo(5.4.0)undec-7-ene 2-
nitroimidazol-1-ide are inaccurately reported as  clc[nH+]c[nH]1.0=S(=0)(O)C(F)(F)F,
CCCC[n+]1lcen(C)cl.F[PH](F)(F)(F)(F)F, and
CICCC2=NCCC[NH+]2CC1.0=[N+](O)clncc[n-]1, respectively, with missing anions and a
misplacement of the cation position for 1,8-Diazabicyclo[5.4.0Jundec-7-ene. These charge
imbalances can compromise the accuracy of ML models, potentially leading to incorrect patterns
and predict properties inaccurately on new ILs. To mitigate this issue, we have identified and

corrected the charge imbalances in the SMILES representations used for our ML models.
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Table S1: Number of input features in the different featurization techniques

Length of = Experimental features Total

IL Property  Featurization technique features (T=1and T+P=2)¢ features
o, mN/m Atom count 11 1 12
Morgan FP 2048 1 2049
o-profiles 14 1 15
Mol2vec 300 1 301
In(77), mPa.s  Atom count 11 2 13
Morgan FP 2048 2 2050
o-profiles 14 2 16
Mol2vec 300 2 302
x, S/m Atom count 10 2 11
Morgan FP 2048 2 2050
Mol2vec 300 2 302
o, kg/m? Atom count 11 2 13
Morgan FP 2048 2 2050
Mol2vec 300 2 302
log10ECs Mol2vec 300 0 300
T, (K) Mol2vec 300 0 300
Mol2vec + atom count 311 0 311
Mol2vec + atom count +
RDKit descriptors 460 0 460
)/IIAZ Mol2vec 300 2 + mole fraction 303

@ T is temperature in K, and P is pressure in kPa.
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Table S2. The search space and results of hyperparameter parameters for the different ML models

Property

Search space

Optimized value

Viscosity

n_estimators = frial.suggest _int(500, 3000)

12 leaf reg = trial.suggest int(1, 11)

learning_rate = trial.suggest float(0.03, 0.30)

depth = trial.suggest int(1, 11)

random_strength = trial.suggest int(1, 11)

boosting type= trial.suggest categorical('Ordered’, 'Plain’)
rsm = trial.suggest float(0.1, 0.9)

n_estimators = 2798
12 leaf reg=16
learning_rate = 0.1774
depth =35
random_strength = 1
boosting_type= Plain
rsm = 0.7875

Surface tension

n_estimators = trial.suggest _int(500, 3000)

12 leaf reg = trial.suggest int(1, 11)

learning_rate = trial.suggest float(0.03, 0.30)

depth = trial.suggest int(1, 11)

random_strength = trial.suggest int(1, 11)

boosting type= trial.suggest categorical('Ordered’, 'Plain’)
rsm = trial.suggest float(0.1, 0.9)

n_estimators = 2998
12 leaf reg=4
learning_rate = 0.1088
depth =35
random_strength = 10
boosting type= Plain
rsm = 0.6928

Ionic conductivity

n_estimators = trial.suggest int(500, 3000)

12 leaf reg = trial.suggest int(1, 11)

learning_rate = trial.suggest float(0.03, 0.30)

depth = trial.suggest int(1, 11)

random_strength = trial.suggest int(1, 11)

boosting_type= trial.suggest categorical('Ordered', 'Plain’)
rsm = trial.suggest float(0.1, 0.9)

n_estimators = 2981
12 leaf reg=6
learning_rate = 0.0731
depth =4
random_strength =4
boosting_type= Plain
rsm = 0.3162
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Density n_estimators = frial.suggest_int(500, 3000) n_estimators = 1362
12 leaf reg = trial.suggest int(1, 11) 12 leaf reg=1
learning_rate = trial.suggest float(0.03, 0.30) learning_rate = 0.1894
depth = trial.suggest int(1, 11) depth =38
random_strength = trial.suggest int(1, 11) random_strength = 3
boosting type= trial.suggest categorical('Ordered’, 'Plain’) | boosting type= Plain
rsm = trial.suggest float(0.1, 0.9) rsm = 0.3506

Toxicity n_estimators = trial.suggest int(500, 3000) n_estimators = 2113
12 leaf reg = trial.suggest int(1, 11) 12 leaf reg=2
learning_rate = trial.suggest float(0.03, 0.30) learning_rate = 0.2766
depth = trial.suggest int(1, 11) depth=6
random_strength = trial.suggest int(1, 11) random_strength = 1
boosting_type= trial.suggest categorical('Ordered’, 'Plain') | boosting type= Ordered
rsm = trial.suggest float(0.1, 0.9) rsm = 0.8993

Melting temperature n_estimators = trial.suggest int(500, 3000) n_estimators = 2065

(regression) 12 leaf reg = trial.suggest int(1, 11) 12 leaf reg=3
learning_rate = trial.suggest float(0.03, 0.30) learning_rate = 0.0422
depth = trial.suggest int(1, 11) depth =6
random_strength = trial.suggest int(1, 11) random_strength = 7
boosting type= trial.suggest categorical('Ordered’, 'Plain’) | boosting type= Plain
rsm = trial.suggest float(0.1, 0.9) rsm = 0.6165

Melting temperature n_estimators = trial.suggest int(500, 3000) n_estimators = 2936

(classification) 12 leaf reg = trial.suggest int(1, 11) 12 leaf reg=4
learning_rate = trial.suggest float(0.03, 0.30) learning_rate = 0.2609
depth = trial. suggest int(1, 11) depth= 10
random_strength = trial.suggest int(1, 11) random_strength = 10
boosting_type= trial.suggest categorical('Ordered’, 'Plain') | boosting_type= Ordered

rsm = trial.suggest float(0.1, 0.9)

rsm=0.2910
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bagging temperature = trial.suggest float(0.0, 1.0)

bagging temperature = 0.6599

Water activity in ILs
(regression)

n_estimators = trial.suggest int(500, 3000)

12 leaf reg = trial.suggest int(1, 11)

learning_rate = trial.suggest float(0.03, 0.30)

depth = trial.suggest int(1, 11)

random_strength = trial.suggest int(1, 11)

boosting_type= trial.suggest categorical('Ordered', 'Plain’)
rsm = trial.suggest float(0.1, 0.9)

n_estimators = 1771
12 leaf reg=1
learning_rate = 0.1080
depth = 10
random_strength =7
boosting_type= Plain
rsm = 0.7148

Water activity in ILs
(classification)

n_estimators = trial.suggest int(500, 3000)

12_leaf reg = trial.suggest int(1, 11)

learning_rate = trial.suggest float(0.03, 0.30)

depth = trial.suggest int(1, 11)

random_strength = trial.suggest int(1, 11)

boosting_type= trial.suggest categorical('Ordered', 'Plain’)
rsm = trial.suggest float(0.1, 0.9)

bagging temperature = trial.suggest float(0.0, 1.0)

n_estimators = 2983

12 leaf reg=1

learning_rate = 0.2288

depth =9

random_strength = 4
boosting_type= Plain

rsm = 0.8095

bagging temperature = 0.2543
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Table S3: Top investigated ionic liquids for various research applications and their physiochemical properties predicted by using ML
models with Mol2vec featurization technique.

In(7), 3 o, w
IL name mPas p, kg/m K, S/m mN/m log10ECsy T, K YiL Reference
Biomass Pretreatment

;;Zttzfel'3'methyhmldaz"hum 477 110038 0.9 3817 204  Liquid Hydrophilic 89
I-ethyl-3-methylimidazolium 532 114923 034 6257 186 Solid  Hydrophilic 10
chloride
iﬁgggg'methyhmldamh“m 6.71 114432 007  56.66 2.06 Solid  Hydrophilic i
Choline lysinate 7.70 1123.51 0.05 41.59 1.93 Solid  Hydrophilic 12,13

CO, Capture
1-octyl-3-methylimidazolium - e ”
bis(trifluoromethylsulfonyl)amide 4.50 1340.40 0.15 31.64 1.07 Liquid Hydrophilic
Choline glycinate 5.10 1144.84 0.06 42.63 2.21 Solid  Hydrophilic 15
7-methyl-1,5,7-
triazabicyclo(4.4.0)dec-5-ene 4.42 1316.12 0.36 42.96 2.26 Solid  Hydrophilic 16
2,2,2-trifluoroethan-1-olate
1,8-diazabicyclo[5,4,0]undec-7- 475 120692 032 4611 230  Solid  Hydrophilic 17
ene imidazole

Electrolytes
I-ethyl-3-methylimidazolium 353 145314 058 3630 191  Liquid Hydrophilic

bis(trifluoromethanesulfonyl)imide
diethyl-N-methyl-N-(2-

methoxyethyl) ammonium 4.26 1403.91 0.24 33.94 2.27 Liquid Hydrophilic 18-20
bis(trifluoromethanesulfonyl)imide
1-butyl-3-methylpyridinium N o
bis(trifluoromethanesulfonyl)imide 4.16 1412.61 0.25 28.16 1.56 Liquid Hydrophilic

1-butyl-3-methylimidazolium 4.02 1070.92 0.50 45.07 1.65 Liquid Hydrophilic
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thiocyanate
1-butyl-1-methylpiperidinium

bis(trifluoromethanesulfonyl)imide 5.10 1380.40 0.16 34.49 2.27 Liquid  Hydrophilic
1-butyl-2,3-dimethylimidazolium N -
bis(trifluoromethanesulfonyl)imide 4.59 1417.71 0.29 35.08 1.72 Liquid  Hydrophilic
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Table S4: COSMO-RS predicted logarithmic activity coefficient and excess enthalpy of lignin in
the top literature reported ILs.

Ionic liquid In(y) HE, kcal/mol
1-ethyl-3-methylimidazolium acetate -10.66 -6.43
1-ethyl-3-methylimidazolium chloride -5.43 -3.37
1-allyl-3-methylimidazolium chloride -5.03 -3.05
Choline lysinate -8.06 -5.24

Table S5: Comparison of experimental and ML predicted IL properties, with experimental data
taken from Qiu et al. (2024)?!

Density, kg/m3 Melting temperatures, K
IL Name
Exp. ML pred. Error, % Exp. ML pred
[P4442][MSAT* 1010.37 1013.01 +25.70 0.26 -73.2 Liquid
[Pess14][MSA]" 939.11 939.15 +20.02 0.004 -68.9 Liquid

* The synthesizability scores of [P4442][MSA] and [P66614][MSA] range from 3 to 4, indicating that these
ionic liquids are relatively easy to synthesize, as experimentally demonstrated by Qiu et al.?!

S10



Medoid Sampling

OO00000-000

Outlier Sampling
Stratified Sampling
Similar molecules Dissimilar molecules
- I |
N%/N\/\/\//Na\/\/\ AN 0 O‘ﬁ
o Y 9 ; (0] |/\ O)\(OH I\/\O/
F. \\\\’N‘,/x'" F o*N~o y*l\or ....................... NN~~~ Pl F
T e Ky F U HO_ , _OH >j\ﬁ
F F _NF]\\I N/ﬁ N==5 \LEJ/ Fore >F@ZF
N TINN A F | F
O
\HKO- HO—S—O‘ OH F Fr '
NH,

Figure S1: Graphical representation of medoid, outlier, and stratified sampling methods. The red colored arrow bar represents the
chemical space of ILs, the left side of color bar corresponds to Medoid sampling (similar set of molecules), the right side of color bar
corresponds to Outlier sampling (dissimilar molecules).
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Figure S2: The relationship between residual (predicted—experimental) vs experimental surface tension of ILs using various approaches:
(a) atom count, (b) Morgan FPs, (c) g-profiles, and (d) Mol2vec with the CATBoost method. Similarly, the relationship between residual
vs experimental viscosities of ILs is shown for (e) atom count, (f) Morgan FPs, (g) o-profiles, and (h) Mol2vec featurization with the
CATBoost method.
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Figure S3: The relationship between residual (predicted—experimental) vs experimental ionic conductivity of ILs using various
approaches: (a) atom count, (b) Morgan FPs, and (c) Mol2vec with the CATBoost method. Similarly, the relationship between residual
vs experimental density of ILs is shown for (d) atom count, (e) Morgan FPs, and (f) Mol2vec featurization with the CATBoost method.
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Figure S4. Experimental and ML-predicted melting temperatures of ILs using various
featurizations: (a) Mol2vec features, (b) Mol2vec + atom count features, and (c) Mol2vec + atom
count + RDKit molecular descriptors with the CATBoost method.
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Figure S5: Performance of CATBoost model with Mol2vec features on the prediction of unseen
ILs viscosity. The error bars are calculated based on the virtual ensemble (VE) module
implemented in CATBoost.
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Figure S6. Correlation between the COSMO-RS calculated and newly ML predicted IL densities
at 298.15 K and 101.325 kPa. The details of COSMO-RS calculations can be found in our earlier

studies.?
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Figure S10: viscosity and ionic conductivity of newly engineered ionic liquids for CO, capture
All these ILs are predicted to be easy to synthesize with a SA score below 6.5.
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