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Fig. 8 Bipartite directed graph of the toluene diisocyanate value chain case study, comprising 27 nodes

Overview of RXNMapper

Natural Language Processing (NLP) is a subfield of machine learn-
ing that enables computers to understand, interpret, and generate
human language. NLP includes tasks such as text analysis, lan-
guage translation, and question answering44. Within chemistry,
NLP is facilitated by SMILES notation, a text-based representation
that encodes chemical structures into strings, thus enabling com-
putational applications such as property prediction and chemical
compound generation45.
RXNMapper employs a self-supervised NLP technique called
masked language modeling, trained on 2.8 million chemical reac-
tions34. In this approach, certain atoms within reaction SMILES
strings are obscured, prompting the model to predict the missing
atoms based on contextual clues from surrounding atoms. This
method allows RXNMapper to implicitly learn chemical grammar
and complex reaction patterns from the data itself.

Transformer Neural Networks

Transformer neural networks, introduced in the landmark paper
“Attention Is All You Need”46, have emerged as a state-of-the-
art technique in NLP. Transformers differ significantly from tra-
ditional Recurrent Neural Networks (RNNs) through their use
of self-attention, enabling simultaneous processing of input se-
quences and effectively handling long-range dependencies.
RXNMapper utilizes the ALBERT (A Lite BERT) architecture, a
variant of the widely used BERT model known for bidirectional
context processing. ALBERT shares weights across layers during
training, resulting in a smaller model size that retains consistent
functionality across different layers and inputs43,47. This capabil-
ity is particularly valuable for accurately modeling complex chem-
ical reactions.
Performance assessments indicate RXNMapper’s high accuracy,
achieving correct atom mapping in 99.4% of tested reactions,
including diverse reaction types such as Diels-Alder reactions,
methylene transfers, and epoxidations22. However, the model oc-
casionally demonstrates inaccuracies, particularly regarding atom
ordering within rings, azide compounds, and the mapping of oxy-

gen atoms in reductions or Mitsunobu reactions.

Base Case: Entirely Fossil Feedstock
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Fig. 9 Sankey diagram visualizing results of base case linear program

solution. All carbon is fossil-sourced

In the Base Case, all carbon inputs are fossil-derived, giving a
product BCC of 0%. The Sankey diagram confirms that carbon
flows track exclusively through gray links; no biogenic carbon
enters the chain.

The base case scenario with the TDI value chain serves as the
first proof of concept for the framework. While developing the
linear program optimization for the final stage of the framework,
a step-by-step approach was taken to ensure the validity of the
method. The first use of the linear program was at the scale of
one node, allowing the results to be verified by hand to ensure
that the optimization program and implementation were working
as expected.

After confirming this, the next step was to trial a control study,
or base case, in which all carbon is fossil-derived. The purpose of
this was to check that the linear program was well-posed and that
the results were as expected. This also provided an opportunity
to consider how best to represent the results, as the immediate
output of the linear program is often unintuitive.
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