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Table S1 Effect of constituent ratios on HMCs structure parameters.

. Pore Vpore
H,O/EtOH Resorcinol NH;-H,O . SBET
Sample TPOS(mL) size . (cm’ g
(v/v) (8) (mL) (m* g™) :
(nm) )

HMCs-5 10/70 0.7 04 3 5.06 1123.09 2.95
HMCs-

10 20/60 3.5 04 3 10.29 1302.82 2.83
HMCs-

(s 40/120 6.92 0.8 6 13.05 1047.91 3.71
HMCs-

20 55/110 6.92 0.8 6 18.20 1030.02 2.58

Table S2 Calculated Pd content of PA/HMCs-x and PAO/HMCs-x based on ICP-OES.

Catalysts Pd contents (%) Catalysts Pd contents (%)
Pd/HMCs-5 9.98 PdO/HMCs-5 11.34
Pd/HMCs-10 9.29 PdO/HMCs-10 11.31
Pd/HMCs-15 9.79 PdO/HMCs-15 11.99
Pd/HMCs-20 10.71 PdO/HMCs-20 13.02

Table S3 Textural parameters of HMCs and Pd/HMCs-x, PAO/HMCs-x.

Sample Sper (M2 g!) Vpore (cm® g1) Pore size (nm)
HMCs-5 1123.09 2.95 5.06
HMCs-10 1302.82 2.83 10.29
HMCs-15 1047.91 3.71 13.05
HMCs-20 1030.02 2.58 18.20
Pd/HMCs-5 784.48 1.31 7.04
Pd/HMCs-10 800.87 1.80 10.01
Pd/HMCs-15 706.39 1.53 9.57



Pd/HMCs-20 694.06 1.97 13.28

PdO/HMCs-5 1052.90 1.61 7.53
PdO/HMCs-10 997.64 2.04 10.74
PdO/HMCs15 911.54 1.96 10.83
PdO/HMCs-20 897.27 2.25 14.06

Table S4 Comparative catalytic performance of diverse catalysts in CO,RR.

E(V
Catalysts Electrolyte (V'vs j (mA cm?) FEco (%) Reference
RHE)

Pd(310) 0.1 M KHCO; -0.90 e 90.6 [1]
CuO-I0 0.1 M KHCO; -0.60 2.5 72.5 [2]
Co-COF 0.1 M KHCOs -0.67 90.0 [3]

Vo-rich ZnO 0.1 M KHCOs -1.10 13.1 83.0 [4]
NiPc-MDE
0.5 M KHCO;3 0.5 150.0 99.5 [5]
NTs
Ag@AgCIxC
0.5 M KHCO; -0.60 5.27 91.0 (6]
SNWAs
CulnNWs 0.5 M KHCO;3 -0.6 3.9 68.2 (7]
M-
salophen/CN 0.5 M KHCO3; -0.76 13.24 86.8 [8]
Ts
CoxNil-x/N-
0.5M NaHCOs3 -0.90 13.40 85.0 9]
CNFs
Sn/CuNFs 0.1 M NaHCO; -0.90 100.0 80.0 [10]
Sn/N-CNFs 0.1 M NaHCO; 0.69 11.0 91.0 [11]
NCNTs 0.1 M NaHCO; -0.26 80.0 [12]
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Table S5 Comparative catalytic performance of diverse catalysts in POR.

Catalysts Electrolyte Electric voltage j FE (%) Reference
2.5(mA
PdC 0.1M HCI1O4 1.4V vs. RHE : —PG [13]
mg'pq)
0.49(mA
PdO/C 0.1M HCI1O4 1.4V vs. RHE X —PG [13]
mg'pq)
0.2(mA
Pd Electrode 1 M HCIO4 1.2 Vvs RHE 2) —PG [14]
cmr
) phosphate
Pd Oxide 1.2 Vvs RHE e — [14]
buffer
1.1 Ag/AgCl
Ru-Pd 0.1 M CIO, Vivs AglagC S 20(PG) [15]
Ag-Pd 0.1 M ClO4 1.1 Vvs Ag/AgCl — 40(PG) [15]
0.1M PB
S 50(mA
PdPtOx/C 1.2 Vvs RHE 5 66+5(PO) [16]
+ACN em)
10(mA
Ag-V-O/GDL 0.IM PBS 1.0 V vs Ag/AgCl 2) 30.4(PO) [17]
cmr
0.49(mA
AgsPO4 0.IM PBS 2.2V vs RHE 2) 18.7(PO) [18]
cmr
4.0(mA .
PdO/HMCs-10 0.1 M PBS 1.6 V (vs. Ag/AgCl) 2) 47.11(PO) This work
cmr

Fig. S1 HRTEM images of as-prepared PA/HMCs-5 samples.



Fig. S4 HRTEM images of as-prepared Pd/HMCs-20 samples.



PdO/HMCs-5

F, & LI}
ot e x
a.‘ 8.6711@_;. Y
> i ..,"...."
< 2 g
P &
Y AL
w000 e

-

Fig. S7 HRTEM images of as-prepared PAO/HMCs-15 samples.
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Fig. S8 HRTEM images of as-prepared PAO/HMCs-20 samples.
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Fig. S9 LSV curves of PA/HMCs-x in Ar/CO,-saturated 0.5 M KHCO:s.
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Fig. S10 "HNMR spectra of Pd/HMCs-10.
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Fig. S11 Cyclic voltammetry curves at scan rates from 5 to 25 mV-s™! of Pd/HMCs-x.
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Fig. S12 EIS curves of PA/HMCs-x.
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Fig. S13 '"H NMR spectra of different concentrations propylene oxide.
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Fig. S14 Standard curve for propylene oxide.
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Fig. S15 Cyclic voltammetry curves of HMCs, Pd/HMCs-10 and PdAO/HMCs-x at scan rates from
10 to 50 mV-s-!.
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Fig. S16 Raman spectra of (a) HMCS-10, (b) PA/HMCS-10, (¢) PAO/HMCS-10, (d) HMCS-15, (e)
Pd/HMCS-15, (f) PAO/HMCS-15.
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Fig. S17 O 1s XPS spectra of PAO/HMCs-10 and PAO/HMCs-15 samples.
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