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I. Supplementary Scheme and Figures
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Scheme S1. Chemical synthesis of Laca-PP-(CH2)11-OPh 2.
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Prediction of transmembrane helices in five target glycosyltransferases by TMHMM Server v. 2.0 software.
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FigureS2. ESI-HRMS analysis of reaction products catalyzed by Cpslal (A), Cpslal (B), Cps1bJ (C), CpslaK (D) andCps1bK (E),
respectively.
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Figure S3. The influences of temperature (A), pH (B), ion (C) and concentration of Mg?* (D) on the relative enzymatic activities of N-
acetylglucosaminyltransferase Cps1al to catalyze the reaction of Laca-PP-(CHz)11-OPh 2 with UDP-GIcNAc. Each error bar represents
the standard deviation of three experiments.



>
=

1004 1001 —s— Bis-Tris-HCI
= @ —e— Tris-HCI
< 80 S 80{ —a—Gly-NaOH
g z
| ]
2 60 Z 60
Q Q
< <
o 404 _— v 40-
2 ¥ E\{\E =
] @
2 20+ 2 20
1] 3]
14 14
0 T T T T T , 0 T T T T T J
10 20 30 40 50 60 6 7 8 9 10 1
Temperatuer (C) pH
C 1500 D 1500
= 1200 2 1200
2 2
= -
< 900 S 900
B 5
< 600+ < 600+
Q 1]
2 3
3001 T 300
© ©
[\ €
ol |
e N 7 v v b i v v L Qo ‘f,) qf.) pﬁ's D 9 »® WQ bQ %Q
SO E TS E S R
lon Concentration of Mg®* (mM)

Figure S4. The influences of temperature (A), pH (B), ion (C) and concentration of Mg?* (D) on the relative enzymatic activities of -

1,4-galactosyltransferase Cps1al to catalyze the reactionof GIcNAc-1,3-Gal- 1,4-Glca-PP-(CH2)11-OPh3awith UDP-Gal. Each error
bar represents the standard deviation of three experiments.
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Figure S5. The influences of temperature (A), pH (B), ion (C) and concentration of Mg?* (D) on the relative enzymatic activities of -
1,3-galactosyltransferase Cps1bl to catalyze the reactionof GIcNAcB-1,3-Galp-1,4-Glca-PP-(CHz2)11-OPh3awith UDP-Gal. Each error
bar represents the standard deviation of three experiments.

S7



>
w

100 1001 —a— Bis-Tris-HCI
—_ L] = —— Tris-HCI
ST & 80 —a+—Gly-NaOH
2 60 / Z 60
o Q
< < 40

40 ¢ i
z 2
'

[
2 20 \ T 201
(14 \-“—l e
0 T T T T T . 0 : - 2 0 f t
10 20 30 40 50 60 5 6 7 8 & 10 n
C Temperatuer (C) D PH
160 160 -
- )
S 1201 < 120
= 2
> >
S 804 -'3 80
< <

[«F]
> $
< 40- 2 40
2 Q
[ 1]

1 0.
¢ ¢ X ¥ ¥ ¥ T ¥ ¥ ¥ D 49 4D P A8 D D P ® P
S OE P @A I G YEe
lon Concentration of Mg® (mM)

Figure S6. The influences of temperature (A), pH (B), ion (C) and concentration of Mg?* (D) on the relative enzymatic activities of a-
2,3-sialyltransferase Cps1aK to catalyze the reactionof Galf3-1,4-GlcNAcB-1,3-GalB-1,4-Glca-PP-(CHz)11-OPh4a with CMP-NeuNAc.
Each error bar represents the standard deviation of three experiments.
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Figure S7. The influences of temperature (A), pH (B), ion (C) and concentration of Mg?* (D) on the relative enzymatic activities of a-
2,3-sialyltransferase Cps 1 bK to catalyze the reactionof Galp-1,3-GlcNAcB-1,3-GalB-1,4-Glca-PP-(CH2)11-OPh4b with CMP-NeuNAc.
Each error bar represents the standard deviation of three experiments.
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FigureS8. Structural charaterizationof GlcNAcf-1,3-GalpB-1,4-Glco-PP-(CHz2)11-OPh 3a viaNMR analysis. Selected 'HNMR (A), '3C
NMR (B), 3'PNMR (C), gCOSY (D) and combined gHSQC (red-blue singals) and gHMBC (green singals) spectra of trisaccharide 3a.
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Figure S9. Structural charaterization of Galp-1,4-GlcNAcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 4a via NMR analysis. Selected 'H

NMR (A), BCNMR (B), 3'P NMR (C), gCOSY (D) and combined gHSQC (red-blue singals) and gHMBC (green singals) spectra of
tetrasaccharide 4a.
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Figure S10. Structural charaterization of GalB-1,3-GIcNAcpB-1,3-Galp-1,4-Glca-PP-(CHz)11-OPh 4b via NMR analysis. Selected 'H
NMR (A), BCNMR (B), 3'P NMR (C), gCOSY (D) and combined gHSQC (red-blue singals) and gHMBC (green singals) spectra of
tetrasaccharide 4b.
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FigureS11. Structural charaterizationof NeupNAca-2,3-Galp-1,4-GlcNAcB-1,3-GalB-1,4-Glca-PP-(CH2)11-OPh 5a via NMR analysis.

Selected 'THNMR (A), *CNMR (B),3*'PNMR (C), gCOSY (D) and combined gHSQC (red-blue singals) and gHMBC (green singals)
spectra of pentasaccharide Sa.
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FigureS12. Structural charaterizationof NeupNAca-2,3-Gal-1,4-GlcNAcB-1,3-Galp-1,4-Glca-PP-(CHz2)11-OPh 5b via NMR analysis.
Selected 'THNMR (A), *CNMR (B),3'PNMR (C), gCOSY (D) and combined gHSQC (red-blue singals) and gHMBC (green singals)
spectra of pentasaccharide Sb.
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Figure S13. TLC (A) and MALDI-TOF-MS (B) traces of donor substrates recognition of Cps1al. 7, negative control reaction with heat-
deactivated Cpslal; 2-6, enzyme reactions of Laca-PP-(CHz)11-OPh 2 with UDP-Gal, UDP-GalNAc, UDP-Glc, UDP-GIcNAc and
UDP-GlcAcatalyzed by Cps1al. The signal peaks of Laca-PP-(CH2)11-OPh2 and trisaccharide products inthe MALDI-TOF-MS spectra
are shown in blue and red solid boxes, respectively (MALDI-TOF-MS error range =1 Da).
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Figure S14. TLC (A) and MALDI-TOF-MS (B) traces of receptor substrates recognition of Cps1lal. NV, negative control reaction with
heat-deactivated Cps1al; R, enzyme reactions of Cpslal. -6, enzyme reactions of UDP-GIcNAc with Lac, LacB-O(CH2)2Ns, Laco-PP-
(CH2)11-OPh 2, Rhap-1,4-Glca-PP-(CH2)11-OPh, Gala-1,3-Glca-PP-(CH2)11-OPh and Glca-1,3-Glca-PP-(CHz)11-OPh catalyzed by
Cpslal. Positive results are marked with red dottedboxes in TLC analysis; the signal peaks of Laca-PP-(CHz)11-OPh2 and trisaccharide
products in the MALDI-TOF-MS spectra are shown in blue and red solid boxes, respectively (MALDI-TOF-MS error range =1 Da).
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Figure S15. TLC (A) and MALDI-TOF-MS (B) traces of donor substrates recognitionof Cpslal. I, negative control reaction with heat-
deactivated Cpslal; 2-6, enzyme reactions of GIcNAcB-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3a with UDP-Gal, UDP-GalNAc, UDP-
Glc, UDP-GIcNAc and UDP-GIcA catalyzed by Cps1al. Positive results are marked with red dotted boxes in TLC analysis; the signal

peaks of GlcNAcp-1,3-GalB-1,4-Glca-PP-(CH2)11-OPh 3a and tetrasaccharide products in the MALDI-TOF-MS spectra are shown in
blue and red solid boxes, respectively (MALDI-TOF-MS error range =1 Da).
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FigureS16.TLC (A) and MALDI-TOF-MS (B) traces of donor substrates recognitionof Cps1bJ. 1, negative control reactionwith heat-
deactivated Cps1blJ; 2-6, enzyme reactions of GIcNAcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3a with UDP-Gal, UDP-GalNAc, UDP-
Glc, UDP-GIcNAc and UDP-GIcA catalyzed by Cps1bl. Positive results are marked with red dotted boxes in TLC analysis; the signal

peaks of GlcNAcB-1,3-GalB-1,4-Glca-PP-(CH2)11-OPh 3a and tetrasaccharide products in the MALDI-TOF-MS spectra are shown in
blue and red solid boxes, respectively (MALDI-TOF-MS error range =1 Da)
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FigureS17. TLC (A) and MALDI-TOF-MS (B-D) traces of receptor substrates recognitionof Cps1al. V, negative control reaction with
heat-deactivated Cpslal; R, enzyme reactions of Cpslal. 1-3, enzyme reactions of UDP-Gal with GlcNAcB-1,3-Galp-1,4-Glca-PP-
(CH2)11-OPh 3a, Glcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3b and GalNAcB-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3¢ catalyzed by
Cpslal. Positive results are marked with red dotted boxes in TLC analysis; the signal peaks of trisaccharide receptor substrates and
tetrasaccharide products in the MALDI-TOF-MS spectraare shown in blue and red solid boxes, respectively (MALDI-TOF-MS error
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FigureS18.TLC (A) and MALDI-TOF-MS (B-D)traces ofreceptor substrates recognitionof Cps1bJ. /V, negative control reaction with
heat-deactivated Cps1bJ; R, enzyme reactions of CpslbJ. 1-3, enzyme reactions of UDP-Gal with GlcNAcB-1,3-Galp-1,4-Glca-PP-
(CH2)11-OPh 3a, Glcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3b and GalNAc-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3¢ catalyzed by
Cps1bJ. Positive results are marked with red dotted boxes in TLC analysis; the signal peaks of trisaccharide receptor substrates and
tetrasaccharide products in the MALDI-TOF-MS spectraare shown in blue and red solid boxes, respectively. (MALDI-TOF-MS error
range £1 Da)

S20



A e ecors

[ B
|
R :“";----i !
N .
| o
. T, i otnd
[ -
- e ]
NR NRNRNRNRNRNR
1 2 3 4 5 6 7
144959 o 1407.50
1094
1448.41 4d
4a 1429.19 - 138553
1430.81 136359 15848
1096.33 1270.49
1-J0%0% 1136.33 1227.33 131270 40088 | 146829 1586.¢ 3-R
1113.78 1094.86
1135.79 1095.82
1136.77
1271.91
115.72 131259 1074.81
1-N 3-N ; l449.29
= L 1293.22 e i 1051.00 ,'"2,,5 37.< |, 1483.30 .
1000 100 1800 1300 1400 500 1600 100 L1100 | 1200 1300 1400 | 1500 1600
mz mz

Figure S19. TLC (A) and MALDI-TOF-MS (B-C) traces of receptor substrates recognition of Cps1aK. /N, negative control reaction
with heat-deactivated Cps1aK; R, enzyme reactions of Cps1aK. 7-7, enzyme reactions of CMP-NeuNAc with GalfB-1,4-GlcNAcp-1,3-
Galp-1,4-Glco-PP-(CH2)11-OPh 4a, GalB-1,3-GIcNAcp-1,3-GalB-1,4-Glca-PP-(CHz)11-OPh 4b, GalB- 1,4-Glcp-1,3-GalB-1,4-Glca-PP-
(CH2)11-OPh 4d, Galp-1,3-Glcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 4e, GalB-1,3-GalNAcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 4c¢,
Galp-1,4-Rhap-1,4-Glca-PP-(CH2)11-OPh, and Laca-PP-(CH2)11-OPh 2 catalyzed by CpslaK. Positive results are marked with red
dotted boxes in TLC analysis; the signal peaks of tetrasaccharide receptor substrates and pentasaccharide products in the MALDI-TOF-
MS spectraare shown in blue and red solid boxes, respectively. (MALDI-TOF-MS error range £1 Da).
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FigureS20. TLC (A) and MALDI-TOF-MS (B-D) traces of receptor substrates recognition of Cps1bK. /V, negative control reaction
with heat-deactivated Cps1bK; R, enzyme reactions of Cps1bK. 1-7, enzyme reactions of CMP-NeuNAc with GalB-1,4-GlcNAcp-1,3-
Galp-1,4-Glco-PP-(CH2)11-OPh 4a, GalB-1,3-GIcNAcB-1,3-GalB- 1,4-Glca-PP-(CH2)11-OPh 4b, GalB- 1,4-Glcp-1,3-Galp-1,4-Glca-PP-
(CH2)11-OPh 4d, Galp-1,3-Glcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 4e, GalB-1,3-GalNAcp-1,3-Galp-1,4-Glca-PP-(CHz)11-OPh 4e¢,
Galp-1,4-Rhap-1,4-Glca-PP-(CH2)11-OPh, and Laca-PP-(CH2)11-OPh 2 catalyzed by Cps1bK. Positive results are marked with red
dotted boxes in TLC analysis; the signal peaks of tetrasaccharide receptor substrates and pentasaccharide products in the MALDI-TOF-
MS spectraare shown in blue and red solid boxes, respectively. (MALDI-TOF-MS error range £1 Da).
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Figure S21. Enzyme kinetics studies of Cpslal for UDP-GIcNAc (A), UDP-Glc (B) and UDP-GalNAc (C) and the influences of
concentration of receptor substrate Laca-PP-(CHz)1:1-OPh 2 (D) on the relative enzymatic activities of Cps1al. Each error bar represents

the standard deviation of three experiments.
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Figure S23. Enzyme kinetics studies of Cps1bJ for UDP-Gal (A) and the influences of concentration of trisaccharide receptor
substrate 3a (B), 3b (C) and 3¢ (D) on the relative enzymatic activities of Cps1bJ. Each error bar represents the standard deviation of
three experiments.
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substrates 4a (B) and 4d (C) on the relative enzymatic activities of Cps1aK. Each error bar represents the standard deviation of three
experiments.
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Figure S25. Enzyme kinetics studies of Cps1bK for CMP-NeuNAc (A) and the influences of concentration of tetrasaccharide receptor
substrates 4b (B), 4¢ (C) and 4e (D) on the relative enzymatic activities of Cps1bK. Each error bar represents the standard deviation of
three experiments.

S27



II. Experientials Section

Materials. Escherichia coli Top10 and BL21(DE3) were used as hosts for transformation and expression, respectively. Both strains
were grown in Luria-Bertani (LB) medium supplemented with 100 pg/mL ampicillinat 37 °C. The restriction enzymes were obtained
fromNEB. The T4 DNA Ligase was from TransGen Company. Yeast extract,agar and tryptone were purchased from OXOID. The C18-
SepPak columnwas from Waters. Other reagents were obtained from Sangon Biotech. Chemicals and solvents were from Sigma-Aldrich.

Preparation of sugar nucleotides. UDP-Glc was prepared using thymidylyltransferase Cps23FL according to the reported method.™
UDP-GIcNAc, UDP-Gal, and CMP-NeuNAc were prepared using fusion enzymes GalK-USP-ET64, GImU-NahK-ET64, and NanA-
CSS-ET64, respectively, according to the reported protocols. ]

Cloning, overexpression and purification of Cps1al, CpslaJ, CpslaK, Cps1bJ and Cps1bK. DNA sequences of complete cpslal,
cpslad, cpslaK, cpsIbJ and cpslaK genes of GBS Ia and Ib were derived from the GenBank (CP000114.1, cpsial: 1225745-1226719,
975 bp, cpsiaJ: 1224764-1225711,948 bp and cpslaK: 1223724-1224680, 957 bp; AB050723.1, ¢psibJ: 5008-5949, 942 bp and
cps1bK:5942-6880,939 bp) and synthesizedby Sangon Biotech. The amplified fragments were digested with the appropriate restriction
endonucleases (Sma land Xho 1 for epslal, cpslaJ and cpsiaK, BamH I and Xho 1 for cps1bJ and cps1bK), cloned in plasmid pGEX-
47T-1, transferred in E. coli BL21(DE3) for protein overexpression. Plasmid DNAsequencing was performed by Sangon Biotech. E. coli
BL21 (DE3) harboring the recombinant plasmids were allowed to grow until ODsoo reached 0.6-0.8 in Luria-Bertani (LB) medium
supplemented with 100 pg/mL ampicillin (37 °C, 200 rpm). After induction by 0.3 mmol/L isopropyl-1-thio-p-D-galactopyranoside
(IPTG) for another 20 h (16 °C, 110 rpm), cells were harvested by centrifugation (8,000 rpm, 10 min, 4 °C). The harvested cell pellets
which expressed target proteins were re-suspended in phosphate-buffered saline (PBS, pH 7.4), disrupted by sonication and then cleared
by centrifugation (12,000 rpm,30 min,4 °C). The resultant supernatants of Cps1al, Cpslal,CpslaK, Cps1bJ and Cps1bK were subjected
to a Glutathione Sepharose 4 Fast Flow column (GE Healthcare) which was pre-equilibrated with PBS buffer (pH 7.4). The GST-tagged
proteins were eluted with the same buffer containing 10 mmol/L glutathione reductase (GSH) (pH 7.4). The purified fractions were
pooled, concentrated and then desalted using an Amicon Ultra 30-kDa centrifugal filter (Millipore). Finally, the purified protein was re-
suspended in PBS buffer (pH 7.4) containing 20% glycerol (v/v) and stored at -80 °C. The purity and homogeneity of five proteins were
identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and their concentrations were determined using
the Thermo Scientific™ NanoDrop One calibrated with the extinction coefficient predicted by ExPASy
(http://web.expasy.org/protparam/).

Preliminary identification of enzyme activities of Cpslal, CpslaJ, CpslaK, CpslbJ and Cps1bK. The enzymatic activities of

purified Cpslal, Cpslal, CpslaK, CpslbJ, and Cps1bK were preliminarily examined in the Tris-HCI buffer (50 mmol/L, pH 7.5)

containing 1.2 mmol/L nucleotide sugar (UDP-GlcNAc for Cpslal, UDP-Gal for Cpslal and CpslbJ, or CMP-NeuNAc for CpslaK

and Cps1bK), 1.0 mmol/Lacceptor substrate (Laca-PP-(CH2)11-OPh2 for Cps1al, GlcNAcB-1,3-Galp-1,4-Glco-PP-(CHz)11-OPh3a for
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Cpslal and Cps1bJ, GalB-1,4-GlcNAcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 4a for Cps1aK or GalB-1,3-GlcNAcB-1,3-GalB-1,4-Glca-
PP-(CH2)11-OPh 4b for Cps1bK), 5 mmol/L MgClz, and 200 pg/mL purified enzyme in a total volume of 20 pL. The reaction was
incubated at 25 °C using heat-deactivated corresponding enzyme as the negative control, and then detectedat 2 h for Cpslal, 4 h for
Cpslal and Cps1bJ, or 1 h for CpslaK and Cps1bK, respectively, by thin-layer chromatography (TLC) (EtOAc:CH3OH:H20:HOAc =
6:3:2:0.5 (viv/v/v)) or matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) analysis.

Biochemical characterization of B-1,3-N-acetylglucosaminyltransferase Cps1al. The reaction system for the detail characterization
of purified Cpslal contained 1 mmol/L UDP-GIcNAc, 1 mmol/L Laca-PP-(CH2)11-OPh 2 and 24 pug/mL of purified enzyme in 50
mmol/L buffer system. Reactions were allowed to proceed for 10 min, terminated by boilingat 100 °C for 30 s, and finally cleared by
centrifugation (12,000 rpm, 10 min). Then, the supernatant was analyzed with HPLC (DionexCarboPac™ PA-100 column,4 x 250 mm,
0-1 mol/L ammonium acetate buffer eluent). The reaction was monitored by generation of the byproduct UDP, which had the strong UV
absorption at 260 nm and could be easily quantitated by HPLC.

Investigating the influences of temperatures, pH values and metal cations on the activity of Cpslal. For determination of
temperature effect, the reactions were carried out at different temperatures (10, 16, 20,25,30,37,42,50,55 °C) in 50 mmol/L Tris-HCI
buffer (pH 8.5). For determination of pH effect on enzymatic activity, pH values were varied from 5.5 to 10.5 with three different buffer
systems at 25 °C. The buffer systems were as follows: Bis-Tris-HCI (50 mmol/L, pH 5.5, 6.0, 6.5, and 7.0), Tris-HCI (50 mmol/L, pH
7.0,7.5,8.0,8.5,9.0and 9.5), and Gly-NaOH (50 mmol/L, pH 9.0, 9.5, 10.0 and 10.5). The effects of various metal ions on enzyme
activity were assessed in the presence ofthe following metal salts including 5 mmol/L ethylenediamine tetraacetic acid (EDTA), MgClo,
MnClz, CaClz, NiSO4, CoSOs, FeSOs, CuSOs and ZnSOs in Tris-HCI buffer (pH 8.5) at 25 °C. To obtain the optimized Mg?>*
concentration, the enzymatic reactions were carried out under varied concentrations of Mg?* (0.3125-80 mM). Negative controls were
performed in parallel under the same conditions using heat-deactivated Cps1lal. Relative activity concluded from pH and temperature
test was defined as the relative value to the maximum enzyme activity, and the effect of metal ions on enzyme activity was determined
using the activity measured without adding ions as the reference value.

Substrate specificity study of Cps1al. For acceptor substrate specificity study, Laca-PP-(CHz2)11-OPh 2, Lac, Lac-O(CH2)2N3, Rhaf3-
1,4-Glca-PP-(CH2)11-OPht3l, Gala-1,3-Glca-PP-(CH2)11-OPhlY! and Glca-1,3-Glea-PP-(CH2)11-OPhlYl were examined with UDP-
GlcNAc as nucleotide donor, respectively. For donor substrate specificity study, UDP-Gal, UDP-Glc, UDP-GalNAc, UDP-GIcNAc and
UDP-GIcA were examined with Laca-PP-(CH2)11-OPh 2 as acceptor substrate, respectively. The reaction was performed in the
optimized condition for Cps1al.

Enzyme Kinetics of Cpslal. The enzymatic reactions were carried out under above-optimized conditions, i.e. in Tris-HCI buffer (50
mmol/L, pH 8.5) containing 12 pg/mL of Cps1al and 5 mmol/LMgCl. with varied concentrations of UDP-sugar (UDP-GIcNAc, UDP-

Glc or UDP-GalNAc) and Laca-PP-(CH2)11-OPh 2 at 25 °C. Then, reactions were performed for 10 min using saturated UDP-GIcNAc
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(2mmol/L) and varied concentrations of Laca-PP-(CHz)11-OPh2 (0.015625-2.0 mmol/L) or using Laca-PP-(CH2)11-O-Ph 2 (1 mmol/L)
and varied concentrations of UDP-sugar (0.0625-4.0 mmol/L). The results obtained were used to calculate the initial reaction velocities
and to determine the Michaelis constant (Km and kcat) values using the GraphPad Prism 6.04 program.

Biochemical characterization of B-1,4-galactosyltransferase CpslaJ and p-1,3-galactosyltransferase Cps1bJ
The reaction system for the detail characterization of purified CpslaJ and Cps1bJ contained 1 mmol/L UDP-Gal, 1 mmol/L GlcNAcf-
1,3-Galp-1,4-Glca-PP-(CH2)11-OPh3aand 100 pg/mL of purified enzyme in 50 mmol/L buffer system. Reactions and detected methods

followed those as mentioned above.

Investigating the influences of temperatures, pH values and metal cations on the activity of Cps1aJ and Cps1bJ. For determination
of temperature effect, the reactions were carried out at different temperatures (10, 16,20,25,30,37,42,50,55 °C) in 50 mmol/L Tris-
HCI buffer (pH 9.0). For determination of pH effect on enzymatic activity, pH values were varied from 5.5 to 10.5 with the foregoing
three different buffer systems at 30 °C. The effects of various metal ions on enzyme activity and the optimized Mg?* concentrations
were assessed in Tris-HCl buffer (pH 9.0) at 30 °C. Negative controls were performed in parallel under the same conditions using heat-
deactivated Cpslal or CpslbJ. Relative activity concluded from pH and temperature test was defined as the relative value to the
maximum enzyme activity, and the effect of metal ions on enzyme activity was determined using the activity measured without adding
ions as the reference value.

Substrate specificity study of CpslaJ and CpslbJ. For acceptor substrate specificity study of the two galactosyltransferases,
GlcNAcB-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3a, Glcp-1,3-Galp-1,4-Glca-PP-(CH2)1:-OPh 3b and GalNAc-1,3-Galp-1,4-Glca-PP-
(CH2)11-OPh 3¢ were examined with UDP-Gal as nucleotide donor, respectively. For donor substrate specificity study, UDP-Gal, UDP-
Glc, UDP-GalNAc, UDP-GIcNAc and UDP-GlcA were examined with GIcNAc-1,3-GalB-1,4-Glca-PP-(CH2)11-OPh 3a as acceptor
substrate, respectively. The reactions were performed in the optimized condition for Cps1laJ or Cps1bJ.

Enzyme kinetics of CpslaJ and Cps1bJ. The enzymatic reactions were carried out under above-optimized conditions, i.e. in Tris-HCl
buffer (50 mmol/L, pH 9.0) containing 50 pg/mL of Cpslal or Cps1bJ and 5 mmol/L MgCl, with varied concentrations of UDP-Gal
and acceptor substrate (GlcNAcB-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3a, Glc-1,3-GalB-1,4-Glca-PP-(CH2)11-OPh 3b, and GalNAcf-
1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3¢) at 30 °C. Then, reactions were performed for 10 min using saturated UDP-Gal (2 mmol/L) and
varied concentrations of receptor substrates (0.015625-2.0 mmol/L) or using GlcNAcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3a (1
mmol/L) and varied concentrations of UDP-Gal (0.0625-4.0 mmol/L). The results obtained were used to calculate the initial reaction
velocities and determine the Michaelis constant (Km and kcat) values using the GraphPad Prism 6.04 program.

Biochemical characterization of a-2,3-sialyltransferases Cps1aK and Cps1bK. The reaction system for the detail characterization

ofpurifiedCpslaK and Cps1bK contained 1 mmol/L CMP-NeuNAc, 1 mmol/LGalB-1,4-GlcNAcp-1,3-Galp-1,4-Glca-PP-(CHz)11-OPh
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4aforCpslaK (20 ug/mL) or GalB-1,3-GlcNAcp-1,3-GalB-1,4-Glca-PP-(CHz2)11-OPh4b for Cps 1bK (200 pg/mL) in 50 mmol/L buffer
system. Reactions were allowed to proceed for 10 min, terminated by boiling at 100 °C for 30 s, and finally cleared by centrifugation
(12,000 rpm, 10 min). Then, the supernatants were analyzed with HPLC to quantitate formationofpentasaccharide NeuNAca-2,3-Galp-
1,4-GlcNAcB-1,3-GalB-1,4-Glca-PP-(CHz2)11-OPhSafor Cps1aK or NeuNAca-2,3-Galp-1,3-GIcNAcB-1,3-GalB-1,4-Glca-PP-(CHz)11-
OPh 5b for Cps1bK that had the strong UV absorption at 211 nm (C18 reverse phase column, 4.6 X 250 mm, 10-100% methanol in
water containing 10 mmol/LNH4HCO;s as gradient eluent).

Investigating the influences of temperatures, pH values and metal cations on the activity of CpslaK and Cps1bK. For
determination of temperature effect, the reactions were carried out at different temperatures in 50 mmol/L Tris-HCI buffer (pH 7.0). For
determination of pH effect on enzymatic activity, pH values were varied from 5.5 to 10.5 with the aforementioned three different buffer
systems at 25 °C. The effects of various metal ions on enzyme activity and the optimized Mg>* concentrations were assessed in Tris-
HCI buffer (pH 7.0) at 25 °C. Negative controls were performed in parallel under the same conditions using heat-deactivated Cps1aK
or Cps1bK. Relative activity concluded from pH and temperature test was definedas the relative value to the maximum enzyme activity,
and the effect of metal ions on enzyme activity was determined using the activity measured without adding ions as the reference value.

Acceptor substrate specificity study of Cps1aK and Cps1bK. For acceptor substrate specificity study of purified enzymes, Gal-14-
GlcNAcB-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 4a, Gal-1,3-GlcNAcB-1,3-GalB- 1,4-Glca-PP-(CH2)11-OPh 4b, Gal3-1,3-GalNAcB-1,3-
Galp-1,4-Glco-PP-(CH2)11-OPh 4¢, Galp-1,4-Glcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 4d, Galp-1,3-Glcp-1,3-Galp-1,4-Glca-PP-
(CH2)1:-OPh 4e, Galp-1,4-Rhap-1,4-Glca-PP-(CH2)11-OPhl®l and Laco-PP-(CH2)11-OPh 2 were examined with CMP-NeuNAc as
nucleotide donor, respectively.

Enzyme kinetics of CpslaK and Cps1bK. The enzymatic reactions were carried out under above-optimized conditions, i.e. in Tris-
HCl buffer (50 mmol/L,pH 7.0) containing 10 pg/mL of Cps1aK or 100 pg/mL of Cps1bK with varied concentrations of CMP-NeuNAc
and acceptor substrate (4a and 4d for Cps1aK, or 4¢, 4d, and 4e for Cps1bK) at 25 °C. Then, reactions were performed for 10 min using
saturated CMP-NeuNAc (2 mmol/L) and varied concentrations of acceptor substrates (0.015625-2.0 mmol/L) or using corresponding
acceptor substrate (1 mmol/L) and varied concentrations of CMP-NeuNAc (0.0625-4.0 mmol/L). The results obtained were used to
calculate the initial reaction velocities and determine the Michaelis constant ( K and kcat) values using the GraphPad Prism 6.04 program.

Chemical synthesis of Laca-PP-(CH;),1-OPh 2.

Acetylation. A solution of Ac20 (30 mL) and NaOAc (5 g) was heated up to 140°C (reflux), and lactose (5 g) was added in portion.
The resulting mixture was stirred at 140°C for 1 h and poured into ice water (100 mL). The mixed solution was extracted with EtOAc
(100 mL), washed by NaHCOs (aq) and NaCl (aq), dried over NaSOs, filtered and concentrated. The yellow-oil product was
recrystallized from MeOH/CH:Cl2 (550mL, v/v 10:1) to give 5.5 g white solid peracetylated lactose (LacAcs).
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Phosphorylation.[> € Crystalline phosphoric acid (3 g) was dried in vacuo over phosphorous pentoxide for 12 h. The peracetylated
lactose (3.4 g) was added and the mixture was heated at 60°C in vacuo. After 2 h, heating was ceased and the resulting dark black
mixture was dissolved in anhydrous tetrahydrofuran (THF) (25 mL). The solution was cooled to 0°C and concentrated ammonium
hydroxide (2.5 mL) was added until ~pH 7. The precipitate of ammonium phosphate was filtered off and washed with THF (100 mL).
The combined filtrates were evaporated to give a syrupy residue that was purified by flash column chromatography (EtOAc 100% to
EtOAc/MeOH 50/50). The peracetylated lactose- 1-phosphate (LacAc7-1-P, 1.7 g) was obtained as a white solid.

Deacetylation. Sodium hydroxide (0.1 mol/L) was slowly dripped into MeOH (50 mL) containing LacAc7-1-P (1.0 g). The reaction
was stirred at room temperature until white turbidity appeared, then 50 mL water and 1M sodium hydroxide was added to the reaction
solution until ~pH 7. Fractions containing crude products in methanol and water mixed solvent were collected and concentrated, and the
resultant supernatant was performed by gel filtration with Bio-Gel P2 and resultant product was collected and then lyophilized. The
product lactose-1-phosphate disodium salt (Lac-1-P, 550 mg) was obtained as white powder.

MgCl,-catalyzed diphosphate bond formation.37] Amixture of 11-phenoxyundecyl dihydrogen phosphate (550 mg, 1.6 mmol) and
N, N'-carbonyldiimidazole (1.0 g, 6.4 mmol) in anhydrous THF (5 mL) was stirred at room temperature for 4 h, and then dry methanol
(0.5 mL) was added. The resulting solution was stirred for another 1 h, and then concentrated to yield the crude 11-phenoxyundecyl
dihydrogen phosphorimidazolide which was directly used for next step. The above generated product was added to a vigorously stirred
suspension of Lac-1-P (500 mg, 1.05 mmol) and MgClz (250 mg, 2.6 mmol) in N, N-dimethylformamide (DMF) (5.0 mL), and the
resulting reaction mixture was then stirred for 8 h at room temperature, at which time TLC analysis (EtOAc:CH30OH:H20:HOAc =
8:3:2:0.5 (v/v/v/v))indicated the completion ofreaction. Then, the reactionmixture was filtered and loaded on a Sephadex LH-20 column
for purification using methanol as an eluent. Fractions containing the desired product were collected, concentrated, and further purified
on a silica gel flash column chromatography using 10:3:2 EtOAc-CH3OH-H:O as eluents. The desired product Laca-PP-(CH2)11-OPh 1
(650 mg, 81%) was obtained as white solid after lyophilization. 'HNMR (600 MHz, D>0O): 6 7.36—7.32 (m, 2H, Ph), 7.02—6.67 (m, 3H,
Ph), 5.50 (dd, /= 7.2,3.6 Hz, 1H, H-16¢),4 41 (d,J=7.8 Hz, 1H, H-1%!), 4.08-4.02 (m, 2H, -CH,CH>0OPh), 3.99 (brd, /= 10.2, 1 H,
H-59¢),3.91 (q, J= 6.6 Hz, 2H, -OCH>CH2-), 3.89-3.81 (m, 4H, H-36, H-6a,b%°, H-4%1) 3,78 (dd, /= 11.4,7.8 Hz, 1H, H-6a%"),
3.73-3.65 (m, 3H, H-49¢, H-5,6a%"), 3.62 (dd, J = 10.2, 3.6 Hz, 1H, H-3%), 3.56-3.50 (m, 2H, H-26, H-2%), 1.77-1.69 (m, 2H, -
CH>CHz-), 1.64—-1.57 (m, 2H, -CH.CH>-), 1.44-1.37 (m, 2H, -CH>CHz-), 1.35-1.25 (m, 12H, -CH2CH>-); *C NMR (150 MHz, D>0):
5 158.0,129.7 (2C),121.3,114.8 (2C), 102.8 (C-1%1),95.0 (d, Jcp = 6.0 Hz, C-19¢), 77.5 (C-45k), 75.2 (C-5%1), 72.4 (C-3%1), 71.4 (C-
30k), 71.3(C-5%),71.2(d, Jc,p=7.5 Hz, C-26k), 70.8 (C-2%),68.6 (-OCH2CH20Ph), 68.5 (C-4%),66.9 (d,Jc,p = 6.0 Hz, -OCH2CHz2-),
60.9 (C-6%),59.5 (C-69°),29.7 (d, Jcp= 7.5 Hz,-OCH2CH>-), 28.5 (3C), 28.4,28.3,28.2 25.0,24.8 (8C, -OCH2CH2(CH2)sCH2OPh);
3IPNMR (243 MHz, D20): 6-10.70 (d,J=19.4 Hz),-13.13 (d,J = 19.4 Hz); ESI-(-)-TOF HRMS m/z: Calcd for C290Hs50015P2 747.2400
[M - HJ; Found 747.2404.

Enzymatic synthesis of trisaccharides 3a,3b and 3c. Milligram-scale production of GlcNAcB-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh
3a, Glcp-1,3-Galp-1,4-Glco-PP-(CH2)11-OPh 3b and GalNAcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 3¢ were performedin a 10 mL
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reaction system containing 2.4 mmol/L UDP-sugar (UDP-GIcNAc. UDP-Glc or UDP-GalNAc), 2 mmol/L Laca-PP-(CH2)11-OPh 2, 5
mmol/LMgCl, and 50 pg/mL purified Cps1lal in 50 mmol/L Tris-HCI buffer (pH 8.5). The solutions were incubated at 25 °C for2 h, 5
h or 12 h until the substrate 2 was completely converted to trisaccharide product as monitored by TLC analysis, and then quenched by
boiling for 30 s. The mixtures were vortexed and centrifugedto remove the formed precipitate and the resultant supernatants were freeze-
dried, re-suspended with methanol (5 mL) and filtered to remove the precipitation again. The filtrates were loaded on a semi-preparative
HPLC (Cl8 reverse phase column: 10 x 250 mm, 10-100% methanol in water containing 10 mmol/L NH4HCO; as gradient eluent) in
batches for purification. The fractions containing trisaccharide product were pooled and concentrated to produce 3a (16.5 mg, 87%), 3b
(14.6 mg, 80%) and 3¢ (15.8 mg, 83%) as white solid.

3a: 'THNMR (600 MHz, D20): 6 7.37 (t,J = 7.8 Hz, 2H, Ph), 7.06-7.01 (m, 3H, Ph), 5.57 (br s, 1H, H-19),4.70 (d, /= 8.4 Hz, 1H,
H-16eNAC) "4 42 (d,J= 7.8 Hz, 1H, H-19),4.11 (d, J= 3.6 Hz, 1H, H-4%),4.09 (t,J= 6.0 Hz, 2H, -CH.CH>0Ph), 4.01 (brd,J =102
Hz, 1H, H-59°), 3.96-3.90 (m, 2H, -OCH>CH2-), 3.90-3.83 (m, 4H, H-36", H-6a,b%c, H-6a0NAc) 3 81-3.66 (m, 7H, H-44¢, H-3Gal,
H-5%1 H-6a,b®!, H-20cNAc  H-6b0IeNAC) "3 623,52 (m, 3H, H-20kc, H-20al H-3GIeNAC) "3 323 27 (m, 2H, H-4,56NA) 2,02 (s, 3H,
CH3CO), 1.78-1.72 (m, 2H, -CH>CHz-), 1.66-1.59 (m, 2H, -CH2CH>-), 1.46-1.40 (m, 2H, -CH>CH>-), 1.37-1.26 (m, 12H, -CH2CH>-);
IBCNMR (150 MHz, D20): 6 174.9 (CH3CO), 158.0,129.8 (2C), 121.3,114.9 (2C), 102.8 (C-161),102.7 (C-16NA®) 95,07 (d, Jc,p =
6.0 Hz, C-16k), 81.6 (C-3%1), 77.4 (C-46k), 75.6 (C-59NAC) /74 8 (C-5G1), 73.5 (C-3GIeNAC) 7143 (C-3G), 71.37 (C-59), 71.28 (d,
Jcp=17.5Hz, C-29¢),70.0 (C-2%1), 69.6 (C-46NA) [ 68.7 (-OCH2CH20Ph), 68.4 (C-4%),66.9 (d, Jcp = 6.0 Hz,-OCH2CHz»-), 60.9 (C-
6%, 60.4 (C-6UNAC) 159 .5 (C-69I¢), 55.6 (C-24IeNA) 1297 (d, Jep= 6.0 Hz, -OCH2CH»-),28.57,28.54,28.52,28.4,28.3,28.2,250,
24 .8 (8C, -OCH2CH2(CH2)sCH20Ph), 22.1 (CH3CO);3'PNMR (243 MHz, D20): 6 -10.69 (d, /= 12.1 Hz), -13.12 (d, J = 12.1 Hz);
ESI-(-)-TOF HRMS m/z: Calcd for C37Hs2NO23P2950.3193 [M - H]; Found 950.3190.

3b: "H NMR (600 MHz, D20): § 7.35 (t,J= 7.8 Hz, 2H, Ph), 7.03—6.99 (m, 3H, Ph), 5.56 (br s, 1 H, H-19), 4.63 (d,J =7.8 Hz, 1H,
H-19¢),4.47 (d,J=7.8 Hz, 1H, H-1%), 4.14 (d, /= 3.2 Hz, 1H, H-4%"), 4.06 (t,J = 6.6 Hz, 2H, -CH2CH>0OPh),3.99 (br d, /=102
Hz, 1H, H-59¢), 3.94-3.89 (m, 2H, -OCH>CH>-), 3.89-3.81 (m, 4H, H-39¢, H-6a,bq, H-6a%¢"), 3.80-3.74 (m, 2H, H-3%!, H-6a%),
3.73-3.66 (m, 5H, H-49_ H-2,5,6b%! H-6b%""),3.54 (brd, /= 9.6 Hz, 1 H, H-26¢), 3.47 (t,J= 9.0 Hz, 1 H, H-39¢"),3.43-3.36 (m, 2H,
H-4,56¢),3.20-3.16 (m, 1H, H-29¢), 1.77-1.71 (m, 2H, -CH2CHz-), 1.64-1.57 (m, 2H, -CH.CH>-), 1.45-1.37 (m, 2H, -CH2CHz-),
1.36—1.24 (m, 12H, -CH2CH>-); 3CNMR (150 MHz, D20): § 158.0, 129.8 (2C), 121.3,114.8 (2C), 103.6 (C-19<"), 102.4 (C-1%1),95.1
(d, J= 6.0 Hz, C-16k), 81.8 (C-3%), 77.3 (C-44k), 75.6 (C-59<"), 75.4 (C-39"), 74.8 (C-5%1), 73.1 (C-26K"), 71.4 (C-3GF), 71.32 (C-
5@y, 71.27 (d, Jep=7.5 Hz, C-29¢),70.0 (C-2%1), 69.3 (C-49¢"), 68.6 (-OCH>CH20Ph), 68.2(C-4%"), 66.9 (d, /= 6.0 Hz, -OCH2CH>-),
60.9 (C-6%), 60.3 (C-69¢), 59.5 (C-65), 29.7 (d, J = 7.5 Hz, -OCH2CHz-), 28.6, 28.5 (2C), 28.4, 28.3, 28.2, 25.0, 24.8 (8C, -
OCH2CH2(CH2)sCH20Ph); 3'PNMR (243 MHz, D>0): 8- 10.68 (d, J = 21.8 Hz), -13.11 (d, J = 21.8 Hz); ESI-(-)-TOF HRMS m/z:
Calcd for C35H59023P2 909.2928 [M - H]; Found 909.2934.

3c: 'THNMR (600 MHz, D>0): 6 7.30 (t,J =7.8 Hz, 2H, Ph), 6.99-6.94 (m, 3H, Ph), 5.50 (dd,/=7.2,3.6 Hz, 1H, H-19¢), 4.54 (dd,
J=8.4,1H, H-1%NA) 435 (dd, J=7.8, 1H,H-1%), 4.06 (d, J=3.0 Hz, 1H, H-4%),4.01 (t,J= 6.6 Hz, 2H, -CH.CH>OPh), 3.95 (br
d,J=10.2Hz, 1H, H-59¢),3.90-3.76 (m, 7H, H-39, H-6a,b%, H-2,4%NAc _OCH>CH2-),3.74-3.60(m, 8H, H-45¢, H-3,5%! H-6a,b%!,
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H-3GaINAc H-6a,b%INAc) 3 60-3.56 (m, 1H, H-5G%INAc) 3 543 48 (m, 2H, H-26, H-2%1), 1.96 (s, 3H, CH3CO), 1.70-1.65 (m, 2H, -
CH>CHz-), 1.60—1.52 (m, 2H, -CH2CH>-), 1.40-1.32 (m, 2H, -CH>CH2-), 1.31-1.19 (m, 12H, -CH2CH:-); 3*C NMR (150 MHz, D,0):
8 175.0 (CH3CO), 157.9,129.7 (2C), 121.2,114.7 (2C), 103.2 (C-16NA) 1102.7 (C-1%1),95.0 (d, J = 6.4 Hz, C-19°¢), 81.3 (C-3%),
77.2 (C-46k), 74 8 (C-5GINAc) 74 77 (C-5%1), 71.3 (C-39), 71.3 (C-59¢), 71.2 (d, J= 9.0 Hz, C-29¢), 70.6 (C-36INAc) 70,0 (C-2621),
68.53 (-OCH>CH20Ph), 68.45 (C-4%1), 67.6 (C-4%2INAc) '66.9 (d, J = 6.0 Hz, -OCH>CH>-), 60.89 (C-6%1), 60.85 (C-65NA) 59 4 (C-
64°), 524 (C-2@NAc) 296 (d, J = 6.0 Hz, -OCH.CH»-), 28.52, 28.49, 28.48, 28.32, 28.25, 28.15, 25.0, 24.7 (8C, -
OCH:CH2(CH2)sCH20Ph), 22.1 (CH3CO);3*'PNMR (243 MHz, D;0): 6 -10.76 (d,J=19.4 Hz),-13.17 (d,J = 19.4 Hz); ESI-(-)-TOF
HRMS m/z: Calcd for C37Hs2NO23P2 950.3193 [M - H]; Found 950.3194.

Enzymatic synthesis of tetrasccharides 4a,4b, 4c,4d and 4e

Procedure A. Milligram-scale production systems of Galf-1,4-GlcNAcp-1,3-GalB-1,4-Glca-PP-(CHz)1:1-OPh 4a and GalB-1,4-Glcp-
1,3-Galp-1,4-Glco-PP-(CH2)11-OPh4d were 2 mL reactionmixture of 50 mmol/L Tris-HCl buffer (pH 8.5) containing 2.4 mmol/LUDP-
Gal, 2 mmol/L 3a or 3b, 5 mM MgCl; and 200 pug/mL Cpslal. Milligram-scale production systems of Galp-1,3-GlcNAcB-1,3-Galp-
1,4-Glca-PP-(CHz)11-OPh 4b, GalB-1,3-GalNAcp-1,3-GalB-1,4-Glca-PP-(CHa)i1-OPh 4¢ and GalB-1,3-Glep-1,3-GalB-1,4-Glca-PP-
(CH2)11-OPh 4e were 2 mLreaction mixture of 50 mmol/L Tris-HCl buffer (pH 8.5) containing 2.4 mmol/L UDP-Gal, 2 mmol/L 3a, 3b,
or3c,5 mM MgClz and 200 pg/mL Cps1b]. All of the reaction systems were incubated at 30 °C for 12 h, at which time TLC indicated
the complete consumption of acceptor substrate, and then quenched by boiling for 30 s. After purification protocol as mentioned above,
the fractions containingdesired product were collected, then concentratedand lyophilizedto afford 4a (3.6 mg, 81%),4d (3.4 mg, 79%),
4b (3.5 mg, 79%),4¢ (3.2 mg, 72%) and 4e (3.3 mg, 77%) as white powders.

Procedure B. The one-pot two-enzyme synthesis of 4a, 4Db, 4c, 4d and 4e was achieved with Cpslal and Cpslal or CpslbJ using
Laca-PP-(CH2)11-OPh 2 as the starting acceptor substrate. A5 mL reaction mixture of 50 mmol/L Tris-HCI buffer (pH 8.5) containing
2.4 mmol/L UDP-GIcNAc/UDP-Glc, 2.4 mmol/L UDP-Gal, 2 mmol/L 2, 5 mmol/L MgCl:, 50 pg/mL Cpslal and 200 mg/mL Cpslal
to producing 4a/4d. A 5 mL reaction mixture of 50 mmol/L Tris-HCI buffer (pH 8.5) containing 2.4 mmol/L UDP-GIcNAc, UDP-Glc
or UDP-GalNAc, 2.4 mmol/LUDP-Gal, 2 mmol/L 2,5 mmol/L MgClz, 50 pg/mL Cpslal and 200 mg/mL Cps1b]J to producing 4b/4c/4e.
All of the reaction systems were incubated at 25 <C for 12 h, at which time TLC indicated the complete consumption of acceptor
substrate, and then quenched by boiling for 30 s. After purification protocol as mentioned above, the fractions containing desired product
were collected, then concentrated and lyophilized to afford 4a (8.9 mg, 80%), 4d (8.3 mg, 77%), 4b (9.2 mg, 84%), 4c (7.8 mg, 70%)
and 4e (7.9 mg, 74%) as white powders.

4a: 'H NMR (600 MHz, D»0): & 7.37 (t,J =7.8 Hz, 2H), 7.06-7.00 (m, 3H), 5.57 (dd, J = 6.6, 3.0 Hz, 1H, H-16*), 4.69 (d, J = 84
Hz, 1H, H-16eNA) ‘4 46 (d, J= 7.8 Hz, 1H, H-1%""), 440 (d, /= 7.2 Hz, 1H, H-16), 4,12 (d, J= 3.0 Hz, 1H, H-4%"), 4.08 (t,J =64
Hz, 2H, -CH.CH>OPh), 4.01 (br d, J = 10.2 Hz, 1H, H-59°), 3.96-3.81 (m, 8H, H-39°, H-6a,b%¢, H-4%', H-6a,b0NAc. - OCH,CHa-),
3.81-3.62 (m, 12H, H-49%, H-3,5%!, H-6a,b%! H-2,4,50NAc H-3 5GI" H-6a,b%!"), 3.61-3.50 (m,4H, H-20'c, H-2Gal, H-3GIeNAc | H-2Gal"),
2.02 (s,3H, CH;CO), 1.79-1.72 (m, 2H, -CH>CHz-), 1.66-1.59 (m, 2H, -CH2CH-), 1.46-1.40 (m, 2H, -CH>CHa-), 1.36-1.25 (m, 12H,
-CH2CH>-); 3C NMR (150 MHz, D20): § 174.8 (CH3CO), 158.0, 129.8 (2C), 121.3,114.8 (2C), 102.7 (2C, C-1%, C-1%"), 102.6 (C-
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1GleNAS) 950 (d,J = 6.0 Hz, C-16), 81.7 (C-3Gal), 78.0 (C-4GIeNA) 77 4 (C-49k), 75.2 (C-5GeNA) 74 7 (C-5Gal), 74 4 (C-3GeNAS) 72 4
(C-3G1), 72.1 (C-5G0), 71.4 (C-39), 71.34 (C-59¢), 71.25 (d,J = 7.5 Hz, C-26), 70.8 (C-25"), 69.9 (C-2%1), 68.6 (-OCHCH,OPh),
68.44 (C-4%0"), 68.36 (C-4%), 66.9 (d,J = 6.0 Hz, -OCH,CHa-), 60.9 (C-6%1), 60.87 (C-6%"), 59.7 (C-65INA) 59 5 (C-6k), 55.1(C-
2GieNA®) 29 7 (d, J=7.5 Hz, -OCH,CHa-), 28.5, 28.5 (2C), 28.4, 28.3,28.2, 25.0, 24.8 (8C, -OCH2CH.( CH, s CH2OPh), 22.1 (CH3CO);
3IP NMR (243 MHz, D;0): § -10.70 (d, J = 21.8 Hz), -13.13 (d, J = 21.8 Hz); ESI-(-)-TOF HRMS m/z: Caled for CasH72NOsP;
1112.3722 [M - H]; Found 1112.3721.

4b: '"H NMR (600 MHz, D;0): 5 7.37 (t,J= 7.8 Hz, 2H, Ph), 7.06-7.01 (m, 3H, Ph), 5.57 (br s, | H, H-19¢), 4.73 (d,J = 8.4 Hz, 1H,
H-1GNAS) 4 43 (d,J = 7.8 Hz, 2H, H-1%!, H-1Gl), 4.12 (d,J = 3.6 Hz, 1H, H-4%1), 4.09 (t,J = 6.6 Hz, 2H, -CH.CH,0Ph), 4.02 (br d,
J=10.8 Hz, 1H, H-59%), 3.97-3.83 (m, 8H, H-36, H-6a,b%, H-2,6a0cNAe, {4 _OCH,CHs-), 3.83-3.67 (m, 10H, H-4Gt {-3,5G!
H-6a,b%!, H-3,6bGNAc [5Gl H-6a,b%l"), 3.65-3.45 (m, 6H, H-20c, {26!, [-4 5GkNAc [.2 3Gl 2 02 (s, 3H, CH3CO), 1.79-1.73
(m, 2H, -CH>CHz-), 1.67-1.60 (m, 2H, -CH.CHz-), 1.47-1.41 (m, 2H, -CH>CH-), 1.39-1.26 (m, 1 2H, -CH.CHz-); *.CNMR (150 MHz,
D>0): § 174.9 (CH;CO), 158.0,129.8 (2C), 121.3,114.9 (2C), 103.4 (C-1%1), 102.7 (C-1G1), 102.4 (C-1GkeNA®) 95 1 (d,J= 6.0 Hz, C-
1Gle), 81.9 (C-3GleNAC), 81 6 (C-3Gal), 77.4 (C-49k), 75.2 (C-55I'), 75.1 (C-5GNAC) 74 8 (C-5Gl), 72.3 (C-3GI'), 71.42 (C-39k), 71.36 (C-
5Gic) 71.3 (d,J = 9.0 Hz, C-24k), 70.6 (C-2GI'), 70.0(C-2%1), 68.6 (-OCH>CH,0Ph), 68.43 (C-4%), 68.37 (2C, C-4Gal, C-4GieNAS) 66,9
(d, J = 6.0 Hz, -OCH,CHa-), 60.97 (C-6%1), 60.93 (C-6G"), 60.4 (C-6G1NA) 59 5 (C-6Gk), 54.6 (C-200NA®) 297 (d, J = 7.5 Hz, -
OCH.CH:-), 28.5 (3C), 28.4,28.3, 28.2,25.0, 24.8 (8C, -OCH.CH,(CHz)sCH2OPh), 22.1 (CH;CO); 3'P NMR (243 MHz, D,0): § -
10.70(d,J=12.1 Hz),-13.12 (d,J = 12.1 Hz); ESI-(-)-TOF HRMS m/z: Calcd for C43H7:NO2sP2 11123722 [M - HJ; Found 1112.3728.

4¢: 'THNMR (600 MHz, D;0): § 7.30 (t,J = 7.8 Hz, 2H, Ph), 7.00-6.93 (m, 3H, Ph), 5.50 (dd,.J = 7.2, 3.6 Hz, 1 H, H-19), 4.60 (dd,
J =84, 1H, H-1GINAS) 438434 (m, 2H, H-1%1, H-1G1"), 4.10 (d, J = 3.6 Hz, 1H, H-4%INAS) 405 (d, J= 3.0 Hz, 1 H, H-4%l),4.01 (t,
J = 6.0 Hz, 2H, -CH.CH,OPh), 4.00-3.92 (m, 2H, H-5%¢, H-2GINAS) 3.90-3.75 (m, 7H, H-39¢, H-6a,b0k, H-3GNAc 4Gl _
OCH,CHa-), 3.74-3.59 (m, 10H, H-4%, H-3,5%. H-6a,b%, H-6a,b%NAc, H.5GI H-6a,b%l), 3.59-3.47 (m, 4H, H-26¢, H-2G! H-
5GaNAe [[-3Gal'), 3 44 (t,J = 9.0 Hz, 1H, H-2G"), 1.95 (s, 3H, CH5CO), 1.72-1.66 (m, 2H, -CH>CH,-), 1.60-1.52 (m, 2H, -CH,CH>-),
1.40-1.33 (m, 2H, -CH>CH,-), 1.31-1.19 (m, 12H, -CH,CH>-); BC NMR (150 MHz, D,0): § 175.0 (CH3CO), 157.9, 129.7 (2C), 12122,
114.7 (2C), 104.7 (C-1Ga"’), 102.9 (C-1GINA) 102.7 (C-1541), 95.0 (d, J = 6.4 Hz, C-16k), 81.2 (C-3G1), 79.3 (C-3GINA) 77,2 (C-4Gie),
74.8 (C-5GINAc) 74,7 (C-5G1), 74.5 (C-5G1"), 72.2 (C-3Gl"), 71.32 (C-36), 71.29 (C-5Gk), 71.2 (d, J = 7.5 Hz, C-26k), 70.4 (C-2Ga),
70.0 (C-2G), 68.5 (-OCH>CH2OPh), 68.44 (C-4Ga), 68.38 (C-4%1"), 67.8 (C-4%INAY) 66.9 (d, J = 6.0 Hz, -OCH,CHa-), 60.8 (2C, C-
6Gal, C-6GaINA) 60,7 (C-6%1"), 59.4 (C-69k), 51.2 (C-2GINAY), 29 64 (d,J = 7.5 Hz, -OCH2CHs-), 28.5 (3C), 28.3,28.2, 28.1,24.9,24.7
(8C, -OCH2CHa(CHa)sCH20Ph), 22.1 (CH3CO);3'P NMR (243 MHz, D20): §-10.78 (d,J= 19.4 Hz),-13.18 (d,J = 19.4 Hz); ESI-(-)-
TOF HRMS m/z: Caled for C4sH72NO»sP> 1112.3722 [M - HT; Found 1112.3728.

4d: 'H NMR (600 MHz, D;0): § 7.34 (t,J=7.8 Hz, 2H, Ph), 7.03-6.96 (m, 3H, Ph), 5.55 (dd, /= 6.6, 3.0 Hz, 1H, H-19%), 4.65 (d,.J
=7.8 Hz, 1H, H-19), 4.46 (d,J = 7.8 Hz, 1H, H-1%), 4,40 (d,J = 7.8 Hz, 1H, H-1%I'), 4.13 (d,J = 2.4 Hz, 1 H, H-4%1), 4.06 (t,J=6.6
Hz, 2H, -CH,CH>OPh), 3.99 (br d, J= 10.2 Hz, 1 H, H-59¢), 3.94-3 81 (m, 7H, H-3%%, H-6a,bd, H-6ad’, H-4%!' . OCH,CH-), 3.80—
3.74 (m, 4H, H-3,6a%. H-6b4", H-6a""), 3.74-3.59 (m, 9H, H-49¢, H-2,5,6b%! H-3 49 H-3,5,6b%!), 3.56-3.47 (m, 3H, H-26¢, H-
56 H-2Gl), 338 (t,J = 8.4 Hz, 1H, H-29¢), 1.77-1.69 (m, 2H, -CH>CHa-), 1.64—1.57 (m, 2H, -CH,CH>-), 1.44—1.37 (m, 2H, -
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CH>CHa-), 1.35-1.23 (m, 12H, -CH,CH>-); *C NMR (150 MHz, D,0): § 158.0, 129.8 (2C), 121.3,114.8 (2C), 103.5 (C-16), 102.8
(C-1G1), 102.4 (C-1G1),95.1 (d, J = 6.0 Hz, C-19k), 81.9 (C-3Ga1), 77.9 (C-4GK"), 77.3 (C-44k), 75.2 (C-5%I'), 74.8 (C-5%1), 74.5 (C-
5Gic'y 74,0 (C-39), 72.9 (C-26), 72 4 (C-3%1), 71.4 (C-3Gk), 71.31 (C-59k), 71.27 (d,J = 9.0 Hz, C-24k), 70.8 (C-2G1"), 70.0 (C-251),
68.6 (-OCH,CH20Ph), 68.4 (C-4%1), 68.2 (C-4%1), 66.9 (d,J= 6.0 Hz, -OCH2CHz-), 60.9 (2C, C-6%1, C-6%l), 59.7 (C-65k), 59.5 (C-
6Gkc), 29.70 (d, J = 7.5 Hz, -OCH2CH,-), 28.6,28.5 (2C), 28.4,28.3,28.2,25.0, 24.8 (8C, -OCH,CH2(CHz)sCH,0Ph); 3'P NMR (243
MHz, D20): -10.74 (d, J = 21.8 Hz), -13.18 (d, J = 21.8 Hz); ESI-(-)-TOF HRMS m/z: Calcd for C41HeoO2sP2 1071.3456[M - HT;
Found 1071.3450.

4e: '"HNMR (600 MHz, D;0): § 7.33 (t,J= 7.8 Hz, 2H, Ph), 7.02-6.96 (m, 3H, Ph), 5.53 (dd,J = 6.6, 3.6 Hz, 1H, H-15%), 4.65 (d,.J
=7.8 Hz, 1H,H-19), 4.62 (d,J=7.8 Hz, 1H, H-1%"),4.45 (d,J= 7.8 Hz, 1H, H-1%1), 4.11 (d, J= 2.4 Hz, 1 H, H-4%), 4.04 (t,J = 6.4
Hz, 2H, -CH,CH,0Ph), 3.97 (brd, J= 10.2 Hz, 1H, H-55%), 3.92-3.80 (m, 7H, H-3%%, H-6a,b0k, H-6ad’, H-4%" _OCH,CH.-), 3.79—
3.63 (m, 11H, H-4%%, H-2,3,5%! H-6a,6b%, H-3,6b%", H-5%!", H-6a,6b%"), 3.61 (dd, J = 9.6, 3.0 Hz, 1H, H-3%"), 3.55-3.45 (m, 4H,
H-2Gk, H-2,4G, H-2Gal"), 3.44-3.39 (m, 1 H, H-59¢), 1.75-1.68 (m, 2H, -CH>CHy-), 1.62—1.55 (m, 2H, -CH,CH>-), 1.43-1.35 (m, 2H,
-CH,CHy-), 1.34-1.21 (m, 12H, -CH2CH>-); 3CNMR (150 MHz, D20): § 157.9,129.7 (2C), 121.2, 114.7 (2C), 103 .4 (C-19), 103.1
(C-1G1), 102.3 (C-1%1), 95.0 (d, J= 6.0 Hz, C-19k), 83.8 (C-36), 81.8 (C-3Gal), 77.1 (C-49), 75.1 (2C, C-54', C-5Gal'), 74.8 (C-5%l),
72.9(C-20K'), 72 .4 (C-3Gl), 71 3 (C-3Gk), 71.3 (C-59), 71.2 (d, J = 9.0 Hz, C-26k), 71.0 (C-2G1"), 69.9 (C-2%1), 68.5 (-OCH.CH,OPh),
68.4 (C-4G1), 68.1 (C-4%), 67.8 (C-46<'), 66.8 (d, J = 6.0 Hz, -OCH>CHa-), 60.9 (C-6%1), 60.8 (C-6%1), 60.2 (C-69), 59.4 (C-65tc),
29.63 (d,J= 6.0 Hz, -OCH,CH>-),28.50,28.49 (2C),28.3,28.2,28.1,24.9,24.7 (8C, -OCH,CH.(CH,)sCH,OPh); > PNMR (243 MHz,
D:20): §-10.74 (d,J=21.8 Hz), -13.17 (d,J = 21.8 Hz); ESI-(-)-TOF HRMS m/z: Calcd for C41HeoO25P2 1071.3456 [M - HT'; Found
1071.3446.

Enzymatic synthesis of pentasaccharides 5a,5b, Sc, 5d, and Se

Procedure A. Milligram-scale production systems of NeuNAca-2,3-Galp-1,4-GIcNAcB-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 5a and
NeuNAca-2,3-GalB-1,4-GlcB-1,3-Galp- 1,4-Glca-PP-(CH2)11-OPh 5d were 2 mL reaction mixture of 50 mmol/L Tris-HCI buffer (pH
7.0) containing 3 mmol/L CMP-NeuNAc, 2 mmol/L4a or 4d and 40 pg/mL Cps1aK. Milligram-scale production systems of NeuNAcao-
2,3-Galp-1,3-GIcNAcB-1,3-GalB-1,4-Glca-PP-(CH2)1:-OPh  5b, NeuNAca-2,3-GalB-1,3-GalNAcB-1,3-GalB-1,4-Glca-PP-(CHz)ui-
OPh 1¢, and NeuNAca-2,3-GalB-1,3-Glcp-1,3-Galp-1,4-Glca-PP-(CH2)11-OPh 1e were 2 mL reaction mixture of 50 mmol/L Tris-HCI
buffer (pH 7.0) containing 3 mmol/L CMP-NeuNAc, 2 mmol/L4b, 4¢, or 4e and 400 pg/mL Cps1bJ. All of the reaction systems were
incubated at 25 °C for 2 h, at which time TLC indicated the complete consumption of acceptor substrate, and then quenched by boiling
for 30 s. After purification protocol as mentioned above, the fractions containing desired product were collected, then concentrated and
lyophilized to afford 5a (4.8 mg, 86%), 5d (4.5 mg, 81%), 5b (4.6 mg, 82%), Sc (4.5 mg, 80%) and Se (4.6 mg, 84%) as white powders.

Procedure B. The one-pot three-enzyme synthesis of 5a, Sh, Sc, 5d and Se was carried out with Cpslal, Cpslal/Cps1bJ and
Cps1aK/Cps1bK enzymes using Laca-PP-(CH2)11-OPh 2 as the starting acceptor substrate. A5 mL reaction mixture of 50 mmol/L Tris-
HCI buffer (pH 7.5) containing 2.4 mmol/L UDP-GlcNAc or UDP-Glc, 2.4 mmol/L UDP-Gal, 3 mM CMP-NeuNAc, 2 mmol/L2, 5
mmol/LMgClz, 50 pg/mL Cps1al, 200 mg/mL CpslaJ and 40 ng/mL Cps1aK to produce Sa/5d. A 5 mL reaction mixture of 50 mmol/L
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Tris-HCI buffer (pH 7.5) containing 2.4 mmol/L UDP-GIcNAc, UDP-GalNAc, or UDP-Glc, 2.4 mmol/L UDP-Gal, 3 mM CMP-
NeuNAc, 2 mmol/L2, 5 mmol/LMgClz, 50 pg/mL Cpslal, 200 mg/mL Cps1bJ and 400 pg/mL Cps1bK to producing Sb/Sc¢/Se. All of
the reaction systems were incubated at 25 °C for 2 h, at which time TLC indicated the complete consumption of acceptor substrate, and
then quenched by boiling for 30 s. After purificationprotocol as mentioned above, the fractions containingdesired product were collected,
then concentrated and lyophilized to afford 5a (11.6 mg, 83%),5d (10.9 mg, 80%), 5b (11.2 mg, 80%), Sc (11.0 mg, 78%), and Se (10.5
mg, 77%) as white powders.

5a: 'H NMR (600 MHz, D20): 6 7.36 (t,J = 7.8 Hz, 2H, Ph), 7.05-7.00 (m, 3H, Ph), 5.56 (dd, /= 7.2, 3.6 Hz, 1H, H-19°), 4.68 (d,
J=8.4Hz, 1H, H-19NA%) 4 53 (d,J=7.8 Hz, 1H, H-1%"),4.41 (d,J= 7.8 Hz, 1H,H-1%),4.12 (d, /= 3.2 Hz, 1 H, H-4%1),4.10 (dd,
J=9.6,3.0 Hz, 1H, H-3%"),4.07 (t,J= 6.6 Hz, 2H, -CH2CH>OPh), 4.00 (br d,/ = 10.2 Hz, 1 H, H-59°), 3.96-3.81 (m, 11H, H-39, H-
6a,bd°, H-6a,b0cNAc H-4Gl' H-5 8 9aNewNAc . OCH>CHz-), 3.80-3.65 (m, 12H, H-49¢, H-3,5%! H-6a,b%!, H-2,3,46NAc H-5GI" H-
6a,b%l' H-4NewNAc) '3 65-3.53 (m, 7H, H-26¢, H-261, H-50NAc 'H.2Gal' "H-6,7 9bNewNAc) 2 74 (dd, J = 12.0,4.2 Hz, 1H, H-3NeuNAc),
2.01 (s,6H, CH;CO), 1.81-1.72 (m, 3H, H-3axNewNAe -CH,CHz-), 1.65-1.59 (m, 2H, -CH2CH:-), 1.46—1.39 (m, 2H, -CH>CHz-), 1.37—
1.24 (m, 12H, -CH2CH>-); BCNMR (150 MHz, D>0): 5 174.9 (CH3CO), 174.8 (CH3CO), 173.8 (C-1NewNA¢) '158.0, 129.8 (2C), 121.3,
114.9(2C),102.8 (C-1%1),102.7 (C-161cNA) [102.5 (C-162),99.7 (C-2NewNA<) 95 1(d,J= 6.0 Hz, C-19¢), 81.8 (C-3%1),77.9 (C-4CIcNAC),
77.5 (C-49¢), 75.4 (C-3G1"), 75.1 (C-5%1),74.8 (C-5%1), 74.5 (C-5C1NAC) 72 8 (C-6NewNAe) 7D (8 (C-3GIeNAC) 71 7 (C-8NewNAe) 71 44
(C-34l¢),71.37 (C-5G),71.26 (d,J =9.0 Hz, C-26F), 69.9 (C-2%), 69.3 (C-2%1"),68.7 (-OCH>CH20Ph), 68.4 (C-4%), 68.3 (C-4NewNAc),
68 (C-7NewNAS) 167 4 (C-491"),66.9 (d, J = 6.0 Hz, -OCH2CH2-), 62.5(C-9NeuNAC) [60.93 (C-6%1), 60.91 (C-6%1), 59.7 (C-651NAc) 595
(C-66), 55.1 (C-20IcNAC) 51,6 (C-5NewNAe) 139 5 (C-3NeuNAc) 199 72 (d,J=6.0 Hz, -OCH2CH2-), 28.6,28.5(2C),28.4,28.3,28.2,25.,
24.8 (8C,-OCH>CH2(CH2)sCH20Ph), 22.1 (CH3CO), 21.9 (CH3CO); 3'PNMR (243 MHz, D20): 6 -10.68 (d,J=17.0 Hz), -13.09 (d,
J=17.0 Hz); ESI-(-)-TOF HRMS m/z: [M - 2H]?- Calcd for Cs4HsgN2036P2 701.2301; Found 701.2308.

5b: '"HNMR (600 MHz, D20): § 7.36 (t,J = 7.8 Hz, 2H, Ph), 7.05-7.00 (m, 3H, Ph), 5.56 (dd, J=7.2, 3.6 Hz, 1H, H-19),4.72 (d,
J=8.4Hz, 1H, H-106NAc) 4 48 (d,J=7.8 Hz, 1H,H-1%"),4.41 (d,J=7.8 Hz, 1H, H-1%), 4.11 (d,J= 3.2 Hz, 1H, H-4%!),4.09-4.05
(m, 3H, H-3%" -CH,CH>OPh), 4.00 (br d,J=10.2 Hz, 1H, H-5%), 3.95-3.90 (m, 3H, H-4%", -OCH>CH2z-), 3.90-3.80 (m, 8H, H-3¢c,
H-6a,bdc, H-2,6a0NAc H-5,8 ,9aNewNAc) 13 8(-3.73 (m, 3H, H-6a%!, H-3,6b0INA) 3 73-3.64 (m, 8H, H-44°, H-3,5,6b%! H-5% H-
6a,b%l' H-4NewNAc) 3 643 49 (m, 7H, H-20kc, H-2Gl H-4GleNAc H.DGal' "H-6,7 9bNewNAc) '3 473 43 (m, 1H, H-56NAC) 2 73 (dd, J =
12.6,4.8 Hz, 1H, H-3gNewNAC), 2.01 (s, 3H, CH3CO), 2.00 (s, 3H, CH3CO), 1.79—-1.72 (m, 3H, H-3aNewNAe .CH,CH2-), 1.65—1.59 (m,
2H, -CH2CH>-), 1.46—1.40 (m, 2H, -CH>CHz-), 1.36—1.26 (m, 12H, -CH2CH:-); 3C NMR (150 MHz, D20): 6 174.8 (2C, CH3CO),
173.8 (C-1NewNAe) 1158.0,129.8 (2C), 121.3,114.9(2C), 103.3 (C-1%'),102.8 (C-191), 102.4 (C-161cNAC) 99 5 (C-2NaNAC) 95 0 (d,J =
4.5 Hz, C-16), 82.1 (C-3GcNAc) 81,6 (C-391), 77.5 (C-4Ck), 75.5 (C-3G"), 75.1 (C-5C1NAC) 74 9 (C-5%1), 74.8 (C-5%1), 72.7 (C-
ENewNACy 71,7 (C-8NewNAe) 71 4 (C-36k),71.3 (C-59K),71.24(d,J="7.5Hz, C-29),69.97 (C-2%),68.98 (C-291"),68.6 (-OCH>CH20Ph),
68.4 (C-4GcNAc) '68.33 (C-4%1), 68.31 (C-4NewNAc) 679 (C-TNewNAe) 67,1 (C-491"),66.9 (d,J = 4.5 Hz, -OCH2CHz-), 62.3 (C-9NeuNAc),
60.90 (C-6%1),60.87 (C-6%1"), 60.4 (C-64IcNAC) 59 5 (C-6Gk), 54.4 (C-206IeNAC) 51,6 (C-5NewNAc) 139 6 (C-3NewNAe) 997 (d,J = 7.5 Hz,
-OCH:2CH2-), 28.5,28.5(2C), 28.4,28.3,28.2,25.0, 24.8 (8C, -OCH2CH2(CH2)sCH20Ph), 22.2 (CH3CO), 21.9 (CH3CO); 3'P NMR
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(243 MHz, D>0): 6 -10.67 (d, J= 21.8 Hz), -13.10 (d, /= 21.8 Hz); ESI-(-)-TOF HRMS m/z: [M - 2H]* Calcd for Cs4HgsN2O36P2
701.2301; Found 701.2295.

5¢: '"H NMR (600 MHz, D20): 6 7.35 (t,J=7.8 Hz, 2H, Ph), 7.03-6.98 (m, 3H, Ph), 5.55 (dd, /= 7.2, 3.6 Hz, 1H, H-19), 4.65 (d,
J=8.4Hz, 1H, H-1%INA) 4 48 (d, J=7.8 Hz, 1H, H-19"),4.40 (d, /= 7.8 Hz, 1H, H-19), 4.14 (d, /= 1.8 Hz, 1H, H-4%NA¢) 4 09
(d, J=2.4 Hz, 1H, H-4%), 4.08-4.01 (m, 4H, H-26NAc H-3G!' _CH,CH>OPh), 3.99 (br d, J = 10.2 Hz, 1H, H-59¢), 3.94-3.78 (m,
10H, H-39, H-6a,b0°, H-3GNAc H-4GI' H-5 8 9aNewNAc . OCH,CHz-), 3.78-3.61 (m, 11H, H-46¢ H-3,5%! H-6a,b%! H-6a,b%MNAc
H-5%", H-6a,b%!", H-4NewNAc) '3 61-3.47 (m, 7H, H-26¢, H-2Gal H-5GNAc H-2Gal' 'H.6,7 9bNewNA<) 2 71 (dd, /= 12.0,4.2 Hz, 1H, H-
3eqNeuiNAC) 1 1.99 (s, 6H, CH3CO), 1.78-1.70 (m, 3H, H-3axNewNAc) -CH>CH2-), 1.64-1.57 (m, 2H, -CH2CH>-), 1.44-1.37 (m, 2H, -
CH>CH»-), 1.35-1.23 (m, 12H, -CH2CH>-); *C NMR (150 MHz, D20): 6 175.0 (CH3CO), 174.8 (CH3CO), 173.9 (C-1NewNA<) '158.0,
129.8 (2C),121.3,114.8 (2C), 104.46 (C-19"),102.9 (C-161cNAC) '102.8 (C-191),99.5 (C-2NewNAe) 95 1 (d,J= 7.5 Hz, C-19), 81.3 (C-
3Gah) 79,6 (C-3GINAC) 77 4 (C-4C),75.4 (C-3G1"), 74 .8 (C-5%INAC) 74 6 (C-5%1),74.5 (C-5%1),72.7 (C-6NewNAe) 71 7 (C-8NewNAe) 71 4
(C-34l¢), 71.3 (C-59¢),71.2 (d, J= 7.5 Hz, C-295), 70.0 (C-2%), 68.9 (C-2%"), 68.6 (-OCH2CH20Ph), 68.5 (C-4), 68.3 (C-4NewNAc),
67.9 (C-7NewNAc) |67 7 (C-4GINAC) 67 .2 (C-4%1'),66.9 (d, J = 6.0 Hz, -OCH2CH>-), 62.3 (C-9NetNA) 60.9 (2C, C-691, C-69%INAc) 1 60.8
(C-691),59.5 (C-6C), 51.5 (C-5NewNAC) 51 2 (C-20INAC) 139 6 (C-3NeNAC) 1997 (d,J=7.5 Hz, -OCH2CH:»-), 28.54,28.51,28.50, 284,
28.3,28.2,25.0,24.8 (8C, -OCH2CH2(CH2)sCH20Ph), 22.2 (CH3CO),21.9 (CH3CO); *'P NMR (243 MHz, D>0): §-10.73 (d,J=194
Hz), -13.16 (d,J= 19.4 Hz); ESI-(-)-TOF HRMS m/z: [M - 2H]?- Calcd for CssHssN2O36P2 701.2301; Found 701.2291.

5d: '"H NMR (600 MHz, D20): 6 7.32 (t,J = 7.8 Hz, 2H, Ph), 7.01-6.95 (m, 3H, Ph), 5.52 (dd, J=7.2, 3.6 Hz, 1 H, H-19), 4.62 (d,
J=8.4Hz, 1H, H-19¢),4 .45 (d,J=7.2 Hz, 1H, H-1%"),4.45 (d,J=7.2 Hz, 1H, H-19), 4.12 (d, /= 3.0 Hz, 1H, H-4%), 4.05 (dd, J
=9.0,2.4 Hz, 1H, H-3%"),4.03 (t,J = 6.6 Hz, 2H, -CH,CH>OPh), 3.96 (br d, /= 10.2 Hz, 1H, H-59), 3.92-3.71 (m, 13H, H-39¢, H-
6a,b0, H-3,6a%!, H-6a,b0c, H-4%!' 'H-5,8 9aNewNAe . OCH,CHz-), 3.70-3.54 (m, 9H, H-49¢ H-2,5,6b%!, H-39¢, H-5%!' 'H-6a,b%!', H-
4NeuNAc) "3 543 48 (m, 7H, H-20kc, H-4,56¢" H-2G' H-6,7,9bNewNAC) '3 34 (t,J = 9.0 Hz, 1H, H-29¢"), 2.69 (dd, /= 12.0,4.2 Hz, 1H,
H-3eNewNAC) 11,96 (s, 3H, CH3CO), 1.76—1.68 (m, 3H, H-3.xNewNAc, -CH,CHz-), 1.61-1.55 (m, 2H, -CH.CHa-), 1.41-1.35 (m, 2H, -
CH>CH»-), 1.33-1.20 (m, 12H, -CH2CH>-); FCNMR (150 MHz, D20): 6 174.9 (CH3CO), 173.8 (C-1NewNA<) '158.0,129.8 (2C), 121.3,
114.8 (2C), 103.5 (C-19<),102.5 (C-1%1),102.4 (C-1%1), 99.7 (C-2NewNAc) 95 1 (d, J = 4.5 Hz, C-19k), 82.0 (C-3%1), 77.8 (C-49L"),
77.3 (C-49¢),75.4 (C-3%1),75.0 (C-5%1),74.8 (C-5%1), 74.5 (C-59"), 73.9 (C-39¢") , 72.8 (C-20"), 72.7 (C-6NeuNA<) 71 6 (C-8NewNAc),
71.4 (C-39¢),71.3 (C-5%),71.2 (d,J =9.0 Hz, C-26k), 69.9 (C-2%1),69.2 (C-29") , 68.6 (-OCH2CH20Ph), 68.3 (C-4NewNAc) 68,1 (C-
4Gy 67,9 (C-7NewNAS) 67 3 (C-441),66.9 (d, J = 6.0 Hz, -OCH2CH2-), 62.4 (C-9NewNAC) '6(0.9 (2C, C-6%1, C-691"),59.7 (C-69), 59.5
(C-64¢), 51.6 (C-5NewNAc) 139 5 (C-3NewNAc) 1997 (d, J = 7.5 Hz, -OCH2CH:»-), 28.56,28.53 (2C), 28.4,28.3,28.2,25.0,24.8 (8C, -
OCH:CH2(CH2)sCH20Ph), 21.9 (CH3CO); *'P NMR (243 MHz, D;0): 6 -10.70 (d,J=19.4 Hz), -13.14 (d,J = 19.4 Hz); ESI-(-)-TOF
HRMS m/z: [M - 2H}*- Calcd for Cs2HgsNO36P2 680.7169; Found 680.7170.

5e: '"H NMR (600 MHz, D20): 6 7.31 (t,J=7.8 Hz, 2H, Ph), 7.00-6.95 (m, 3H, Ph), 5.52 (dd, /= 7.2,3.6 Hz, 1H, H-19), 4.68 (d,
J=7.8Hz 1H,H-19"),4.63 (d,/=7.8 Hz, 1H, H-19),4.43 (t,/= 7.8 Hz, 1H,H-1%"),4.10 (d,J/=3.2 Hz, 1H, H-4%), 4.06 (dd,J=
10.2,3.0 Hz, 1H, H-3%1),4.03 (t,J= 6.6 Hz, 2H, -CH.CH>0OPh), 3.96 (brd, J = 10.2 Hz, 1H, H-59¢), 3.91-3.77 (m, 10H, H-36¢, H-
6a,bllc, H-6a0¢', H-46" H-5,8,9aNetNAc . OCH,CH:-),3.76—3.59 (m, 12H, H-4%c, H-2,3,5%%1, H-6a,6b%!, H-3,6b%¢", H-5%' H-6a,6b%"

S38



H-4NEWAS) 3593 44 (m, 7H, H-20k, H-2,40k' -Gl H-6,7,9bNeNAS) 3 423 33 (m, 1H, H-59), 2.69 (dd, J = 12.0,4.2 Hz, 1H, H-
3egNeNAC) 1,96 (s, 3H, CH3CO), 1.77-1.67 (m, 3H, H-3u,NeNAe _CHLCHa-), 1.61-1.54 (m, 2H, -CH2CHb-), 1.41-1.34 (m, 2H, -
CH>CHz-), 1.33-1.21 (m, 12H, -CH>CH>-); *CNMR (150 MHz, D>0): § 174.8 (CH;CO), 173.8 (C-1NewNA) 157.9,129.7 (2C), 1212,
114.8 (2C), 103.3 (C-19), 102.7 (C-14), 102.3 (C-1%l), 99.6 (C-2NewNAc) 95,0 (d, J = 6.0 Hz, C-16k), 83.8 (C-3GKc'), 81.8 (C-3Gal),
77.2 (C-499), 75 4 (C-3Gl), 75.1 (C-59K"), 74.9 (C-5%l), 74.8 (C-5Gl), 72.8 (C-26K"), 72.7 (C-6NeNAc) 7] 7 (C-8NewNA) 71 4 (C-36k),
71.3 (C-599), 71.2 (d, J = 9.0 Hz, C-2Gk), 69.9 (C-2Gl), 69.5 (C-2%"), 68.6 (-OCH.CH20Ph), 68.25 (C-4NeiNac) 68 16 (C-4%l), 679
(C-7NeNA) 67 8 (C-4GK), 67.3 (C-4%1), 66.9 (d, J = 6.0 Hz, -OCH2CHz-), 62.4 (C-9NewNAS) 6088 (C-65), 60.85 (C-6%""), 60.3 (C-
6GK), 59.4 (C-69k), 51.5 (C-5NewNAc) 39 4 (C-3NewNA¢) 29 6 (d,J =7.5 Hz, -OCH.CHa-), 28.52, 28.50, 28.48, 28.32, 28.26, 28.2, 250,
24.8 (8C, -OCH,CHa(CH,)sCH20Ph), 21.9 (CH;CO); 3'P NMR (243 MHz, D20): § -10.71 (d, J = 21.8 Hz), -13.14 (d,J = 21.8 Hz);
ESI-(-)-TOF HRMS m/z: [M - 2HJ> Calcd for Cs2HgsNOs6P2 680.7169; Found 680.7163.
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