

Efficient Catalytic Depolymerization of High-Molecular-Weight PMMA under Low-Temperature and High-Concentration Conditions

Yang Ma,^{a,†} Xi-Man Yang,^{a,b,†} Hao-Nan Shi,^a Junfang Li,^a Xiao-Yan Wang,^{*,a} and Yong Tang^{*,a}

^aThe State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.

^bSchool of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.

† The authors contributed equally to this work.

* E-mail: wangxiaoyan@sioc.ac.cn; tangy@sioc.ac.cn

Supplementary Information

Supplementary General Information	S2
1.1. Materials	S2
1.2. Instrumentation	S2
1.3. Characterization	S3
Supplementary Procedures	S4
Supplementary Tables	S6
Supplementary Figures	S10
Supplementary Scheme	S18
Supplementary References	S19

Supplementary General Information

1.1. Materials

Methyl methacrylate (MMA, TCI, 99.8%) and methyl α -chloroacrylate (MCA, TCI, 98%) were distilled with CaH_2 to remove inhibitor and water and stored at -35 °C in inert atmosphere. 2,2'-Azobis(2-methylpropionitrile) (AIBN, Aladdin, 98%) was recrystallized with ethanol and stored at -35 °C in inert atmosphere. Ethyl acetate (EA, Titans, AR) was purified by distillation using CaH_2 . Ultra-dry dimethyl sulfoxide (DMSO, J&K, 99.9%) was sealed and stored with molecular sieves. 2-admantyl α -chloroacrylate (2-ADCA) was synthesized by reported literature procedures.¹ Other chemicals were used as received and stored at room temperature in inert atmosphere. Cu(0) catalyst specifications: 30 mesh copper gauze woven from 0.15 mm (0.006in) diameter wire (innocom, 99%) or copper powder with the largest particle size of 106 \AA (-140 mesh) (Acros, 99%) purified by immersion in conc. HCl for 15 minutes and subsequently rinsed with water and dried prior to use.

1.2. Instrumentation

Nuclear Magnetic Resonance (NMR) Spectroscopy. ^1H NMR spectra were recorded by a Bruker 400 MHz spectrometer. Chemical shifts (δ) are given in parts per million (ppm) relative to TMS and referenced to deuterated chloroform ($\delta^1\text{H}$ 7.26 ppm) at 298 K.

Gel Permeation Chromatography–Multi-Angle Laser Light Scattering (GPC-MALLS) Instrument. GPC-MALLS instrument was equipped with an automatic sampler (Agilent isocratic pump, degasser, sampler), three 300×8.0 mm columns (MZ-Gel SDplus 10E3 \AA 3 μm , 4 μm and 5 μm) and two detectors including with a DAWN EOS multi-angle laser light scattering (MALLS with 18 angles) detector (Wyatt Technology) operating at 658 nm and a T-rEX refractive index detector (Wyatt S6 Technology), and performed in tetrahydrofuran (THF) at 40 °C and a flow rate of 1.0 mL/min.

Differential Scanning Calorimetry (DSC). DSC experiments were carried out on a TA Q2000 DSC. The sample was heated from 40 to 160 °C at a heating rate of 10 °C/min under nitrogen atmosphere, followed by cooling to 40 °C at 10 °C/min for two cycles. The reported DSC data was collected on the second heating cycle.

Thermogravimetric Analysis (TGA). All TGA experiments were carried out on a TGA Q500 system. The instrument was equilibrated at 40 °C. For general TGA experiments, the sample was heated up to 420 °C or 600 °C at a heating rate of 10 °C/min under nitrogen atmosphere.

1.3. Characterization

M_n and Average Composition of $\text{PMMA}_x\text{-RCA}_y$ M_n was calculated by GPC-MALLS instrument using PMMA standards. Average composition of $\text{PMMA}_x\text{-RCA}_y$ was calculated by quantitative ^1H NMR spectra using the following equations.

$$\frac{y}{x} = \frac{I_{\text{MCA unit}}}{I_{\text{MMA unit}}} \text{ or } \frac{3I_{\text{2-ADCA unit}}}{I_{\text{MMA unit}}}$$

$$M_n = M_{\text{MMA}} \times x + M_{\text{RCA}} \times y$$

Of above equations, $I_{\text{MCA unit}}$, $I_{\text{2-ADCA unit}}$ and $I_{\text{MMA unit}}$ means the integral area of signal peak around 3.70-3.72 ppm, 4.88-4.96 ppm and 3.59 ppm, respectively; M_{MMA} is equal to 100.12 g/mol, and M_{RCA} is equal to 120.53 g/mol for MCA or 240.73 g/mol for 2-ADCA.

Depolymerization Conversion (Conv.dep.) of $\text{PMMA}_x\text{-RCA}_y$ and Yield of MMA (Yield_{MMA})

Depolymerization conversion of $\text{PMMA}_x\text{-RCA}_y$ and yield of MMA were determined by the following formulas using mesitylene as the internal standard.

$$\text{Conv.dep.} = \frac{\frac{n_{\text{MMA unit, bd}}}{n_{\text{mesitylene}}} - \frac{I_{\text{MMA unit, ad}}}{I_{\text{mesitylene}}}}{\frac{n_{\text{MMA unit, bd}}}{n_{\text{mesitylene}}}} \times 100\%$$

$$\text{Yield}_{\text{MMA}} = \frac{\frac{I_{\text{MMA monomer, ad}}}{I_{\text{mesitylene}}}}{\frac{n_{\text{MMA unit, bd}}}{n_{\text{mesitylene}}} - \frac{I_{\text{MMA unit, ad}}}{I_{\text{mesitylene}}}} \times 100\%$$

Of above formulas, “bd” and “ad” means before depolymerization and after depolymerization; $I_{\text{mesitylene}}$ means the integral area of signal peak around 6.79 ppm; $I_{\text{MMA monomer, ad}}$ means the integral area of signal peak around 3.75 ppm; $n_{\text{MMA unit, bd}}$ was determined by the formula below.

$$n_{\text{MMA unit, bd}} = \frac{m_{(\text{co})\text{polymer}} \times x}{M_n}$$

Supplementary Procedures

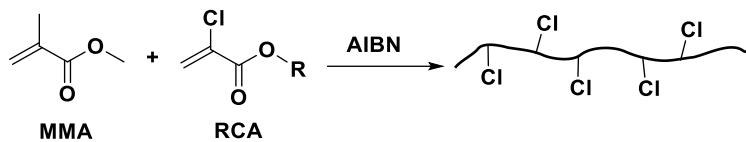
All feeding processes were performed in an argon-filled glovebox. All polymerization and depolymerization experiments were conducted in a sealed Schlenk flask unless otherwise noted.

General Procedures for Synthesizing $\text{PMMA}_x\text{-RCA}_y$ by Conventional Free Radical Polymerization (FRP). A typical example for synthesis of $\text{PMMA}_{378}\text{-MCA}_{28.2}$ was indicated. In a Schlenk flask, MMA (100 mmol, 10.7 mL), MCA (5 mmol, 0.51 mL) and AIBN (0.4 mmol, 65.7 mg) were dissolved in EA (50 mL). The flask was sealed in an argon-filled glovebox and set in an oil bath at 65 °C. After stirring for the allotted period, a small aliquot was taken and measured by ^1H NMR to give the monomer conversions. The residue was poured into 500 mL cold methanol with rapid stirring. The generated white precipitate was filtered and dried overnight in a vacuum oven at 40 °C.

General Procedures for Synthesizing $\text{PMMA}_x\text{-Cl}$ by Atom Transfer Radical Polymerization (ATRP). A typical example for synthesis of $\text{PMMA}_{457}\text{-Cl}$ was indicated. In a Schlenk flask, CuCl_2 (0.042 mmol, 5.7 mg), Pentamethyldiethylenetriamine (PMDETA, 0.072 mmol, 15 μL), MMA (19 mmol, 2.0 mL), ethyl α -chlorophenylacetate (ECPA, 0.038 mmol, 6.5 μL) and stannous 2-ethylhexanoate ($\text{Sn}(\text{EH})_2$, 0.03 mol, 7.5 μL) were dissolved in N,N-dimethylformamide (DMF, 2.0 mL). The flask was sealed in the argon-filled glovebox and set in a heating device at 70 °C. After stirring for the allotted period, a small aliquot was taken and measured by ^1H NMR to give the monomer conversions. The residue was diluted by THF and passed through a glass funnel with neutral alumina to remove the metal. The filtrate was concentrated by rotary evaporator and redissolved with THF to obtain about 10 mL solution. The solution was added into 500 mL cold methanol with rapid stirring to form the white precipitate. The polymer was filtered and dried overnight in a vacuum oven at 40 °C.

General Procedures for Depolymerization of $\text{PMMA}_x\text{-RCA}_y$ in a sealed Schlenk Flask. In a 10 mL Schlenk tube equipped a stir bar, Cu powder (0.28 mmol, 17.8 mg), $\text{PMMA}_x\text{-RCA}_y$ (100~120 mg) and DMSO (2 mL) were added and sealed in an argon-filled glovebox. The tube was set in a heating device at 160 °C. After stirring for the allotted period, the tube was transferred into an ice water bath quickly. The system was diluted by chloroform (about 2 mL) and mesitylene (25 μL) as the internal standard was added accurately. Then the tube warmed up to room temperature naturally. A small aliquot was taken and analyzed by quantitative ^1H NMR to calculate depolymerization conversions of $\text{PMMA}_x\text{-RCA}_y$ and yield of MMA according to the internal standard.

General Procedures for Depolymerization of $\text{PMMA}_x\text{-RCA}_y$ Through Intermittent Evaporation. In a 100 mL Thick-walled Pressure-resistant Bottle equipped a stir bar, Cu powder (0.28


mmol, 17.8 mg), $\text{PMMA}_x\text{-RCA}_y$ (100 mg) and DMSO (2 mL) were added and sealed in an argon-filled glovebox. The flask was cooled at -78 °C and connected with a distillation device equipped with a receiving tube at the inert atmosphere. After pumping for three cycles at -78 °C, the flask was set in a heating device at 160 °C and the system was stirred for the allotted period. Then the flask was cooled quickly to room temperature and MMA was removed to the receiving tube in vacuum for 30 min. The above operation was performed four cycles and the system warmed up to room temperature at the inert atmosphere. The system was stopped by adding acetone (about 2 mL) and mesitylene (25 μL) as the internal standard was added accurately. A small aliquot of the system was taken and analyzed by quantitative ^1H NMR to calculate depolymerization conversions of $\text{PMMA}_x\text{-RCA}_y$ and yield of MMA.

Typical UV-VIS Spectroscopic Analysis of CuBr and CuBr_2 .² In a 10 mL Schlenk tube equipped with a stir bar, CuBr (17.2 mg, 0.12 mmol) or CuBr_2 (3.4 mg, 0.015 mmol) was added, using DMSO or NMP as solvent (6 mL), with or without PMDETA (n_{PMDETA} equal to n_{CuBr_x}) as a ligand. The tube was sealed in an argon-filled glovebox and set in a heating device at 25 or 120 °C. After stirring for the specified duration, the sample was filtered and transferred to a quartz UV-VIS cell (1 mm path length). Prior to use, the cell was rinsed three times with the sample solution, followed by addition of 3 mL aliquot. The cell was then sealed under argon using a septum-sealed screw cap and immediately subjected to UV-Vis spectroscopic analysis.

General Procedures for synthesizing graft Copolymer $\text{PMMA}_x\text{-RCA}_y$ -graft-PMA. The experiments were performed inside an argon-filled glovebox. In a 10 mL Schlenk tube equipped with a stir bar, a mixture of CuBr_2 (24.6 mg, 0.11 mmol), Cu(0) powder (28 mg, 0.44 mmol) and SaBOX ligand (115 mg, 0.22 mmol) in 3 mL DMSO was stirred at 25 °C for about 2 h. After that, $\text{PMMA}_{535}\text{-MCA}_{43}$ (300 mg, [MMA unit] = 2.73 mmol, [MCA unit] = 0.22 mmol) and MA (0.25 mL, 2.73 mmol) were added into the Schlenk tube. The system was set in a heating device at 25 °C and stirred for 17 h. A small aliquot was taken and directly analyzed using ^1H NMR to give the conversion of MA. After completion of the reaction, the reaction mixture left was diluted in THF and the solution was filtered through a glass funnel with neutral alumina to remove the metal. The filtrate was concentrated under reduced pressure and redissolved with 5 mL THF. The solution was added into 500 mL cold methanol with rapid stirring to form the white precipitate. The formed precipitate was cold-filtered and dried overnight in a vacuum oven.

Supplementary Tables

Table S1. The Synthesis of C–Cl bonds-containing PMMA via FRP ^a

Entry	R	$n_0(\text{MMA})/n_0(\text{RCA})/n_0(\text{AIBN})$ (mmol)	M_n (kg/mol)	D	copolymer
1	2-Adamantyl	100/5/0.4	40.8	1.8	PMMA ₃₅₈ -2-ADCA _{20.5}
2	methyl	100/5/0.4	41.2	2.0	PMMA ₃₇₈ -MCA _{28.2}
3	methyl	100/2.6/0.4	57.0	1.8	PMMA ₅₃₄ -MCA _{29.3}
4	methyl	100/10/0.4	41.5	1.9	PMMA ₃₄₇ -MCA _{55.5}
5 ^b	methyl	100/5/0.2	382	2.2	PMMA ₃₄₂₃ -MCA ₃₂₆
6 ^b	methyl	200/5/0.04	771	1.7	PMMA ₆₇₀₈ -MCA ₈₁₆
7 ^b	methyl	200/5/0.04	1010	1.6	PMMA ₈₈₅₁ -MCA ₁₀₂₈

^a Reaction condition: $n(\text{MMA}) = 100$ mmol, $V_{\text{EA}} = 50$ ml, 65 °C, 24 h. ^b $n(\text{MMA}) = 100$ mmol, bulk polymerization, 2 h.

Table S2. The Synthesis of C–Cl bonds-containing PMMA via ATRP^a

Entry	$n_0(\text{MMA})/n_0(\text{ECPA})$	t (h)	Conv. MMA^b (%)	M_n (kg/mol)	D	polymer
1	500	23	95	46.0	1.1	PMMA ₄₅₇ -Cl
2	100	10	72	7.70	1.2	PMMA ₇₅ -Cl

^a Reaction condition: $n_0(\text{MMA})/n_0(\text{CuCl}_2)/n_0(\text{PMDETA})/n_0(\text{Sn}(\text{EH})_2) = 633/1.0/1.7/0.4$, $n_0(\text{MMA}) = 19$ mmol, $V_{\text{DMF}} = 2$ mL, 70 °C, 10 h. ^b Determined by ¹H NMR.

Table S3. The Catalyst Components for the Depolymerization of PMMA₃₅₈-2-ADCA_{20.5}^a

Run	CuBr (mmol)	CuBr ₂ (mmol)	Ligand (mmol)	Metal(0) (mmol)	Conv. _{depol.} ^b (%)
1	\	0.011	SaBOX (0.022)	Cu(0) (0.047)	19
2	\	\	SaBOX (0.022)	Cu(0) (0.047)	29
3	\	\	dNbpy (0.022)	Cu(0) (0.047)	20
4	\	\	PMDETA (0.022)	Cu(0) (0.047)	15
5	\	\	\	Cu(0) (0.047)	35
6	\	0.011	\	Cu(0) (0.047)	23
7	0.022	\	\	\	7
8	\	\	\	Cu(0) (0.280)	40
9	\	\	\	Fe(0) (0.280)	0

^a Reaction condition: $m_{\text{polymer}} = 100$ mg, [MMA units] = 439 mM, $V_{\text{DMSO}} = 2$ mL, 120 °C, 10 h. ^b The depolymerization conversion measured by ¹H NMR as the decrease in MMA units relative to mesitylene as internal standard.

Table S4. The Conditions for the Depolymerization of PMMA₃₅₈-2-ADCA_{20.5}^a

Run	T (°C)	Solvent	n(Cu(0)) (mmol)	[MMA unit] (mM)	Conv. depol. ^b (%)
1	65	DMSO	0.280	439	0
2	100	DMSO	0.280	439	8
3	120	DMSO	0.280	439	40
4	160	DMSO	0.280	439	62
5	160	DMSO	0.110	439	55
6	160	DMSO	0.440	439	61
7	160	DMSO	0.880	439	60
8	160	NMP	0.280	439	7
9	160	GVL	0.280	439	7
10	160	TEGDME	0.280	439	19
11	160	TMSO	0.280	439	53
12	160	Tetramethylene sulfone	0.280	439	16
13	160	TCB	0.280	439	6
14	160	DMSO	0.280	96.5	55
15	160	DMSO	0.280	219	62
16	160	DMSO	0.280	877	56

^a Reaction condition: $V_{\text{Sol.}} = 2$ mL, 160 °C, 10 h. ^b The depolymerization conversion measured by ¹H NMR as the decrease in MMA units relative to mesitylene as internal standard.

Table S5. The Synthesis of C–Cl bonds-containing PMMA via the copolymerization of recovered MMA or virgin MMA with MCA^a

Run	MMA	M_n (kg/mol)	D	transmittance	T_g (°C)	T_{d5} (°C)
1	recovered MMA	91.4	1.73	97%	124	249
2	virgin MMA	71.9	1.60	94%	122	230

^a Reaction condition: n(MMA) = 10 mmol, n(MCA) = 0.5 mmol, n(AIBN) = 0.1 mmol, $V_{\text{EA}} = 1$ mL, 65 °C, 4 h.

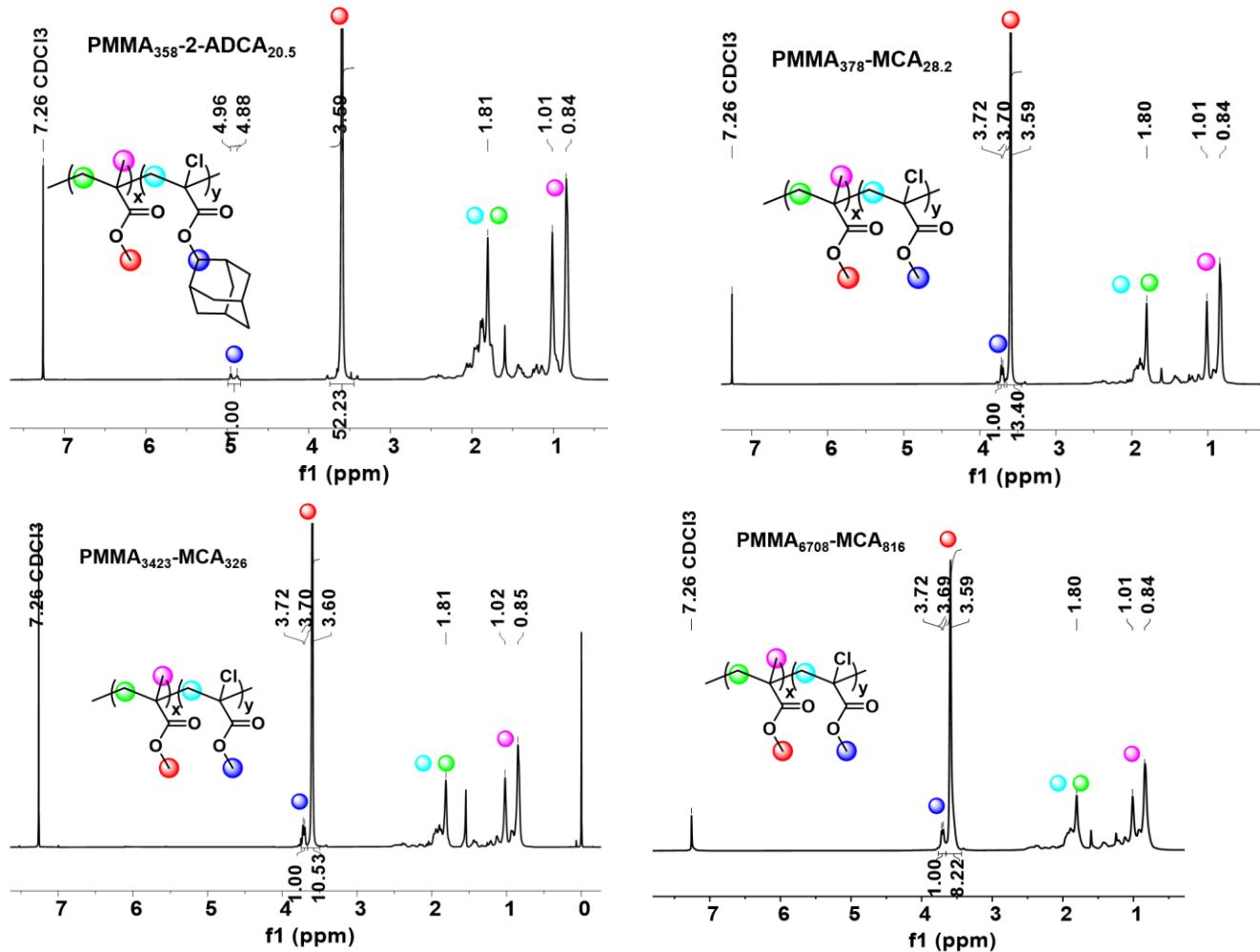
Table S6. The recycling and reuse of copper gauze catalyst in a sealed depolymerization system of PMMA₁₆₆₁-MCA₂₄₆^a

Run	Cu(0)	cycle count	Conv.depol. ^d (%)
1 ^b	powder	/	73
2 ^c	gauze	cycle 1	68
3 ^c		cycle 2	63

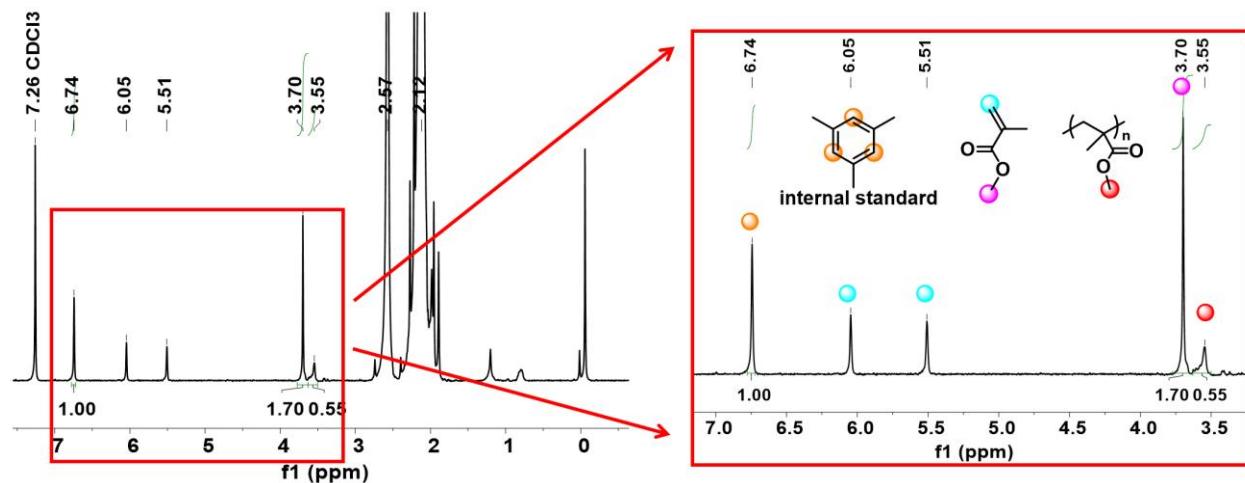
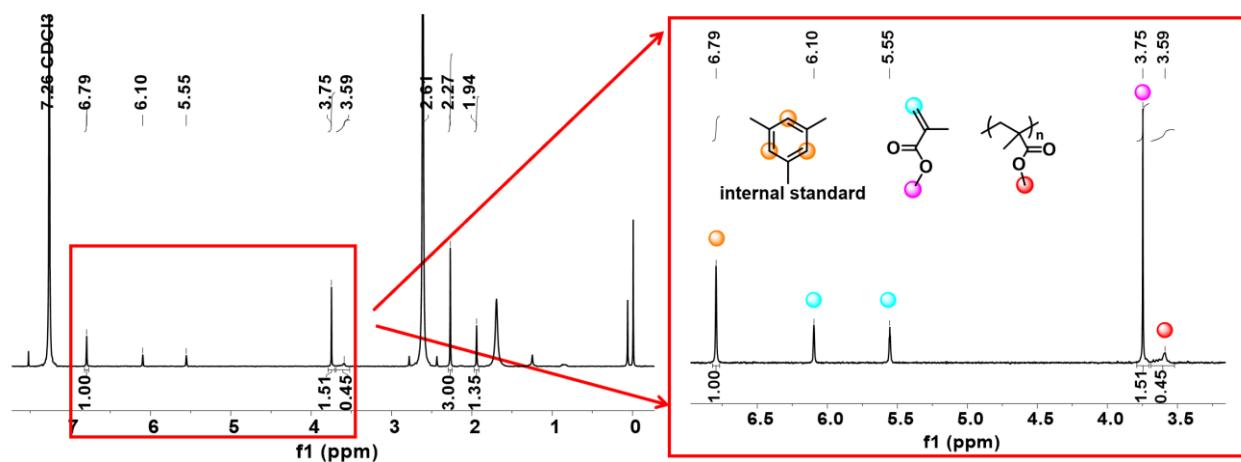
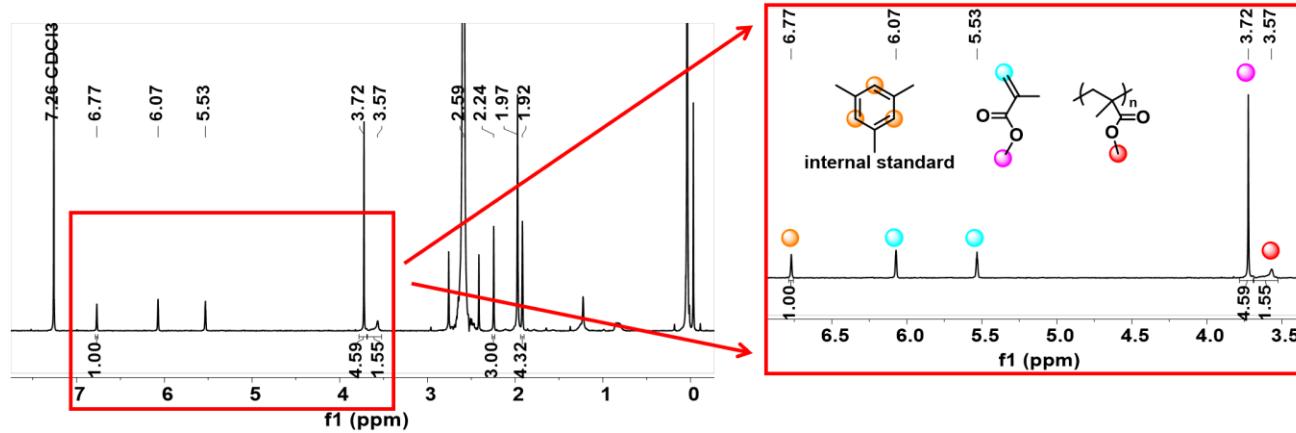
^a $m_{\text{polymer}} = 100 \text{ mg}$, 160 °C, using DMSO as solvent, 4 h, [MMA unit]₀ = 429 mM. ^b $m_{\text{Cu(0) powder}} = 17.8 \text{ mg}$.

^cThe initial weight of the copper gauze is 660 mg, with a recovery rate of 99.7% in recovery cycle.

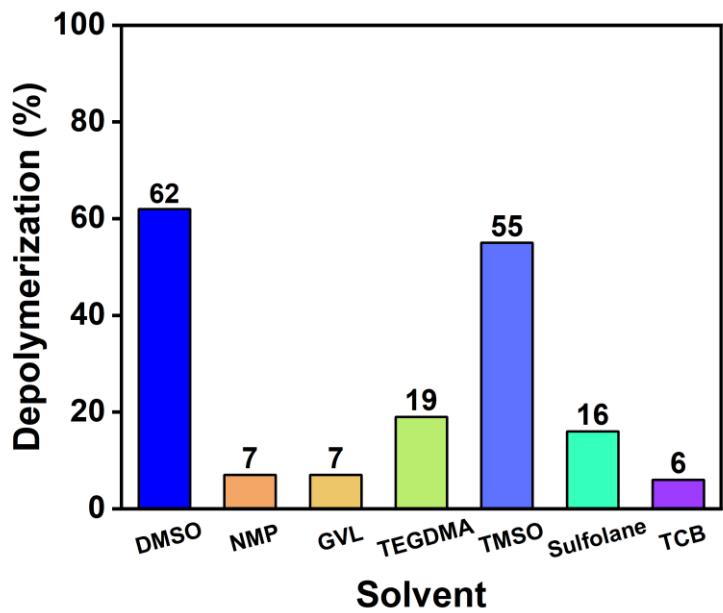
^dThe depolymerization conversion measured by ¹H NMR as the decrease in MMA units relative to mesitylene as internal standard.


Table S7. The recycling and reuse of the entire depolymerization system (including catalyst and solvent) in a sealed depolymerization system of PMMA₃₇₈-MCA_{28.2}^a

Run	cycle count	Conv.depol. ^b (%)
1	cycle 1	54
2	cycle 2	59
3	cycle 3	67




^a $m_{\text{polymer}} = 100 \text{ mg}$, 180 °C, $m_{\text{Cu(0) powder}} = 17.8 \text{ mg}$, [MMA unit]₀ = 459 mM, using DMSO as solvent, 2 h.

^bThe depolymerization conversion measured by ¹H NMR and calculated based on the yield of the MMA monomer.


Supplementary Figures

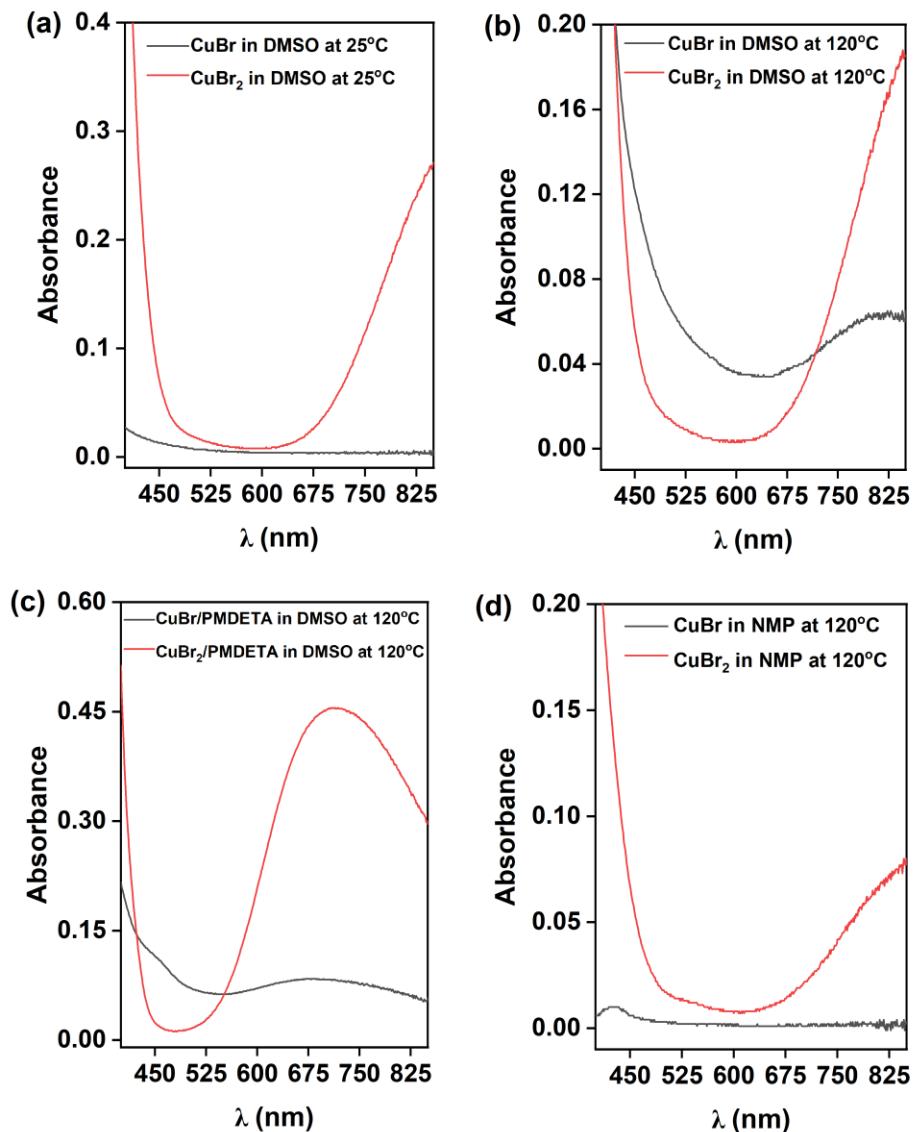
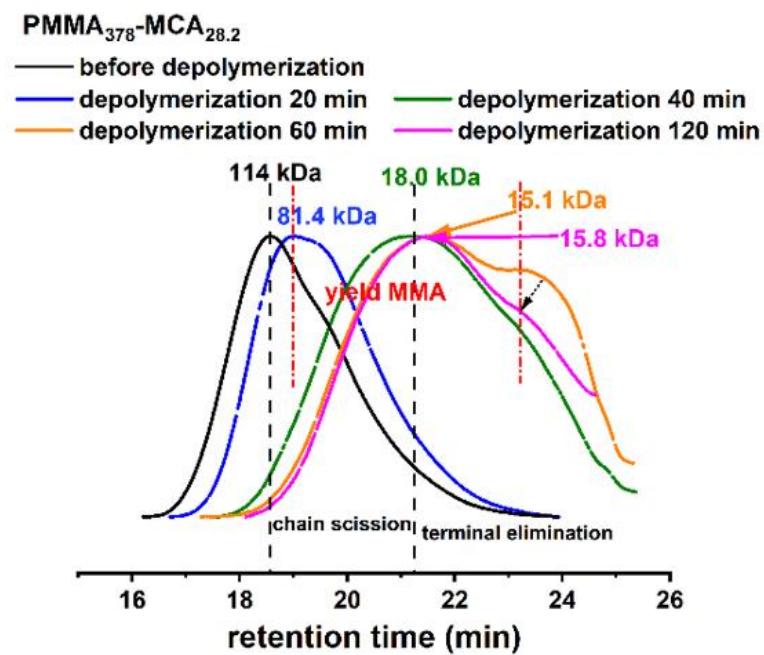
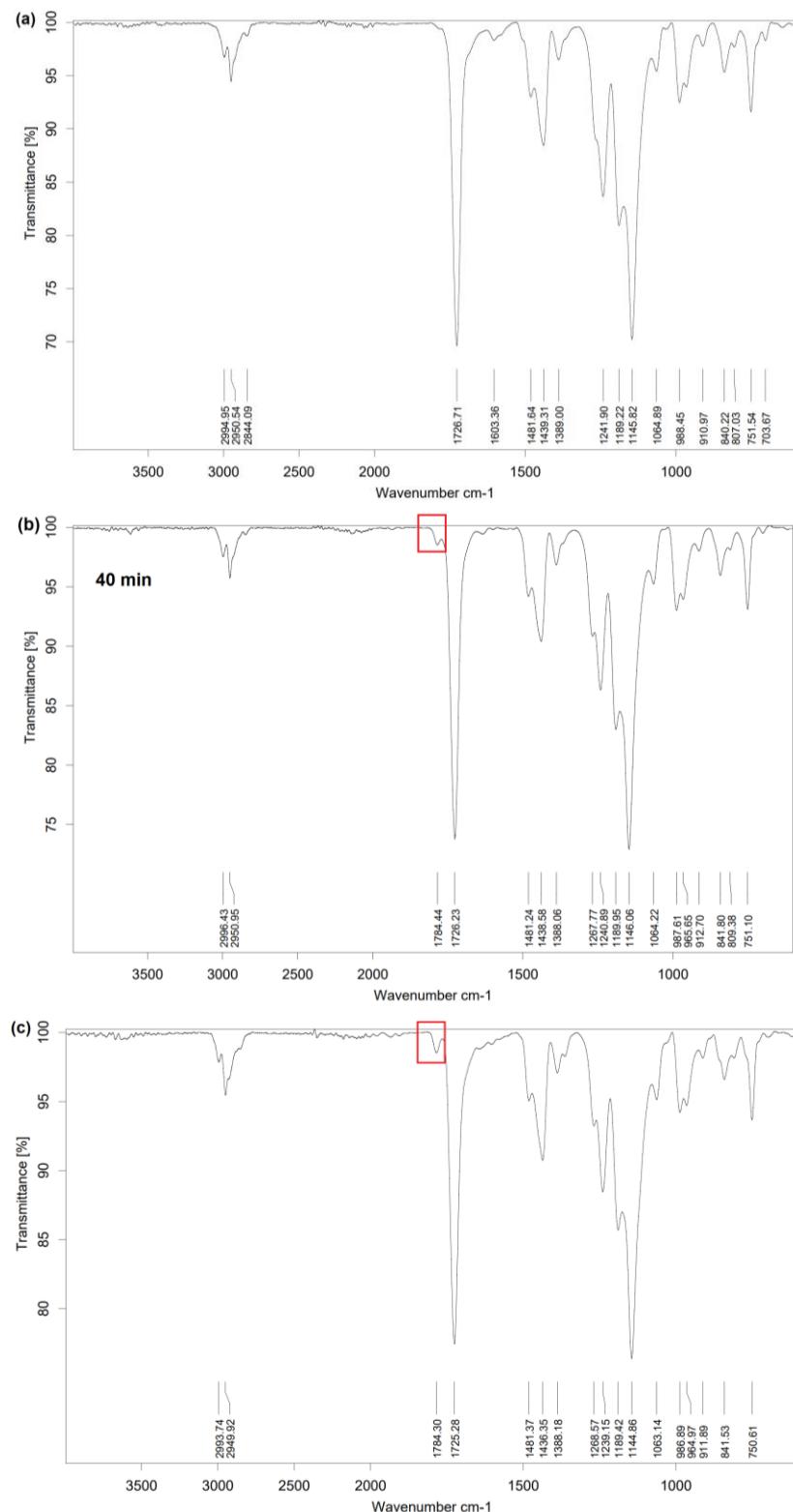
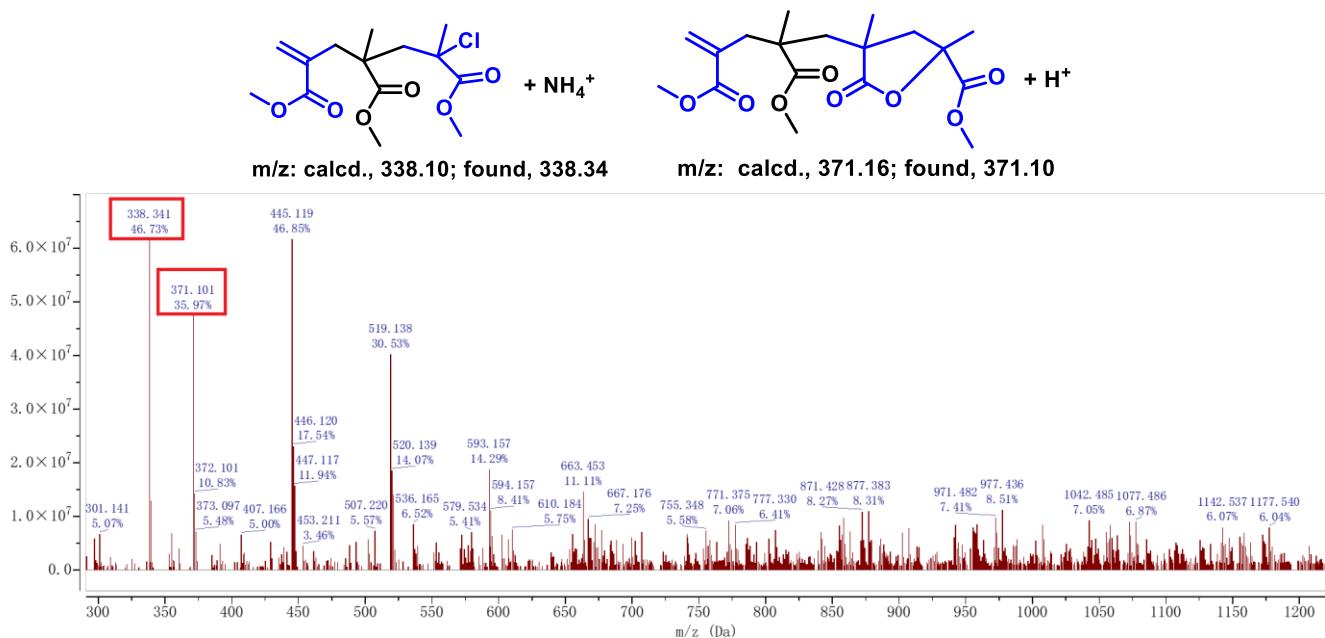
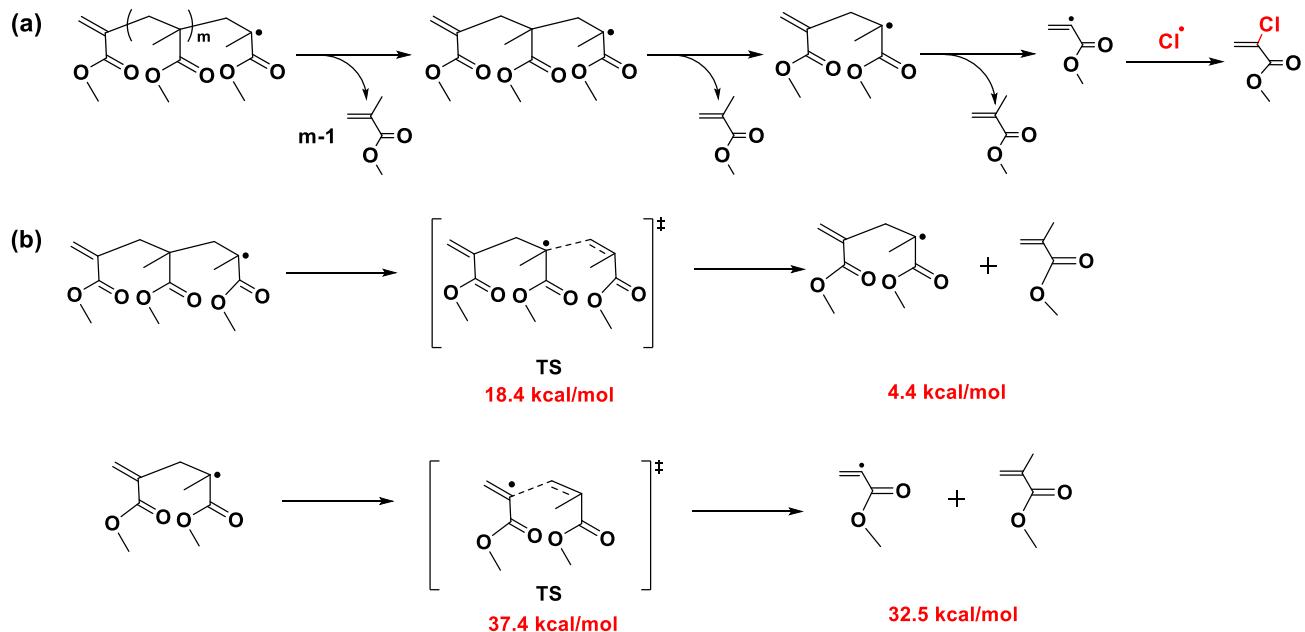

Figure S1. Quantitative ^1H NMR spectra of typical PMMA_x-RCA_y


Figure S2. Quantitative ^1H NMR spectra of typical depolymerization system (Table 1, runs 8, 10 and 11; 25 μL mesitylene, 120 mg polymer for run 8, 40 mg polymer for run 10, 50 mg polymer for run 11)


Figure S3. Effect of solvent on the depolymerization of PMMA₃₅₈-2-ADCA_{20.5} (Table S4)


Figure S4. UV-VIS spectra of (a) CuBr₂ (0.0025 mmol/mL, red) and CuBr (0.02 mmol/mL, black), stirring in DMSO at 25°C for 4 h; (b) CuBr₂ (0.0025 mmol/mL, red) and CuBr (0.02 mmol/mL, black), stirring in DMSO at 120°C for 4 h; (c) CuBr₂/PMDETA (0.0025 mmol/mL, red) and CuBr/PMDETA (0.02 mmol/mL, black), stirring in DMSO at 120°C for 4 h; (d) CuBr₂ (0.0025 mmol/mL, red) and CuBr (0.02 mmol/mL, black), stirring in NMP at 120°C for 4 h. NOTE: By comparing the relative absorption intensity of the Cu(II) signal generated via disproportionation in the CuBr system to that in the CuBr₂ system, it is evident that elevated temperatures facilitate the disproportionation reaction and the solvent DMSO is essential for efficient disproportionation. Under these reaction conditions, the addition of ligand does not promote disproportionation. These results are in agreement with the findings from the depolymerization reactions and align with the activation mechanism catalyzed by Cu(0).


Figure S5. The reaction device for the depolymerization via intermittent evaporation


Figure S6. The variation of polymer molecular weight over time during depolymerization of PMMA₃₇₈-MCA_{28.2}

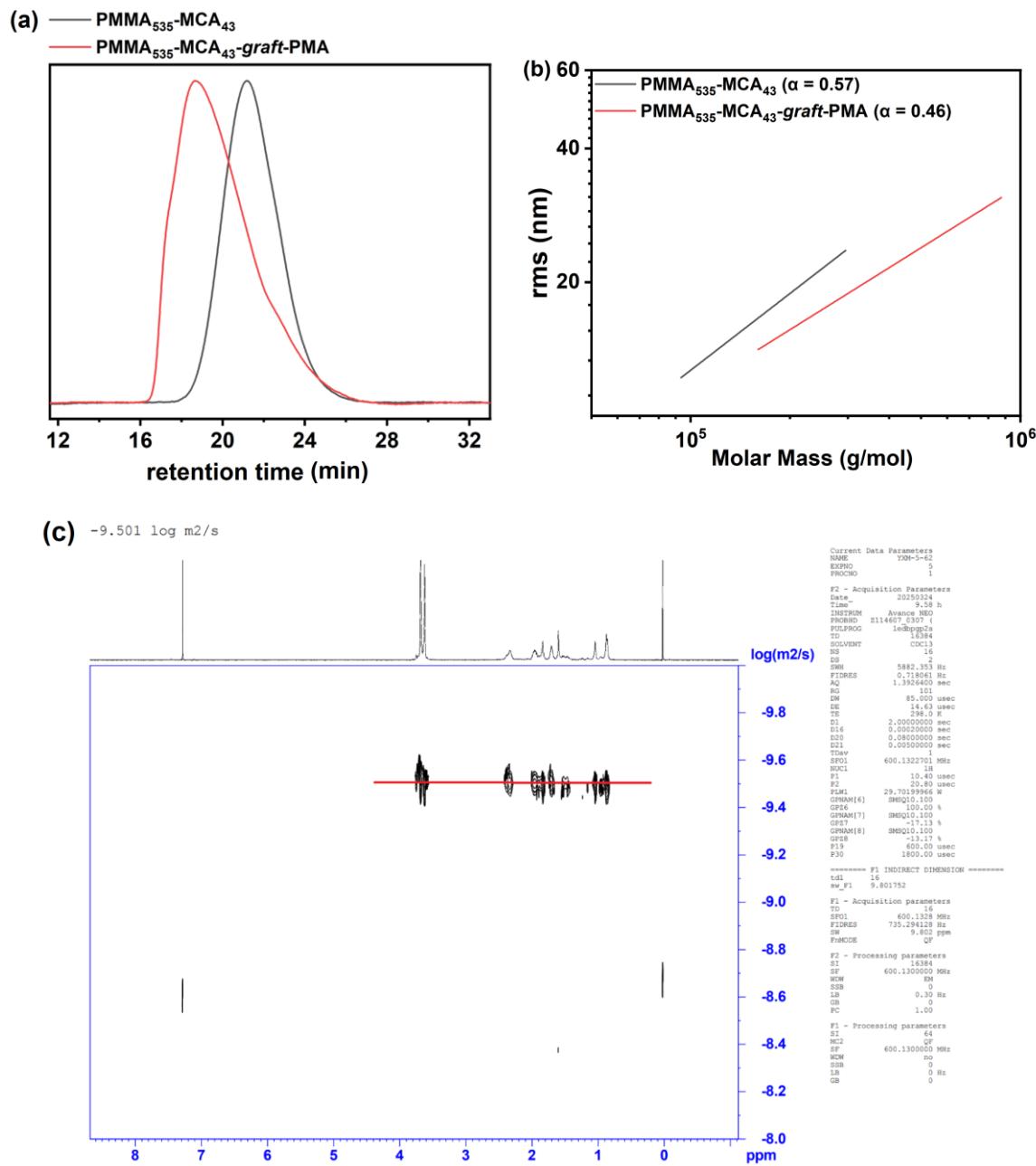

Figure S7. The variation of the infrared spectra of the remaining polymer during the depolymerization of PMMA₃₇₈-MCA_{28.2}: (a) 20 min, (b) 40 min, (c) 2 h. NOTE: According to the reference³, the newly-generated carbonyl signal at $\sim 1784\text{ cm}^{-1}$ is attributed to lactonization of the chain-end, leading to the loss of chain-end functionality.

Figure S8. The mass spectrum of the remaining polymer during the depolymerization of PMMA₃₇₈-MCA_{28.2} (2 h).

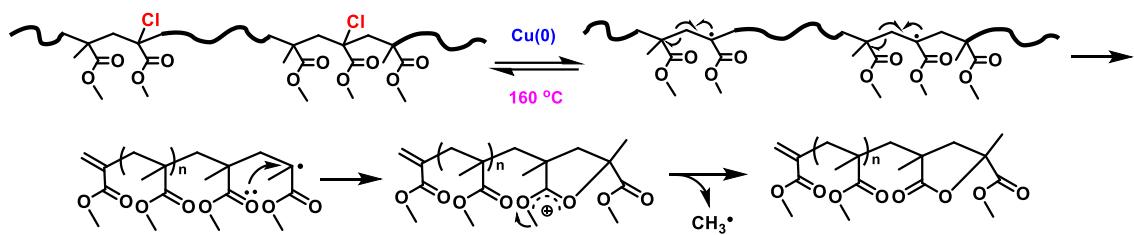


Figure S9. (a) The formation of MCA monomer during depolymerization. (b) DFT calculations for the formation of methacrylate alkyl radical versus acrylate vinyl radical during depolymerization.

Figure S10. (a) GPC_{LS} curves and (b) rms conformation plots of PMMA₅₃₅-MCA₄₃ and PMMA₅₃₅-MCA₄₃-graft-PMA. (c) The DOSY NMR (CDCl₃) spectrum of PMMA₅₃₅-MCA₄₃-graft-PMA.

Supplementary Scheme

Scheme S1. Proposed mechanism of lactonization

Supplementary References

1. Y. Ma, Y.-N. Zhao, X.-M. Yang, J.-F. Li, X.-Y. Wang, Y. Tang, *Macromolecules* **2023**, *56*, 7032.
2. V. Percec, T. Guliashvili, J. S. Ladislaw, A. Wistrand, A. Stjerndahl, M. J. Sienkowska, M. J. Monteiro, S. Sahoo, *J. Am. Chem. Soc.* **2006**, *128*, 14156.
3. M. R. Martinez, D. Schild, F. De Luca Bossa, K. Matyjaszewski, *Macromolecules* **2022**, *55*, 1059