Visible-light-driven valorization of biomass-derived furfuryl alcohol to diesel precursors with simultaneous H_2 evolution over dual

functional In₂S₃-Zn₅In₂S₈ photocatalysts

Yibei Zhang, Hongyun Lu, Xuekai-Qu, Lunan Wu, Zhenghao Song, Xinyi Ding, Peng Li, Xiu-Jie Yang*, Dong Liu

State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China

* Corresponding author

Mailing Address: State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China.

E-mail: yangxiujie@upc.edu.cn (X.-J. Yang)

Tel.: +86-532-86984615

Methods

Synthesis of In ₂ S ₃	3
Synthesis of Zn ₅ In ₂ S ₈ (ZIS ₈)	3
Figure of contents	
Figure S1 The Raman spectra of In ₂ S ₃ -ZIS ₈ catalysts.	4
Figure S2 N ₂ adsorption/desorption isotherms of In ₂ S ₃ , ZIS ₈ and In ₂ S ₃ -ZIS ₈	4
Figure S3 Pore size distribution of In ₂ S ₃ , ZIS ₈ and In ₂ S ₃ -ZIS ₈ .	5
Figure S4 The Mott-Schottky measurement of (a)In ₂ S ₃ , (b)ZIS ₈ and (c)In ₂ S ₃ -ZIS ₈	5
Figure S5 photocurrent spectra of In ₂ S ₃ , ZIS ₈ and In ₂ S ₃ -ZIS ₈	6
Figure S6 FT-IR spectra of In ₂ S ₃ -ZIS ₈ catalyst before and after recycling	6
Table of contents	
Table S1 Different surface atom contents derived from XPS analysis for the In ₂ S ₃ , ZIS ₈ and In	n ₂ S ₃ -
ZIS ₈	7
Table S2 ICP-OES results of ZIS ₈ and In ₂ S ₃ -ZIS ₈	7
Table S3 Physicochemical properties of In2S3, ZIS8 and In2S3-ZIS8	7
Table S4 Photocatalytic coupling of furfuryl alcohol under different experimental condition[a]	8
Table S5 Photocatalytic performance of In ₂ S ₃ -ZIS ₈ with various substrates ^[a]	9
Table S6 Photocatalytic coupling of furfuryl alcohol under different synthesis method ^[a]	9
Table S7 Comparison of In ₂ S ₂ -ZIS ₂ and previously reported photocatalytic systems	10

Method

Synthesis of In₂S₃

A mixture of InCl₃ (2 mmol) and CH₃CSNH₂ (6 mmol) was dissolved in 80 mL of deionized water under continuous stirring until complete dissolution. Subsequently, CTAB (1 mmol) was added, and the solution was stirred for an additional 1 h. The resulting mixture was transferred to a Teflon-lined autoclave and heated at 180°C for 12 h. After cooling to room temperature, the precipitate was collected by centrifugation, washed three times with deionized water and ethanol, and finally dried in a vacuum oven at 50°C for 12 h.

Synthesis of Zn₅In₂S₈ (ZIS₈)

A mixture of Zn(OAc)₂·2H₂O (5 mmol), InCl₃ (2 mmol), and CH₃CSNH₂ (16 mmol) was dissolved in 80 mL of deionized water under continuous stirring until complete dissolution. Subsequently, CTAB (1 mmol) was added, and the solution was stirred for an additional 1 h. The resulting mixture was transferred to a Teflon-lined autoclave and heated at 180°C for 12 h. After cooling to room temperature, the precipitate was collected by centrifugation, washed three times with deionized water and ethanol, and finally dried in a vacuum oven at 50°C for 12 h.

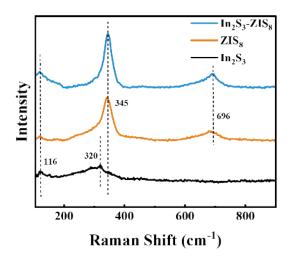


Figure S1 The Raman spectra of In₂S₃-ZIS₈ catalysts.

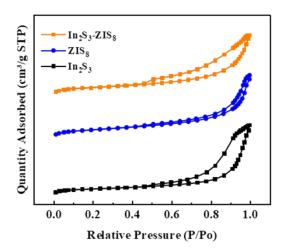


Figure S2 N_2 adsorption/desorption isotherms of In_2S_3 , ZIS_8 and In_2S_3 - ZIS_8 .

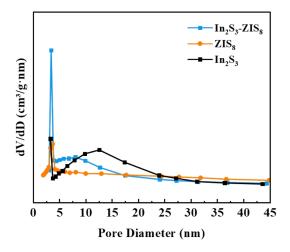


Figure S3 Pore size distribution of In₂S₃, ZIS₈ and In₂S₃-ZIS₈.

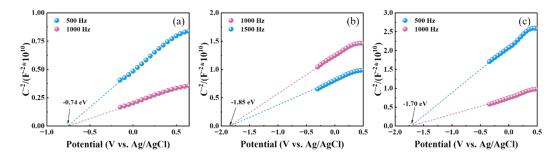


Figure S4 The Mott-Schottky measurement of (a) In₂S₃, (b) ZIS₈ and (c) In₂S₃-ZIS₈.

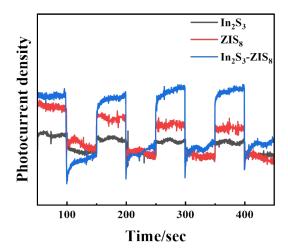


Figure S5 photocurrent spectra of In₂S₃, ZIS₈ and In₂S₃-ZIS₈.

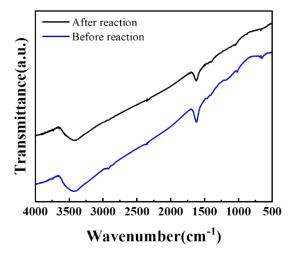


Figure S6 FT-IR spectra of In₂S₃-ZIS₈ catalyst before and after recycling.

 $\label{eq:TableS1Different} \textbf{Table S1} \ \text{Different surface atom contents derived from XPS analysis for the } In_2S_3, ZIS_8 \\ \text{and } In_2S_3\text{-}ZIS_8.$

Sample	Zn/ at.%	In/ at.%	S/ at.%	Zn:In:S
In_2S_3		43.36	56.64	3:4
ZIS_8	25.68	19.31	55.00	4:3:9
In_2S_3 - ZIS_8	24.43	22.46	53.11	12:11:26

 $\textbf{Table S2} \ \text{ICP-OES} \ results \ of \ ZIS_8 \ and \ In_2S_3\text{-}ZIS_8.$

Sample	Zn/ wt.%	In/ wt.%	Zn:In
ZIS_8	22.7	13.00	0.35:0.11
In_2S_3 - ZIS_8	15.25	18.05	0.23:0.16

 $\textbf{Table S3} \ Physicochemical \ properties \ of \ In_2S_3, ZIS_8 \ and \ In_2S_3\text{-}ZIS_8.$

Catalyst	Catalyst BET surface area (m ² ·g ⁻¹)		Pore size (nm)
In_2S_3	22.38	0.145	12.035
${\sf ZIS}_8$	34.97	0.129	12.317
In ₂ S ₃ -ZIS ₈	30.51	0.124	8.785

Table S4 Photocatalytic coupling of furfuryl alcohol under different experimental condition^[a].

Entw	solvent	C-C coupling Product		
Entry	solvent	Conv./%[b]	Select./%[c]	
1 ^[d]	CH ₃ CN	6.6		
2 ^[e]	CH ₃ CN	12.4	9.5	
3 ^[f]	CH₃CN	90.3	67.3 ^[g]	
4	CH₃CN	88.6	87.1	
5 ^[h]	CH₃CN	61.5	91.1	
6	$\rm H_2O$	35.7	92.6	
7	Acetone	23.3	91.2	
8	Methanol	66.2	87.7	
9	DCM	55.8	29.1	
10	Toluene	85.7	68.3	

[a] Light source: LED (blue, 460 nm); room temperature; substrate amount: 0.46 mmol; 1 atm N_2 ; 5 mL CH₃CN; 24h. [b] Conversion of furfuryl alcohol were determined by GC analysis; [c] Selectivity of hydrofuroin were determined by GC analysis; [d] Without photocatalyst; [e] Without irradiation; [f] Using 1 atm O_2 instead of N_2 ; [g] Selectivity for furfural; [h] Without CTAB.

Table S5 Photocatalytic performance of In₂S₃-ZIS₈ with various substrates^[a].

Entur	Substanto -	C-C coupling Product		
Entry	Substrate —	Conv./% ^[b]	Select./% ^[b]	
1	5-Methyl-2-furanmethanol	82.2	78.1	
2	benzyl alcohol	≈ 100	61.5	
3	4-Bromobenzyl alcohol	≈ 100	78.3	
4	4-Methylbenzyl alcohol	89.8	65.4	
5	4-Fluorobenzyl alcohol	≈ 100	75.0	
6	4-Methoxybenzyl alcohol	≈ 100	80.9	
7	benzaldehyde	76.3	63.3	

[a] Light source: LED (blue, 460 nm); room temperature; substrate amount: 0.46 mmol; 1 atm N_2 ; 5 mL CH₃CN; [b] Determined by gas chromatograph with n-dodecanol as internal standard.

Table S6 Photocatalytic coupling of furfuryl alcohol under different synthesis method^[a].

E.A.		C-C couplin	C-C coupling Product		
Entry	solvent	Conv./%[b]	Select./% ^[c]		
1 ^[d]	CH ₃ CN	12.1	62.9		
2 ^[e]	CH ₃ CN	25.2	70.2		
3 ^[f]	CH ₃ CN	88.6	87.1		

[a] Light source: LED (blue, 460 nm); room temperature; substrate amount: 0.46 mmol; 1 atm N_2 ; 5 mL CH₃CN; 24h. [b] Conversion of furfuryl alcohol were determined by GC analysis; [c] Selectivity of hydrofuroin were determined by GC analysis; [d] Mechanically mixed sample; [e] Low-temperature solvothermal sample; [f] Hydrothermal sample.

Table S7 Comparison of In_2S_3 -ZIS $_8$ and previously reported photocatalytic systems.

Photocatalysts	Reaction conditions	Conv./%	Select./	H ₂ rate	Reference
In ₂ S ₃ -ZIS ₈	LED (blue, 460 nm), 0.46 mmol FA, 5 mL CH ₃ CN	88.6	87.1	14408.6 μmol·g ⁻¹	This work
ZIS/Ni	300 W Xe lamp, 76.9 μmol BA, 5 mL CH ₃ CN	86	99	42.24 μmol	2
Mo/MCS/Co	300 W Xe lamp, 50 0.48 mmol BA, 10 mL CH ₃ CN	90	98	1.83 mmol g ⁻¹ h ⁻¹	3
Ni-ZIS	300 W Xe lamp, 5 mM FA	90	12	583 μmol g ⁻¹ h ⁻¹	4
Zn ₃ In ₂ S ₆ - STAB	300 W Xe lamp, 0.35 mmol FA, 5 mL CH ₃ CN	96.6	74.8		5
$ZnIn_2S_4$	300 W Xe lamp, 0.1 mmol BA, 10 mL CH ₃ CN	80	~80		6
$Zn_{0.6}Cd_{0.4}S$	300 W Xe lamp,10 mM BA, 10 mM scavenger, 7 mL of CH ₃ CN, 3 mL of deionized water	77.14	81.19	22 μmol	7
In(0.1)-ZnS	365 nm LED light, 192 mol BA, 4.0 mL CH ₃ CN	73	100	60 μmol	8
CdS	365 nm LED light, 192 mol BA, 4.0 mL CH ₃ CN	23	76		8
CdS/TNS	300 W Xe lamp, 0.1 mmol BA, 5 mL CH ₃ CN	16.2	89.7	69.5 μmol g ⁻¹	9
Ni(OH) ₂ –ZIS	$300~W~Xe~lamp,~10$ mM HMF, $10~mL$ H_2O	20	79	$2405~\mu mol~g^{-1}$	10

References

- 1. Y. Zhang, M. Zhang, Z. Yu, R. Liu, Y. Li, J. Xiong, Y. Qiao, R. Zhang and X. Lu, *Applied Catalysis B: Environment and Energy*, 2024, **350**, 123914.
- 2. J. Li, M. Qi and Y. Xu, Chinese Journal of Catalysis, 2022, 43, 1084-1091.
- 3. J. Wang, M. Qi, X. Wang and W. Su, *Applied Catalysis B: Environmental*, 2022, 302, 120812.
- 4. W. Kang, F. Guo, L. Mao, Y. Liu, C. Han and L. Yuan, *Physical Chemistry Chemical Physics*, 2023, **25**, 33175-33183.
- 5. S. Zhao, S. Song, Y. You, Y. Zhang, W. Luo, K. Han, T. Ding, Y. Tian and X. Li, *Molecular Catalysis*, 2022, **528**, 112429.
- X. Leng, X. Zhou, L. Ma, Y. Du, O. Peng, Z. Chen, J. Pan, M. Qi, J. Zheng, Y. Xu and K. P. Loh, ACS Catalysis, 2024, 14, 11554-11563.
- 7. R. Wang, Z. Zheng, Z. Li and X. Xu, Chemical Engineering Journal, 2024, 480, 147970.
- 8. T. Shen, Q. Chen, Y. Gao, Z. Gu, H. Zhang, F. Shi, G. Liu, Y. Huo and H. Li, *Journal of Catalysis*, 2024, **440**, 115842.
- 9. M. Qi, Q. Lin, Z. Tang and Y. Xu, *Applied Catalysis B: Environment and Energy*, 2022, **307**, 121158.
- 10. W. Kang, X. Li, X. Zeng, H. Wu, Y. Ge, L. Yuan, Y. Liu and C. Han, *Chemical Communications*, 2024, **60**, 10572-10575.