

Multi-field Coupling of Photothermal and Magnetism for Boosting the Electrocatalytic Hydrogen Evolution Reaction Performance

Chong Liu¹, Lianqing Yu^{*1}, Nannan Chen¹, Yichao Huang^{*1}, Yaping Zhang²,
Haifeng Zhu²

1. State Key Laboratory of Chemical Safety, Shandong Key Laboratory of Intelligent Energy Materials, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong, 266580, P. R. China

2. College of Science, China University of Petroleum (East China), Qingdao 266580 China.

*Corresponding author Lianqing Yu Email: iyy2000@163.com

Yichao Huang Email: yichaoh@upc.edu.cn

Supplementary Methods

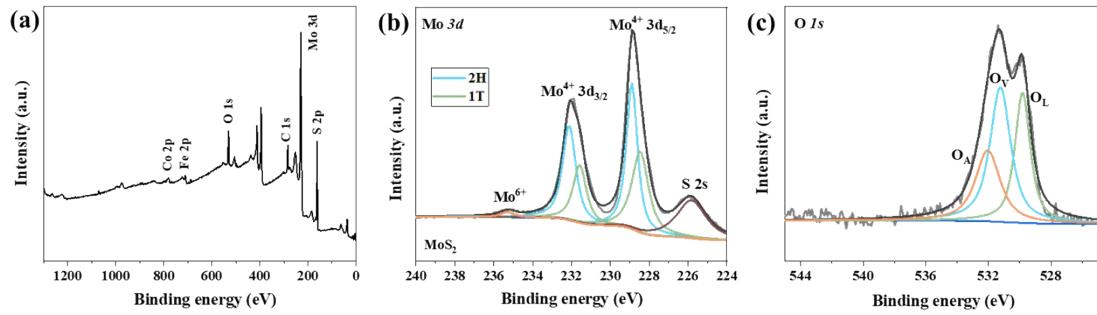
Chemicals and materials

Sodium molybdate (VI) dihydrate ($\text{Na}_2\text{MoO}_4 \cdot 2\text{H}_2\text{O}$), thiourea ($\text{CH}_4\text{N}_2\text{S}$), ferric chloride hexahydrate ($\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$), cobalt nitrate hexahydrate (II) ($\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$), sodium hydroxide (NaOH), and ethanol ($\text{C}_2\text{H}_5\text{OH}$) were purchased from Aladdin company, (Shanghai, China). The above chemicals were used as received.

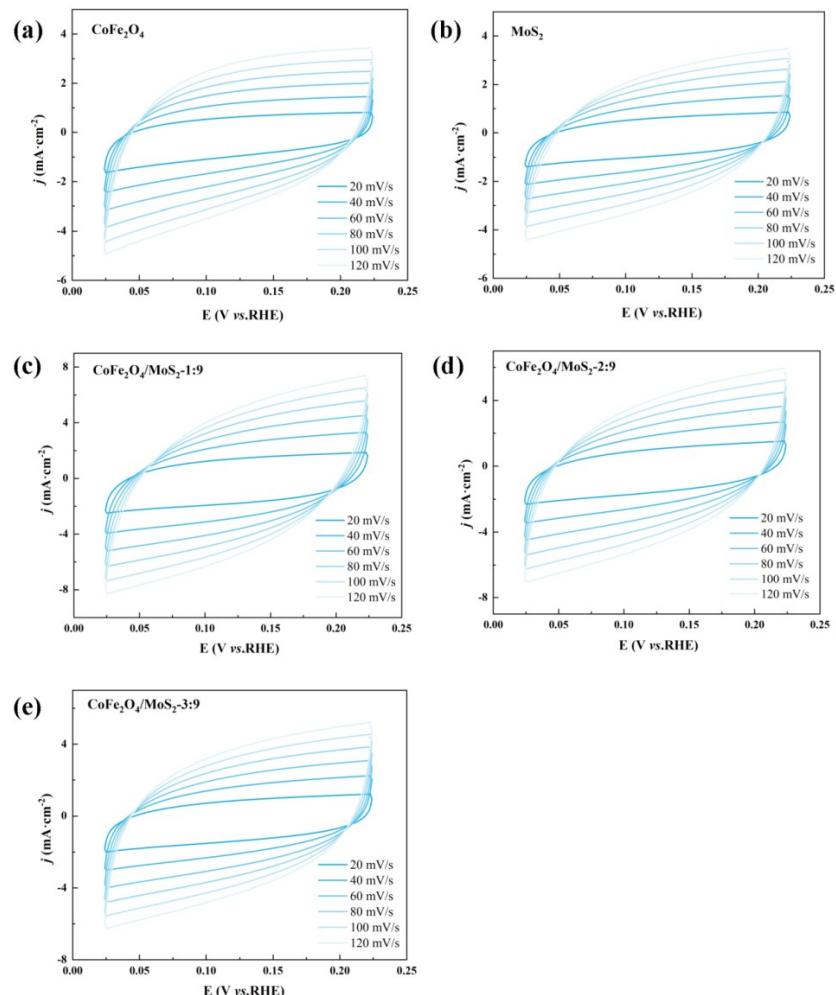
Materials characterization

The crystalline structures and elemental composition of the sample were determined by X-ray diffraction (XRD) using $\text{Cu K}\alpha$ radiation. The morphologies and chemical composition were investigated by scanning electron microscopy (SEM, S-4800, Hitachi) and transmission electron microscopy (TEM, JEM-2100, Japan) coupled with EDS-mapping. X-ray photoelectron spectroscopy (XPS) measurements were performed on a Thermo Scientific K-Alpha XPS spectrometer using an $\text{Al K}\alpha$ X-ray

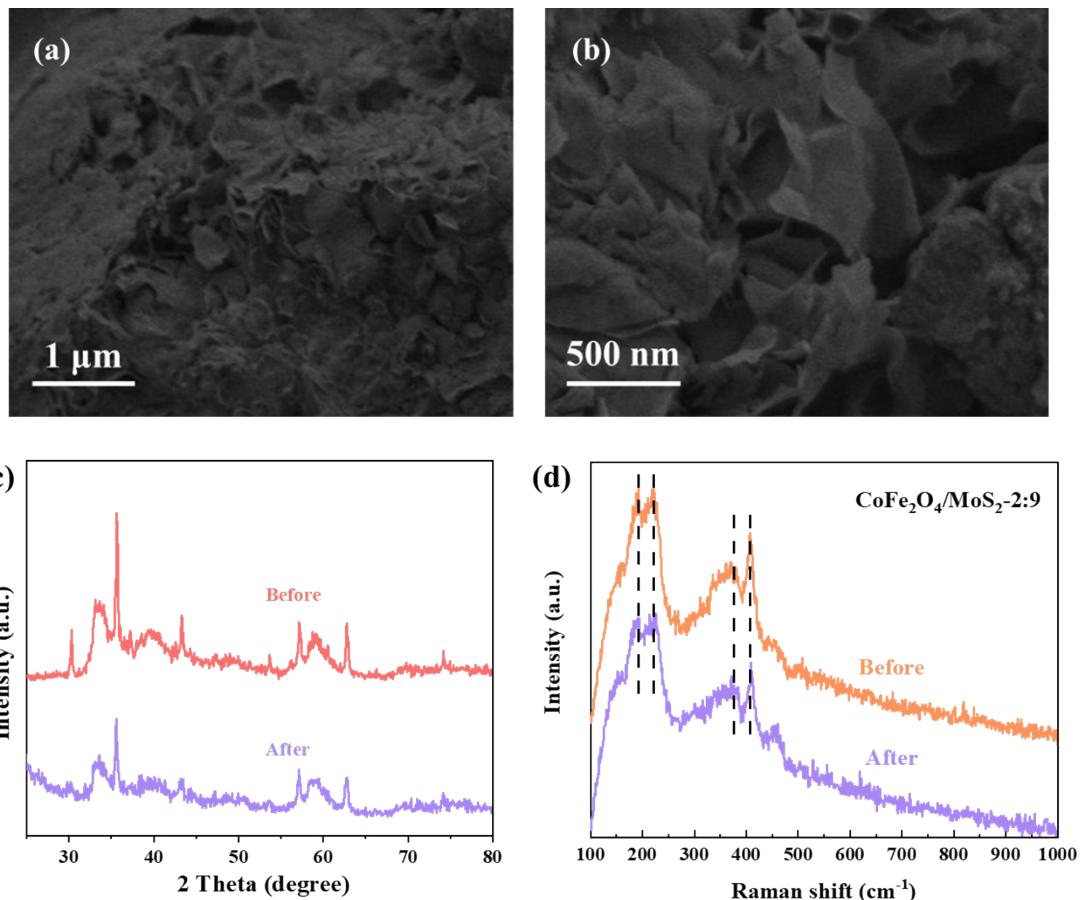
source. All of the binding energies were calibrated according to the reference energy of C 1s (C 1s = 284.5 eV). The optical performance of the products was assessed using UV/Vis diffuse reflectance spectroscopy (DRS).

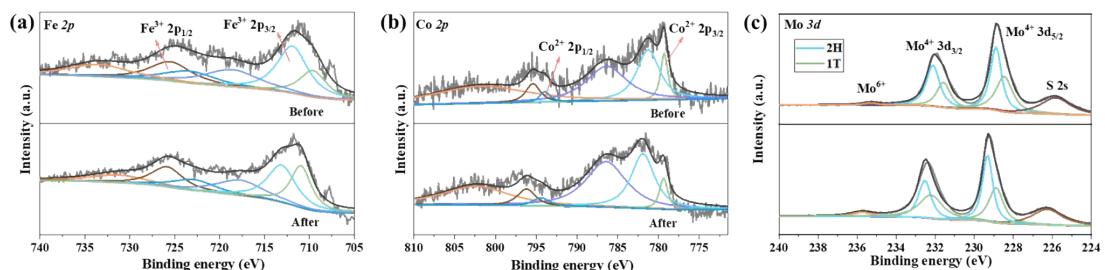

Electrochemical characterization

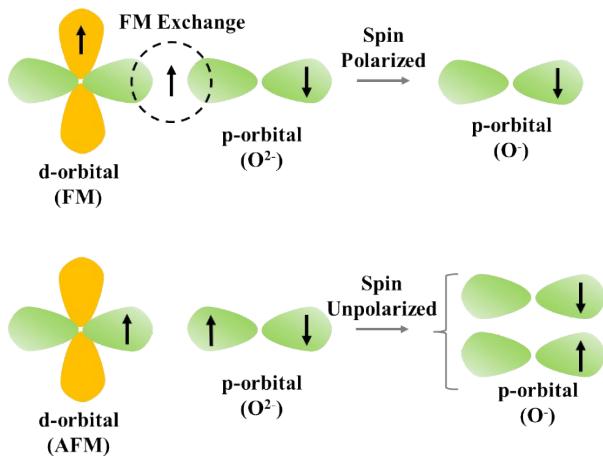
All electrochemical tests were conducted using an electrochemical workstation (CHI 760E, Chenhua, Shanghai) in a standard three-electrode set-up at room temperature. A graphite rod and a saturated Ag/AgCl electrode were employed as the counter and reference electrodes, respectively, while the prepared electrocatalysts were employed directly as the working electrodes. Water splitting experiments were performed in 1 M KOH solution at room temperature. For the HER test, the linear sweep voltammograms (LSV) were recorded from -1.6 V to 0 V at a scan rate of 5 mV·s⁻¹. The potentials were converted to the RHE scale using the following Nernst equation: (E(RHE) = E(Ag/AgCl) + 0.059 pH + 0.197). The electrochemical impedance spectroscopy (EIS) was performed over a frequency range of 100 kHz to 0.01 Hz, with the applied potential being an open circuit potential. To estimate the electrochemically active surface area (ECSA), the C_{dl} values were obtained by collecting CVs measurements performed at various scan rates of 20, 40, 60, 80, 100 and 120 mV·s⁻¹ under the potential window of -0.9 to -0.7 V vs. RHE. A long-term stability test was carried out with a chronopotentiometric (CP) technique in 1.0 M KOH electrolyte with the current density of 10 mA·cm⁻².

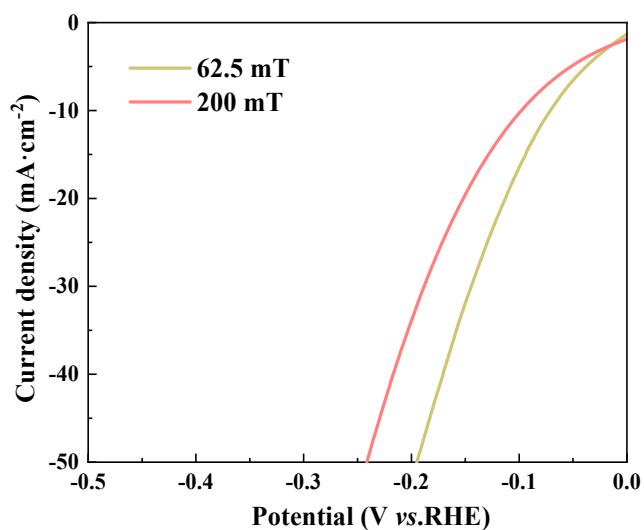

Computational Method

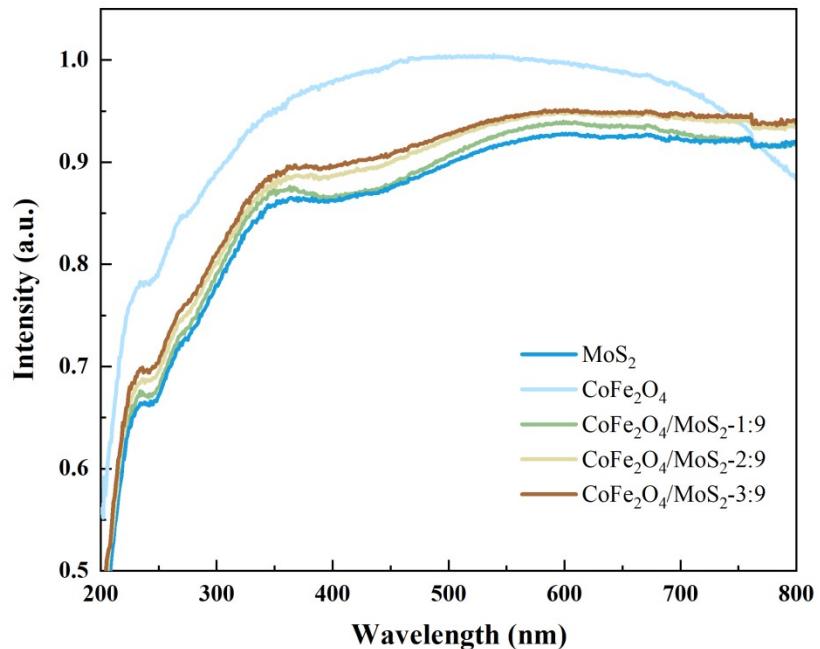
All first-principle calculations were conducted using density functional theory (DFT) within the Cambridge Sequential Total Energy Package (CASTEP) module of Materials Studio. The generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof (PBE) scheme was adopted to calculate the exchange correlation energies. A cut-off energy of 450 eV was used for the plane-wave basis set. A 3 × 3 × 1 Monkhorst-Pack grid was adopted to sample the Brillouin zone. The convergence thresholds for


energy and Hellmann–Feynman forces were set to 10^{-5} eV and 0.01 eV·Å $^{-1}$, respectively. The electronic self-consistent field (SCF) tolerance was set to 1.0×10^{-6} eV per atom.


Fig. S1. (a) XPS total survey of CoFe₂O₄/MoS₂. High-resolution XPS spectra (b) Mo 3d and (c) O 1s of CoFe₂O₄/MoS₂.


Fig. S2. Cyclic voltammetry curves of CoFe₂O₄ (a), MoS₂ (b), CoFe₂O₄/MoS₂-1:9 (c), CoFe₂O₄/MoS₂-2:9 (d), and CoFe₂O₄/MoS₂-3:9 (e) at different scanning rates.


Fig. S3. (a-b) SEM images, (c) XRD patterns and (d) Raman spectra of CoFe₂O₄/MoS₂-2:9 after stability tests.


Fig. S4. High-resolution XPS spectra (a) Fe 2p, (b) Co 2p and (c) Mo 3d of CoFe₂O₄/MoS₂ before and after stability tests.

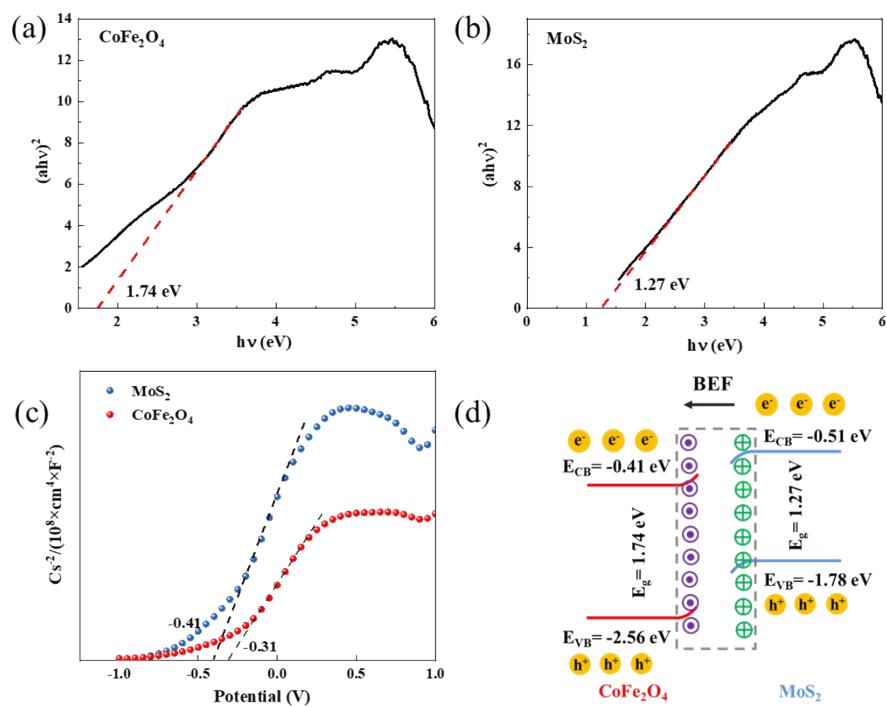

Fig. S5. Schematic diagram of spin electron transfer in catalyst.

Fig. S6. HER polarization curves of $\text{CoFe}_2\text{O}_4/\text{MoS}_2$ -2:9 under magnetic field of 62.5 and 200 mT.

Fig. S7. UV-vis-NIR DRS spectra.

Fig. S8. Band-gap energies for (a) CoFe₂O₄ and (b) MoS₂. (c) Mott-Schottky plots. (d) Schematic representation of the charge transfer process

Table S1 Values of resistance (R_s), and charge transfer resistance (R_{ct}) obtained after fitting the

Nyquist plots determined on different samples.

Electrocatalysts	R_s (Ω)	R_{ct} (Ω)
MoS ₂	1.181	2.525
CoFe ₂ O ₄	1.491	1.204
CoFe ₂ O ₄ /MoS ₂ -1:9	1.428	0.466
CoFe ₂ O ₄ /MoS ₂ -2:9	1.744	0.231
CoFe ₂ O ₄ /MoS ₂ -3:9	1.374	0.563

Table S2. Summary of several recently representative reported HER electrocatalysts employed in acidic and alkaline electrolytes.

Catalyst	Electrolyte	Overpotemtial (mV)	Tafel slope (mV·dec ⁻¹)	Reference
CoFe ₂ O ₄ /MoS ₂ -2:9	1M KOH	64	98	This work
1T-MoS ₂ /NiS ₂	1M KOH	116	72	¹
R-MoS ₂ @NF	1M KOH	71	100	²
Co ₃ O ₄ /MoS ₂	1M KOH	205 mV at 20 mA·cm ⁻²	98	³
meso-Fe- MoS ₂ /CoMo ₂ S ₄	1M KOH	122	90	⁴
MoS ₂ /NiFe ₂ O ₄	1M KOH	190	/	
FeMn-LDH/MoS ₂	1M KOH	120	112	⁵
Co ₉ S ₈ /MoS ₂	0.5 M H ₂ SO ₄	233	118	⁶
MCM@MoS ₂ -Ni	0.5 M H ₂ SO ₄	161	179	⁷

References

1. X. Chen, Z. Wang, Y. Wei, X. Zhang, Q. Zhang, L. Gu, L. Zhang, N. Yang and R. Yu, *Angew. Chem., Int. Ed.*, 2019, **58**, 17621-17624.
2. M. A. R. Anjum, H. Y. Jeong, M. H. Lee, H. S. Shin and J. S. Lee, *Adv. Mater.*, 2018, **30**, 1707105.
3. A. Muthurasu, V. Maruthapandian and H. Y. Kim, *Appl. Catal., B*, 2019, **248**, 202-210.
4. Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia, T. Chen, Y. Bando, Y.-M. Kang, M. S. A. Hossain, Y. Sugahara and Y. Yamauchi, *ACS Nano*, 2020, **14**, 4141-4152.
5. S. Kumar, S. Raju, S. Marappa, M. S, V. D R, D. M and B. H, *ACS Appl. Energy Mater.*, 2024, **7**, 9872-9881.
6. T.-T. Chen, R. Wang, L.-K. Li, Z.-J. Li and S.-Q. Zang, *J. Energy Chem.*, 2020, **44**, 90-96.
7. H. Zhang, L. Yu, T. Chen, W. Zhou and X. W. Lou, *Adv. Funct. Mater.*, 2018, **28**, 1807086.