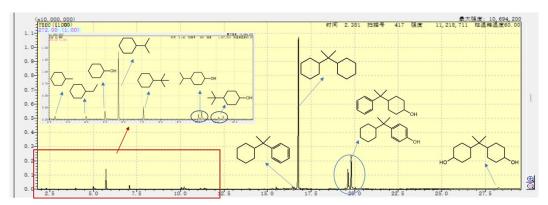
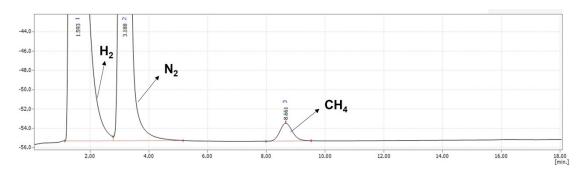
Supporting Information


Chemical recycling of polycarbonate waste into advanced aviation fuel candidates via nickel-oxygen vacancy dual sites

Yushuang Huang^{a,b,c}, Jiawei Xie^{a,c,d*}, Yisong Zhou^{a,b,c}, Qianqian Song^d, Yuan Lei^d, Chang-an Zhou^c, Chao Wang^c, Kui Ma^c, Lei Song^c, Hairong Yue^{a,c} and Ji-Jun Zou^e


- [a] Institute of New Energy and Low-Carbon Technology, Sichuan University, Sichuan 610207, China
- [b]College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Sichuan 610059, China
- [c] School of Chemical Engineering, Sichuan University, Sichuan 610065, China
- [d] State Key Laboratory of Advanced Polymer Materials (Sichuan University), Sichuan University, Sichuan 610065, China
- [e] School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- * Corresponding author: Jiawei Xie (xiejiawei@scu.edu.cn)

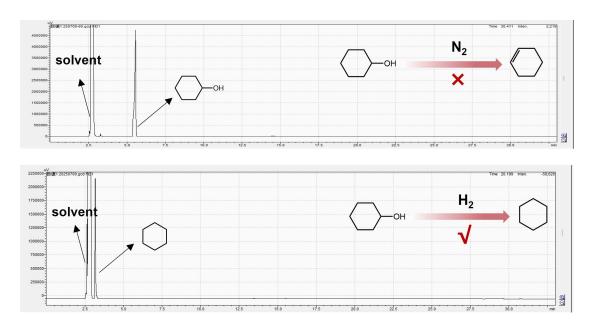

Figure S1. Photographs of polycarbonate (PC) powder and the obtained C15 dicycloalkane product.

Figure S2. GC-MS spectra of products detected in PC conversion. Reaction conditions: 0.3 g PC, 0.06 g 15Ni/CeO₂, 30 mL cyclopentane, 4 MPa H₂, 523 K.

Figure S3. GC chromatogram of the gas phase products from the HDO of PC over the 15Ni/CeO₂. Reaction conditions: 0.3 g PC, 0.06 g 15Ni/CeO₂, 30 mL cyclopentane, 4 MPa H₂, 523 K.

Figure S4. GC chromatogram of products using cyclohexanol as feedstock. Reaction conditions: 0.3 g cyclohexanol, 0.06 g 15Ni/CeO₂, 30 mL cyclopentane, N_2/H_2 atmosphere, 453 K.

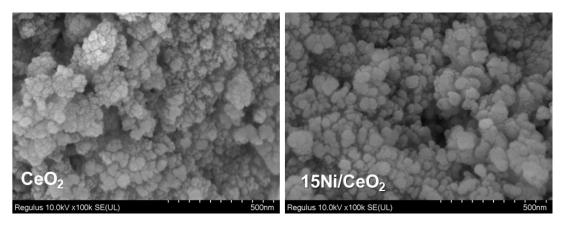


Figure S5. SEM images of CeO₂ and 15Ni/CeO₂.

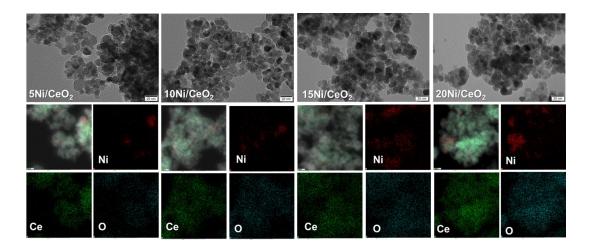
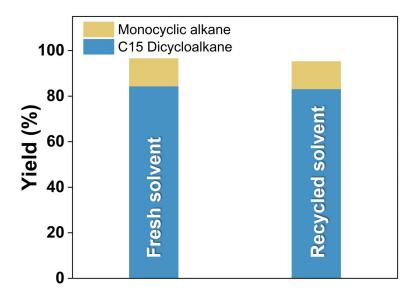



Figure S6. TEM images and EDS spectra of Ni/CeO $_2$ catalysts.

Figure S7. The HDO results of PC powder using the recycled solvent. Reaction conditions: 0.3 g PC, 0.06 g 15Ni/CeO₂, 30 mL cyclopentane/recycled cyclopentane, 4 MPa H₂, 523 K.

Table S1. Yield of saturated alkanes under different catalytic systems.

	Catalysts	Yield of saturated hydrocarbons (%)			
Entry		Monocyclic saturated alkanes	Bicyclic saturated alkanes	Total	Ref.
1	Rh/C + H-USY	/	86.9	86.9	1
2	Ru-Ni/Hβ	8.2	89.4	97.6	2
3	Ru-ReO _x /SiO ₂ +HZSM-5	5.7	93.4	99.1	3
4	Ni/HZSM-5	18.1	81.2	99.3	4
5	$Pd/C + La(OTf)_3$	4	95	99	5
6	This work	12.1	84.4	96.5	

Table S2. Properties and chemical composition of pristine PC powder.

Ayyana aa maalaaylan yyai aht 8	Chemical composition (%) b			
Average molecular weight ^a -	С	Н	О	
35976	74.58	5.35	17.75	

^a Measured by U.S. Agilent PL-GPC50 & Agilent PL-GPC220 gel permeation chromatography (GPC).

^b Measured by an elemental analyzer (EA, Elementar Unicube, Germany).

Table S3. Characteristics of Ni/CeO₂ catalysts.

	Ni	BET Surface area (m ² /g) ^b			Pore size	D_{Ni}
Sample	content (wt%) a	Micropore area	External area	Total surface area	(nm) °	(%) d
5Ni/CeO ₂	4.30	2.56	41.87	44.44	11.1261	0.58
10Ni/CeO ₂	10.36	2.24	44.23	46.46	10.3561	0.52
15Ni/CeO ₂	15.76	1.88	42.77	44.65	10.3778	0.38
20Ni/CeO ₂	21.04	1.84	44.78	46.62	8.8266	0.28

^a Ni content of catalyst was determined by ICP-OES.

^b Micropore surface area and external surface area were calculated by t-plot method, specific surface area was calculated by BET equation.

^c Pore size was determined using the BJH.

^d The Ni dispersions was determined by H₂ plus chemisorption.

References

- L. Wang, G. Li, Y. Cong, A. Wang, X. Wang, T. Zhang, N. Li, *Green. Chem.*, 2021,
 3, 3693-3699.
- 2 A. K. Manal, G. V. Shanbhag, R. Srivastava, *Appl. Catal. B: Environ.*, 2023, **338**, 123021.
- 3 M. Soltani, J. E. Rorrer, Angew. Chem. Int. Ed., 2023, 62, e202314530.
- 4 J. Liu, J. Wei, X. Feng, M. Song, S. Shi, S. Liu, G. Liu, *Appl. Catal. B: Environ.*, 2023, **338**, 123050.
- 5 J. Luo, J. Deng, ACS Sustain. Chem. Eng., 2023, 11, 17120-17129.