Supporting Information-Annex 1

Toward Comprehensive Scientific Information on Plastic-Related Chemicals Powered by Artificial Intelligence

Kai Zhao^{\$, a}, Xiting Peng^{\$, a}, Ran Tao^{\$, a}, Yuchen Su ^c, ShiYue Huang ^c, Hang Fu ^d, Xiaonan Wang^{*, a, b}, Shanying Hu^{*, a}

^aDepartment of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China

Corresponding Authors:

wangxiaonan@tsinghua.edu.cn (X. Wang), hxr-dce@tsinghua.edu.cn (S. Hu).

The Supporting Information consists of two parts: Annex 1 (this document), which presents detailed methods and results, and Annex 2 (Excel file), which contains the finalized plastic-related chemical database. This Annex 1 file contains 108 pages, 22 supplementary figures and 24 supplementary tables.

^b Institute for Carbon Neutrality, Tsinghua University, Beijing 100084, P. R. China

^c Department of Computer Science, University of Electronic Science and Technology of China, Chengdu, Sichuan 610056, P. R. China

^d School of Resources and Environment, Nanchang University, Nanchang, 330031, P. R. China

[§] Kai Zhao, Xiting Peng, and Ran Tao contributed equally to this paper

Table of Contents

1. Details of functional labels of plastic additives
1.1 Second-level functional labels (major categories)
Table S1. Second-level functional labels of plastic additives
1.2 Third-level functional labels (subcategories)
Table S2. Third-level functional labels of plastic additives
2. Details of LLM-based workflow for parsing chemical composition1
2.1 Details of chemical-related properties retrieved from PubChem1
Table S3. List of chemical-related properties
2.2 Details of prompt engineering
2.3 Evaluation and validation of LLM- based workflow for parsing chemical
composition1
Table S4. Confusion Matrix of the LLM Extraction Task1
Figure S1. Heatmap of LLM-based extraction performance (recall) acros
naming categories and component complexities
Figure S2. Heatmap of LLM-based extraction performance (F1 score
across naming categories and component complexities
Figure S3. Heatmap of LLM-based extraction performance (Accuracy
across naming categories and component complexities
Table S5. Retrieval-based validation results for LLM extraction output
1
2.4 Manual retrieval and validation of chemical structures
Table S6. Comparison of results of chemically structured manual searches
2
3. Details of ML models for predicting chemical toxicity
3.1 Details of training data for ML
Table S7. Class distributions for 7 toxicity indicators

3.2 Details of ML with multiple molecular representations
Figure S4. Cumulative explained variance curve of concatenated
molecular fingerprints after PCA39
3.3 Results of multi-task learning
Figure S5. Comparison of multi-task learning and single-task learning
performance40
3.4 Results of random hyperparameter optimization
Figure S6. Results of random hyperparameter optimization
3.5 Results of predictive performance of ML models
Table S8. Toxicity prediction results using different molecular
representations
Table S9. Model performance on the final train/validation/test split42
3.6 Substructure-level enrichment analysis
Figure S7. Results of substructure-level enrichment analysis
3.7 Linking molecular structure-based results to the AOP framework and OECD
test guidelines
Table S10. MIE, KE, and AO information of toxicity endpoint (C)45
Table S11. MIE, KE, and AO information of toxicity endpoint (M)45
Table S12. MIE, KE, and AO information of toxicity endpoint (R)45
Table S13. MIE, KE, and AO information of toxicity endpoint (STOT_RE,
OECD Test No. 407)46
Table S14. MIE, KE, and AO information of toxicity endpoint (STOT_RE,
OECD Test No. 408)47
Table S15. MIE, KE, and AO information of toxicity endpoint (AqTox,
AOP312)47
Table S16. MIE, KE, and AO information of toxicity endpoint (AqTox,
AOP312)47
Table S17 MIE KE and AO information of toxicity endpoint (RespSens)

48
4. Details of fuzzy search method for predicting functional labels50
4.1 Results of "conserved sequences"
Table S18. Common sequence of third-level functional labels50
4.2 Similarity scores for third-level functional property labels
Figure S8. Bubble plot of the distribution of similarity scores among third-
level functional labels
4.3 Manual validation of fuzzy-search functional predictions59
Table S19. Sampling manual verification results of fuzzy search59
5. Details of exact search method for predicting functional labels74
5.1 Details of SMARTS pattern
5.2 Results of the exact search method80
Table S20. Toxicity prediction results using different molecular
representations80
Figure S9. The results of the exact search method for matching phthalate
plasticizers are presented below82
Figure S10. The results of the exact search method for matching
terephthalate plasticizers are presented below
Figure S11. The results of the exact search method for matching
isophthalate plasticizers are presented below84
Figure S12. The results of the exact search method for matching adipic
acid esters plasticizers are presented below85
Figure S13. The results of the exact search method for matching azelaic
acid esters plasticizers are presented below86
Figure S14. The results of the exact search method for matching fumaric
acid esters plasticizers are presented below86
Figure S15. The results of the exact search method for matching citric acid
esters plasticizers are presented below87

	Figure S16. The results of the exact search method for matching
	trimellitate plasticizers are presented below
	Figure S17. The results of the exact search method for matching itaconic
	acid esters plasticizers are presented below.
	Figure S18. The results of the exact search method for matching maleic
	acid esters plasticizers are presented below.
	Figure S19. The results of the exact search method for matching oleate
	plasticizers are presented below89
	Figure S20. The results of the exact search method for matching sebacic
	acid esters plasticizers are presented below90
	Figure S21. The results of the exact search method for matching epoxy
	derivatives plasticizers are presented below
5.3 Res	ults of the exact search method91
	Table S21. Sampling manual verification results of exact search91
6. Details of	Discussion96
6.1 Res	ults of functional–toxicological relationship96
	Table S22. The average toxicity of chemicals corresponding to each third-
	level functional label96
	Figure S22. The heatmap of the 83 third-level functional labels and 7
	toxicity indicators
	Table S23. Results of Pearson's chi-square test
6.2 Illu	strative cases of plastic formulation
	Table S24. Different PVC agricultural films use various additives choices
	in their formulations, calculated using the mass parts counting method [2-
	8]
Ref	105

1. Details of functional labels of plastic additives

1.1 Second-level functional labels (major categories)

Based on the distinct functional attributes that plastic additives provide to plastics, the second-level functional labels were defined as the following 24 classes.

Table S1. Second-level functional labels of plastic additives.

Name	Second-level	Evertional Associations	
Num.	functional labels	Functional descriptions	
A01 Pla	Plasticizer	Enhances flexibility and workability of plastic	
AUI	1 lasticizei	materials by reducing intermolecular forces.	
A02	Antioxidant	Prevents or slows down oxidation to protect polymers	
1102	1 IIII o i i u u i u	from degradation during processing and use.	
A03	Light stabilizer	Shields plastics from UV-induced degradation,	
1100	2.8 2	preserving appearance and mechanical properties.	
A04	Flame retardant	Reduces flammability and delays ignition or flame	
		propagation in plastic products.	
A05	Curing agent and	Initiate or accelerate crosslinking reactions during	
1100	curing accelerators	polymer curing processes.	
A06	Heat stabilizer	Protects polymers from thermal degradation during	
7100	Treat state in Zer	processing and high-temperature use.	
A07	Colorants	Impart color to plastics for aesthetic or functional	
110,	0 01010111	purposes.	
A08	Coupling agent	Enhances adhesion between dissimilar materials,	
1100	e out mig agont	improving mechanical strength and durability.	
A09	Crosslinking agent	Promotes the formation of chemical bonds between	
110)	crossiming agent	polymer chains to increase strength and stability.	
A10	Photo Initiator	Generates reactive species upon light exposure to	
7110		start polymerization or curing reactions.	
A11	Antimicrobial	Inhibits the growth of bacteria, fungi, and other	
7111	agent	microbes on plastic surfaces.	
A12	Polymerization	Prevents unwanted or premature polymerization	
1112	inhibitor	during processing or storage.	

N	Second-level	Functional descriptions	
Num.	functional labels		
A 12	Chemical Foaming	Produces gas during processing to create a cellular	
A13	Agents	structure in foamed plastic products.	
4.1.4		Reduces surface static charge buildup to prevent dust	
A14	Antistatic agents	attraction and electrical discharge.	
A 1.5	Fluorescent	Absorbs UV light and emits blue light to enhance	
A15	5 whitener brightness and reduce yellowing.		
A 1.C	Drip and mist	Minimizes dripping or misting by altering surface	
A16	eliminators	tension or flow characteristics.	
A 17	Lubricants	Reduces friction between polymer surfaces during	
A17	Lubricants	processing to improve flow and release.	
		Promotes the formation of crystalline structures	
A18	Nucleator	during polymer solidification to enhance mechanical	
		properties.	
		A type of chemical that improves the low-	
A19	Impact Modifiers	temperature embrittlement of polymer materials and	
		gives them greater toughness.	
A 20	Anti sticting a cont	Prevents plastic surfaces from adhering to equipment	
A20	Anti-sticking agent	or each other during processing.	
A21	Dalassina agent	A type of chemical used to prevent other materials	
A21	Releasing agent	from bonding to surfaces	
A 22	A '11' 1'	Neutralizes acidic degradation products to stabilize	
A22	Acid binding agent	polymer performance.	
		A type of chemical that reduces the coefficient of	
A23	Slipping agent	friction on plastic surfaces to the required level or	
		value.	
A24	Others		

1.2 Third-level functional labels (subcategories)

Based on differences in characteristic functional groups, detailed descriptions of the 83 third-level functional labels are provided, along with the number of manually

annotated data entries collected for each.

Table S2. Third-level functional labels of plastic additives.

Num.	Third-level functional labels	Count of manually annotated data
C00	Plasticizer_Phthalate	33
C01	Plasticizer_Terephthalate	1
C02	Plasticizer_Isophthalate	1
C03	Plasticizer_Adipic acid esters	12
C04	Plasticizer_Azelaic acid esters	2
C05	Plasticizer_Fumaric acid esters	2
C06	Plasticizer_Citric acid esters	5
C07	Plasticizer_Trimellitate	4
C08	Plasticizer_Itaconic acid esters	2
C09	Plasticizer_Lauric acid esters	2
C10	Plasticizer_Maleic acid esters	4
C11	Plasticizer_Oleate	5
C12	Plasticizer_Sebacic acid esters	7
C13	Plasticizer_Stearate	3
C14	Plasticizer_Sulfonic acid derivatives	3

Num.	Third-level functional labels	Count of manually annotated data
C15	Plasticizer_Glycol derivatives, glycerol derivatives, propylene glycol derivatives and other polyol derivatives	17
C16	Plasticizer_Epoxy derivatives	5
C17	Plasticizer_Phosphoric acid	12
C18	Plasticizer_Chlorine Plasticizer	1
C19	Plasticizer_Polymeric plasticizers	4
C20	Plasticizer_Other types	24
C21	Antioxidant_Amines	15
C22	Antioxidant_Bisphenol monoacrylate	2
C23	Antioxidant_Hindered phenolics	54
C24	Antioxidant_Metal passivator	4
C25	Antioxidant_Phosphite	14
C26	Antioxidant_Thioether	10
C27	Antioxidant_Triazine	6
C28	Antioxidant_Other types	2
C29	Light stabilizer_Benzoate	4
C30	Light stabilizer_Benzophenones	13
C31	Light stabilizer_Benzpropyltriazole	14

Num.	Third-level functional labels	Count of manually annotated data
C32	Light stabilizer_Cyanoacrylates	2
C33	Light stabilizer_Hindered amines	20
C34	Light stabilizer_Hydroxybenzotriazines	3
C35	Light stabilizer_Light shielding agents	2
C36	Light stabilizer_Nickel-containing compounds	4
C37	Light stabilizer_Salicylate esters	3
C38	Light stabilizer_Other types	8
C39	Flame retardant_Halogenated Flame retardant	43
C40	Flame retardant_Inorganic flame retardant	11
C41	Flame retardant_Phosphorus Flame retardant	21
C42	Flame retardant_Other types	4
C43	Curing agents and curing accelerators_Acid anhydride	10
C44	Curing agents and curing accelerators_Amines	33
C45	Curing agents and curing accelerators_Other Types	9
C46	Heat stabilizer_Inorganic and organic lead salts	5
C47	Heat stabilizer_Lead diformate	3
C48	Heat stabilizer_Metal soaps and metal salts	16
C49	Heat stabilizer_Organic primary and secondary stabilizers	10

Num.	Third-level functional labels	Count of manually annotated data
C50	Heat stabilizer_Organic tin	8
C51	Colorants_Inorganic Colorants	14
C52	Colorants_Organic colorants	28
C53	Coupling agent_Organic Chromium	1
C54	Coupling agent_Silanes	36
C55	Crosslinking agent_Organic peroxides	22
C56	Crosslinking agent_Other types	12
C57	Photo Initiator_Photoinitiator	22
C58	Photo Initiator_Photosensitizing aids	2
C59	Antimicrobial agent	17
C60	Polymerization inhibitor	15
C61	Chemical Foaming Agents_Azo	4
C62	Chemical Foaming Agents_Nitroso compounds	2
C63	Chemical Foaming Agents_Sulfonylhydrazine	3
C64	Chemical Foaming Agents_Other types	5
C65	Antistatic agents_Amphoteric ion type	3
C66	Antistatic agents_Anionic	1
C67	Antistatic agents_Cationic	4

Num.	Third-level functional labels	Count of manually annotated data
C68	Antistatic agents_Flammable	1
C69	Antistatic agents_Nonionic	3
C70	Antistatic agents_Polymer type	1
C71	Fluorescent whitener	12
C72	Drip and mist eliminators_Compounded Flow Drops	2
C73	Drip and mist eliminators_Fluidized droplet monomers	9
C74	Lubricants_Fatty acids and derivatives	10
C75	Nucleator	8
C76	Impact Modifiers	5
C77	Anti-sticking agent	3
C78	Releasing agent_Other types	1
C79	Releasing agent_amides	2
C80	Acid binding agent_nan	2
C81	Slipping agent_Fatty acids and derivatives	1
C82	Others	1

2. Details of LLM-based workflow for parsing chemical composition

2.1 Details of chemical-related properties retrieved from PubChem

For each chemical entry, 17 types of properties were retrieved from PubChem. The detailed records are included in the plastic-related chemical database presented in Annex 3.

Table S3. List of chemical-related properties.

Properties	Descriptions	
Molecular_weight	The molecular weight is the sum of all atomic weights of the constituent atoms in a compound, measured in g/mol. In the absence of explicit isotope labelling, averaged natural abundance is assumed. If an atom bears an explicit isotope label, 100% isotopic purity is assumed at this location.	
Melting point	Melting point (freezing point) (M.P.) is the temperature at which a crystal exists in a solid-liquid coexistence state during the process of changing its physical state from solid to liquid under atmospheric pressure.	
TGA	TGA data represent the cumulative weight loss percentages of a substance at specified temperatures, indicating its thermal decomposition behavior.	
XLogP	Computationally generated octanol-water partition coefficient or distribution coefficient. XLogP is used as a measure of hydrophilicity or hydrophobicity of a molecule.	
ExactMass	The mass of the most likely isotopic composition for a single molecule, corresponding to the most intense ion/molecule peak in a mass spectrum.	
MonoisotopicMass	The mass of a molecule, calculated using the mass of the most abundant isotope of each element.	
TPSA	Topological polar surface area, computed by the algorithm described in the paper by Ertl et al ^[1] .	

Properties	Descriptions		
Complexity	The molecular complexity rating of a compound, computed using the Bertz/Hendrickson/Ihlenfeldt formula.		
Charge	The total (or net) charge of a molecule.		
HBondDonorCount	Number of hydrogen-bond donors in the structure.		
HBondAcceptorCount	Number of hydrogen-bond acceptors in the structure.		
HeavyAtomCount	Number of non-hydrogen atoms.		
IsotopeAtomCount	Number of atoms with enriched isotope(s)		
CovalentUnitCount	Number of covalently bound units.		
PatentCount	Number of patent documents linked to this compound.		
PatentFamilyCount	Number of unique patent families linked to this compound (e.g.		
	patent documents grouped by family).		
LiteratureCount	Number of articles linked to this compound (by PubChem's		
DitoruturoCount	consolidated literature analysis).		

2.2 Details of prompt engineering

Considering both the model's performance and token cost, GPT-4 Turbo was selected as the preferred model. Interactions were conducted using the following prompts via API access to the GPT-4 Turbo model.

1) Question1:

Respond in JSON format with 0 or 1, where 1 means 'yes' and 0 means 'no'. Based on the text provided, answer the following three questions: Is the described substance a mixture? Does it involve unknown reaction products? Does it contain polymers?

Example of the output format:

```
{
  "mixture": 1,
  "reaction": 0,
  "polymers": 1
}
```

2) Question2:

Answer only the names in json format. What are the main ingredients in this mixture (answer with common names, Retain only the name associated with the chemical)?'

Example of the output format:

```
"main_ingredients": ["xxxx"]
```

3) Question3:

Answer only the name. What is the common name of this substance (If you are unsure of the common name of the substance, answer "unsure".)?

2.3 Evaluation and validation of LLM- based workflow for parsing chemical composition

Each extracted result from the mixture entries was manually examined and assigned to its corresponding category in the confusion matrix (Table S4). The counts for each category were then used in Equations 1 to 4 to calculate the four performance

metrics.

Table S4. Confusion Matrix of the LLM Extraction Task

	Should be extracted	Should not be extracted
LLM extracted	True Positive (TP)	False Positive (FP)
LLM not extracted	False Negative (FN)	True Negative (TN)

1) Precision:

$$Precision = \frac{TP}{TP + FP} \tag{Eq - 1}$$

This is the proportion of correctly extracted values among all extractions by the model.

2) Recall:

$$Recall = \frac{TP}{TP + FN} \tag{Eq - 2}$$

This is the proportion of correct values extracted by the model.

3) F1 Score:

$$F1 \, Score = 2 * Recall * \frac{Precision}{Recall + Precision} \tag{Eq-3}$$

The F1 Score is the harmonic mean of Precision and Recall. It balances the trade-off between Precision and Recall, providing a single measure of overall model performance.

4) Accuracy

$$Accuracy = \frac{TP}{TP + FN + FP} \tag{Eq - 4}$$

Accuracy represents the proportion of correctly extracted values (true positives) among all cases, including missed values (false negatives) and incorrect extractions (false positives).

Manual verification confirmed whether the substances extracted by the LLM matched the relevant components explicitly or implicitly mentioned in the original text.

Predictions were regarded as correct when the identified entities corresponded to reasonable reactants, monomers, or major compositional substances associated with the described system. Chemically plausible but unconfirmed cases were recorded separately as undeterminable or not found, to indicate the intrinsic difficulty of manually resolving mixture compositions.

The outcomes of this manual verification formed the basis of both Figure S1-S4 and Table S5. Figure S1-S4 visualizes the overall distribution of extraction performance, where the color intensity represents the performance and the square size indicates the number of samples within each group. Table S5 provides the corresponding quantitative statistics, listing precision, recall, F1 score, and accuracy values for each naming category and compositional complexity. Together, these results reflect how effectively the LLM achieved the intended relevance-based extraction objective, i.e., identifying substances related to the mixture or reaction system rather than reproducing the final product structures.

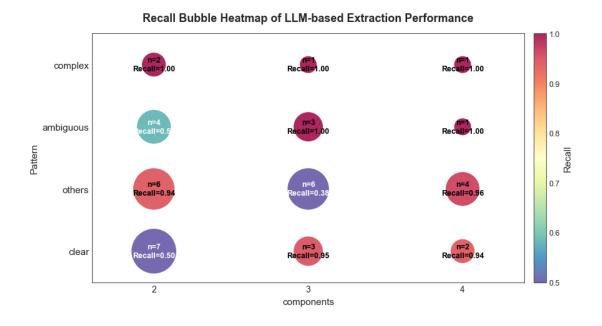


Figure S1. Heatmap of LLM-based extraction performance (recall) across naming categories and component complexities.

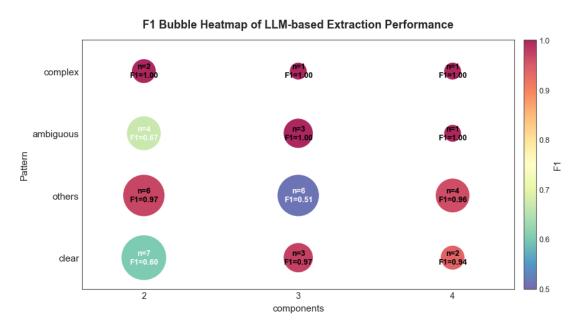


Figure S2. Heatmap of LLM-based extraction performance (F1 score) across naming categories and component complexities.

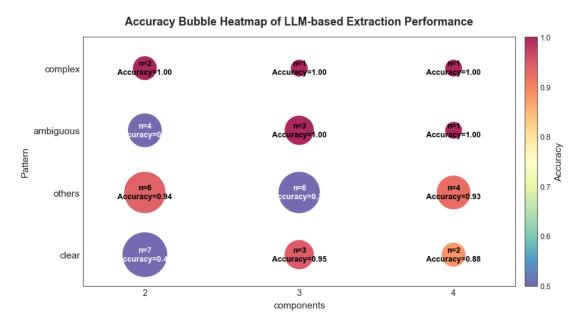


Figure S3. Heatmap of LLM-based extraction performance (Accuracy) across naming categories and component complexities.

As shown in Figure S3, the overall mean F1 value was approximately 0.80,

indicating reliable extraction performance. High F1 scores (≥ 0.9) were achieved for ambiguous/regulatory and \geq 4-component structural names, while the lowest performance (F1 ≈ 0.19) appeared in the 3-component complex/nested category.

Table S5. Retrieval-based validation results for LLM extraction outputs

Naming Category	Components	Precision	Recall	F1	Accuracy
Ambiguous	2	0.78	0.58	0.67	0.50
Ambiguous	3	1.00	1.00	1.00	1.00
Ambiguous	4	1.00	1.00	1.00	1.00
TOTAL		0.90	0.78	0.84	0.72
Clear	2	0.75	0.50	0.60	0.43
Clear	3	1.00	0.95	0.97	0.95
Clear	4	0.94	0.94	0.94	0.88
TOTAL		0.90	0.76	0.83	0.70
Complex	2	1.00	1.00	1.00	1.00
Complex	3	1.00	1.00	1.00	1.00
Complex	4	1.00	1.00	1.00	1.00
TOTAL		1.00	1.00	1.00	1.00
Others	2	1.00	0.94	0.97	0.94
Others	3	0.77	0.38	0.51	0.34
Others	4	0.96	0.96	0.96	0.93
TOTAL		0.93	0.74	0.82	0.70
OVERALL		0.92	0.78	0.85	0.74

Table S5 summarizes the quantitative metrics of the manual and retrieval-based validation for the 40 representative samples. The model performs excellently for clear and complex categories, achieving high F1 scores (\geq 0.90). It demonstrates perfect extraction in the complex category (F1 = 1.00) for all component levels, indicating robust performance for well-defined nomenclature. Challenges with Ambiguous and Multi-Component Names: Performance drops notably for 3-component complex/nested names, as shown in the others category (F1 = 0.51), highlighting difficulties in parsing more complex or ambiguous names. In conclusion, the LLM is highly effective for well-defined nomenclature but struggles with complex, multi-layered names.

2.4 Manual retrieval and validation of chemical structures

To validate the LLM-assisted extraction results, a manual retrieval process was carried out using several authoritative databases, including PubMed, SciFinder, and ECHA, which are considered reliable platforms for chemical structure retrieval. ChemicalBook and Chemical Encyclopedia were used as complementary resources. The retrieval process followed three main steps:

- 1) Initial Search Using CAS Numbers. When available, CAS numbers were used as the primary search method to verify whether the substance could be identified as a pure compound. This method typically allowed for the identification of pure substances associated with their CAS numbers or structures.
- 2) Structure Retrieval via SciFinder. For substances without a CAS number or when

additional verification was needed, SciFinder was employed to search for the corresponding chemical structures. The structures retrieved via SciFinder were cross-referenced to validate their correctness.

3) Comparison and Categorization. After retrieving the structures, they were compared to the predictions made by the LLM. The retrieval results were classified into the 5 categories.

Table S6. Comparison of results of chemically structured manual searches.

			Retrieval	Retrieved	LLM
Num.	CAS	Name	Source	Structure	Prediction
		Quaternary ammonium	l		
	1000	compounds, [2-[[2-[(2-			Quaternary
40		carboxyethyl)(2-	N	Not	•
40	hydroxyethyl)amin 64-1	hydroxyethyl)amino]ethy	None	retrieved	ammonium
		l]amino]-2-oxoethyl]coco			compounds
		alkyldimethyl, inner salts			
					Phosphoric
	1003	Phosphoric acid, mixed	ADEKA		acid
75	300-	esters with $[1,1]$	product	Polymer	Biphenyl-4,4'-
	73-9	biphenyl]-4,4'-diol and	info	mixture	diol
		phenol			Phenol
	1013	Barium calcium		Not	Barium;
197	56-	magnesium strontium	None	retrieved	Calcium;

Num.	CAS	Name	Retrieval	Retrieved	
			Source	Structure	
	96-1	zinc oxide phosphate,			Magnesium;
		copper-doped			Strontium;
					Zinc; Copper
		ester of fatty acid			fatty acid ester
	1150	(saturated C4-22,			aliphatic;
1112	19-	unsaturated C16-18) with	None	Not	alcohol;
	51-7	aliphatic monohydric		retrieved	aromatic
		alcohol (saturated C2-18)			polyol ether
		and aromatic polyol ether			
				Three	
				isomers	Dibutyl
	1571	571 1,4-Benzenedicarboxylic		(CAS	phthalate;
2940	954-	acid, mixed Bu and 2-	ECHA	1429441-	Di(2-
	81-8	ethylhexyl diesters		82-6,	ethylhexyl)
				6422-86-	phthalate
				2, 1962-	
				75-0)	
	2245	Borate(1-), bis[2-	Chemica		Boric acid,
4053	0-	(hydroxy-	1	complex;	salicylic acid,
	96-0	#∥O)benzoato(2-)-	Encyclop	tributylam	dibutylamine

			Retrieval	Retrieved	LLM
Num.	CAS	Name	Source	Structure	Prediction
		# O]-, (T-4)-, hydrogen,	edia	ine	
		compd. with N,N-dibutyl-			
		1-butanamine (1:1:1)			
					Synthetic
					fibers;
	3292	Synthetic fibers,			Aluminum
5892	11-	alumina–calcia–silica–	None	Not	oxide;
3692	92-9	zirconia glass	Tione	retrieved	Calcium oxide;
	92-9	Zircoma giass			Magnesium
					oxide;
					Silica
	6107	Hexanoic acid, 2-ethyl-,			Hexanoic acid;
0107	6107	mixed triesters with		Not	Benzoic acid;
8186	87-	benzoic acid and	None	retrieved	Trimethylolpro
	76-3	trimethylolpropane			pane
	(107	Hexanoic acid, 2-ethyl-,			Hexanoic acid;
0107	6107	mixed diesters with		Not	Benzoic acid;
8187	87-	benzoic acid and	None	retrieved	Neopentyl
	77-4	neopentyl glycol			glycol
9485	6842	Fatty acids, C16 and C18-	ECHA	TMP	Trimethylolpro

			Retrieval	Retrieved	LLM
Num.	CAS	Name	Source	Structure	Prediction
	4- 27-1	unsatd., triesters with	ı	trioleate	pane trioleate
9894	6899 1- 46-8	Linseed oil, Bu ester epoxidized 2-Naphthalenesulfonic	None	Not retrieved	Linseed oil; Epoxidized butyl ester
10384	7350 7- 36-5	acid, 7-(benzoylamino)- 4-hydroxy-3-[2-[4-[2-(4-sulfophenyl)diazenyl]phe nyl]diazenyl]-, compds. with N,N'-bis(mixed Ph and tolyl and xylyl)guanidine monohydrochloride	Chemica lBook	ACI dye; guanidine ; HCl	Acid Red 52, Basic Violet 14 (incorrect)
10434	7420 87- 49-6	D-Glucopyranose, oligomeric, C10-16-alkyl glycosides, 2-hydroxy-3- sulfopropyl ethers, sodium salts	ЕСНА	Alkyl polygluco side; sulfoprop yl ether	Alkyl polyglucoside; Sodium hydroxy sulfopropyl ether

			Retrieval	Retrieved	LLM
Num.	CAS	Name	Source	Structure	Prediction
	8023			Not	Resins;
11211	-77-	Resins, oleo-, capsicum	None	Not retrieved	Oleo;
	6			retrieved	Capsicum
	8050			Resin	Resin acids;
11236	-25-	Resin acids and rosin	SciFinde	acids;	Rosin acids;
11230	-23- 7	acids, esters with TEG	r	TEG	Triethylene
	,			ILO	glycol
		Resin acids and rosin		Resin	
11237	_	acids, esters with	Chemica	acids;	Rosin;
11257			lBook	pentaeryt	Pentaerythritol
		penacryunitor		hritol	
11552		Fatty acids C16-18, esters	s SciFinde	Correct	Fatty acid
11332	_	with diethylene glycol	r	mixture	esters
					2-
		Hexanoic acid, 2-ethyl-	,		ethylhexanoic
11579		mixed diesters with	None	Not	acid;
11017		benzoic acid and		retrieved	benzoic acid;
		triethylene glycol			triethylene
					glycol
11632	_	mixture of methyl-	None	Not	alkanamides

Num.	CAS	Name	Retrieval Source	Retrieved Structure	LLM Prediction
		branched and linear C14-C18alkanamides, derived		retrieved	
		from fatty acids			
					Phosphoric
					Acid;
		Phosphoric Acid, C9-11-			C9-11-
12681		Branched And Linear	None	Not	Branched And
12001		Alkyl Esters,		retrieved	Linear Alkyl
		Potassiumsalts			Esters;
					Potassium
					Salts
		Phosphoric Acid, C12-			Phosphoric
12682		14-Branched And Linear	None	Not	Acid;
12002		Alkyl Esters, Potassium		retrieved	Potassium
		Salts			Salts
				2-	
		Formaldehyde-2-	ChemNe	Nonylphe	Formaldehyde;
16377	_	nonylphenol (1:1)	t	nol;	nonylphenol
			ı	formaldeh	nonyiphenoi
				yde	

Num.	CAS	CAS Name	Retrieval	Retrieved	LLM
Num. Cr	CAS	Ivaine	Source	Structure	Prediction
					Tetraphenylars
					onium;
16498		TPAI6[MEG]5[DEG]	None	Not	Monoethylene
10470		mixture	None	retrieved	glycol;
					Diethylene
					glycol
					Aluminum
					hexanoate;
					Ammonium
					hexanoate;
					Barium
		All salts of Al, NH4, Ba	,		hexanoate;
16542		Ca, Co, Cu, Fe, Li, Mg	, None	Not	Calcium
10312		Mn, K, Na, and Zn o		retrieved	hexanoate;
		Hexanoic acid			Cobalt
					hexanoate;
					Copper
					hexanoate;
					Iron
					hexanoate;

Num.	CAS	Name	Retrieval	Retrieved	
			Source	Structure	Prediction
					Lithium
					hexanoate;
					Magnesium
					hexanoate;
					Manganese
					hexanoate;
					Potassium
					hexanoate;
					Sodium
					hexanoate;
					Zinc hexanoate
17702		DOIL - C10 C25	Nana	Not	Petroleum
16792		POH n-C10–C35	None	retrieved	Hydrocarbons
		Reaction mass of tris(2-			tris(2-
		chloropropyl) phosphate			chloropropyl)
		and tris(2-chloro-1-		N.4	phosphate;
16843		methylethyl) phosphate	None	Not	tris(2-chloro-1-
	and	and Phosphoric acid,		retrieved	methylethyl)
		bis(2-chloro-1-			phosphate;
		methylethyl) 2-			Phosphoric

Num.	CAS	Name	Retrieval Source	Retrieved Structure	LLM Prediction
		chloropropyl ester and Phosphoric acid, 2-			acid, bis(2-chloro-1-
		chloro-1-methylethyl			methylethyl) 2-
		bis(2-chloropropyl) ester			ester; Phosphoric acid, 2-chloro- 1-methylethyl
					bis(2-chloropropyl)
16865		mixture composed of 97 % tetraethyl orthosilicate (TEOS) with CAS No 78-10-4 and 3 % hexamethyldisilazane (HMDS) with CAS No 999-97-3	None	Not retrieved	tetraethyl orthosilicate; hexamethyldisi lazane
17013		acids, C2-C24, aliphatic, linear, monocarboxylic	None	Not retrieved	fatty acids; glycerol esters

Num.	CAS	Name	Retrieval	Retrieved	LLM	
			Source	Structure	Prediction	
		from natural oils and fats	,			
		and their mono-, di- and	1			
		triglycerol esters	S			
		(branched fatty acids a	t			
		naturally occuring levels	S			
		are included)				
					Aluminum	
					propionate;	
					Ammonium	
					propionate;	
					Barium	
		All salts of Al, NH4, Ba	,		propionate;	
17047			Ca, Co, Cu, Fe, Li, Mg	, None	Not	Calcium
17047		Mn, K, Na, and Zn o		retrieved	propionate;	
		Propionic acid			Cobalt	
					propionate;	
					Copper	
					propionate;	
					Iron	
					propionate;	

Num	CAS	AS Name	Retrieval	Retrieved	LLM
	CHO		Source	Structure	Prediction
					Lithium
					propionate;
					Magnesium
					propionate;
					Manganese
					propionate;
					Potassium
					propionate;
					Sodium
					propionate;
					Zinc
					propionate
		twially a costin and (C7		Not	trialkyl acetic
17176	_	trialkyl acetic acid (C7-	None	Not retrieved	acid;
		C17), vinyl esters		retrieved	vinyl esters
		Reaction mass of			Bis(1,2,2,6,6-
	_	Bis(1,2,2,6,6-		Not retrieved	pentamethyl-4-
17196		— pentamethyl-4-piperidyl)	None		piperidyl)
		sebacate and Methyl			sebacate;
		1,2,2,6,6-pentamethyl-4-			Methyl

N	CAS	Nama	Retrieval	Retrieved	LLM
Num.	CAS	Name	Source	Structure	Prediction
		piperidyl sebacate			1,2,2,6,6-
					pentamethyl-4-
					piperidyl
					sebacate
		SILVER CHLORIDE	_		Silver
17202		COATED TITANIUM		Not retrieved	Chloride;
17202	<u> </u>	DIOXIDE	None		Titanium
		DIONIDE			Dioxide
					p-t-
					butylphenyldip
		Reaction mass of p-t-	-		henyl
		butylphenyldiphenyl			phosphate;
17408	_	phosphate and bis(p-t-	- None	Not retrieved	bis(p-t-
17400		butylphenyl)phenyl	None		butylphenyl)ph
		phosphate and tripheny	1		enyl
		phosphate			phosphate;
					triphenyl
					phosphate
17473		All salts of Al, NH4, Ba	, None	Not	Aluminum
		Ca, Co, Cu, Fe, Li, Mg		retrieved	octylphosphon

Num.		CAS Name	Retrieval	Retrieved	LLM
	CAS		Source	Structure	Prediction
		Mn, K, Na, and Zn of n-	-		ate;
		Octylphosphonic acid			Ammonium
					octylphosphon
					ate;
					Barium
					octylphosphon
					ate;
					Calcium
					octylphosphon
					ate;
					Cobalt
					octylphosphor
					ate;
					Copper
					octylphosphon
					ate;
					Iron
					octylphosphor
					ate;
					Lithium

Num.	CAS	Name	Retrieval	Retrieved	LLM
			Source	Structure	Prediction
					octylphosphon
					ate;
					Magnesium
					octylphosphon
					ate;
					Manganese
					octylphosphon
					ate;
					Potassium
					octylphosphon
					ate;
					Sodium
					octylphosphon
					ate;
					Zinc
					octylphosphon
					ate
17601	_	L[TPA+EG] ₂ ; — [TPA+Et]		Not retrieved	Tetraphenylars
			None		onium;
					Ethylene

Num.	CAS	Name	Retrieval	Retrieved	LLM
	CAS		Source	Structure	Prediction
					glycol;
					Ethanol
					Aluminum
					glutarate;
					Ammonium
					glutarate;
					Barium
					glutarate
					Calcium
	_	All salts of Al, NH4, Ba, Ca, Co, Cu, Fe, Li, Mg, Mn, K, Na, and Zn of Glutaric acid	, None	Not retrieved	glutarate;
17892					Cobalt
1/092					glutarate;
					Copper
					glutarate;
					Iron glutarate;
					Lithium
					glutarate;
					Magnesium
					glutarate;
					Manganese

Num.	CAS	Name	Retrieval	Retrieved	LLM
			Source	Structure	Prediction
					glutarate;
					Potassium
					glutarate;
					Sodium
					glutarate;
					Zinc glutarate
		trimathylalprapapa			Trimethylolpro
	_	trimethylolpropane, diester with 2-		Not retrieved	pane;
17980		ethylhexanoic acid and			2-
17700		monoester with benzoic			ethylhexanoic
		acid			acid;
		aciu			benzoic acid
		End-group tributy	1	Not	Tributyl
18130	_	citrate_rosin ester	None	retrieved	Citrate;
		plasticizer			Rosin Ester

To validate the LLM-based extraction results, each entry was assigned to one of five categories reflecting the relationship between retrieved structures and predicted components:

1) Correct Prediction: The LLM correctly identified the relevant components described in the name. This category contains a total of 2 entries, including the

- following IDs: 16377, 16865.
- 2) Correct Side-Chain Structure but Incorrect Overall Prediction: The LLM captured core structural fragments (e.g., phosphoric-acid units, glycidyl groups), but the predicted list did not match the actual mixture composition. This category contains a total of 4 entries, including the following IDs: 75, 11236, 4053, 10384.
- 3) Simplified Structure or Omitted Components: The LLM output chemically reasonable esters or acids (e.g., phthalates, fatty-acid esters), but missed one or more documented component. This category contains a total of 3 entries, including the following IDs: 9485, 11552, 2940.
- 4) Prediction as Reaction Components: The LLM predicted plausible precursors or reactants rather than the final mixture described in the name. This category contains a total of 6 entries, including the following IDs: 303, 10434, 11237, 17196, 17601, 17980.
- 5) Undeterminable or Not Found: No authoritative structural information could be retrieved from databases due to lack of CAS numbers or insufficient naming detail. This category contains a total of 25 entries, including the following IDs: 40, 197, 1112, 5892, 8186, 8187, 9894, 11211, 11579, 11632, 12681, 12682, 1498, 16542, 16792, 16843, 17013, 17047, 17202, 17473, 17609, 17892, 18130, 17408, and 17176.

3. Details of ML models for predicting chemical toxicity

3.1 Details of training data for ML

The details of the training data used for the ML models targeting the seven toxicity endpoints are provided below.

Table S7. Class distributions for 7 toxicity indicators.

	С	M	R	CMR	STOT_RE	AqTox	RespSens
0 (non-toxic)	4742	4953	4613	4053	4156	3753	5247
1 (toxic)	835	624	964	1524	1421	1824	330

3.2 Details of ML with multiple molecular representations

- 1) ECFP: ECFP is a circular fingerprint that encodes local structural features of a molecule based on atomic neighborhood information. A commonly used parameter setting includes a radius of 3 and a bit vector length of 2048 bits.
- 2) RDKit: RDKFP is a path-based fingerprint that encodes all atom paths within a molecule (typically paths containing 1 to 7 atoms), capturing topological features of the molecular structure. Its default bit vector length is also 2048 bits.
- 3) MACCS: MACCS is a predefined substructure-based fingerprint consisting of 166 bits, where each bit corresponds to the presence or absence of a specific chemical substructure.
- 4) ECFP+ RDKit+ MACCS+PCA: The three molecular fingerprints, when concatenated, form a 4,262-dimensional vector. Subsequently, PCA was applied to the concatenated feature matrix, and a cumulative explained variance plot was generated to determine the number of principal components required to retain 85%,

95%, and nearly 100% of the total variance. Ultimately, 2,048 principal components were selected, and the resulting reduced feature matrix was used for training the subsequent MLP model.

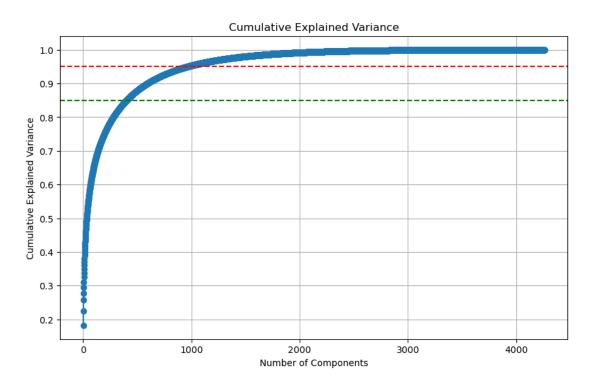


Figure S4. Cumulative explained variance curve of concatenated molecular fingerprints after PCA.

- 5) GROVER-base: molecular fingerprints generated using the base version of the GROVER model.
- 6) GROVER-large: molecular fingerprints generated using the large version of the GROVER model.
- 7) MolCLR-finetune: fine-tuning performed directly on the MolCLR model.
- 8) MolCLR-feature: hidden-layer embeddings extracted from the MolCLR model and used as molecular fingerprints.

3.3 Results of multi-task learning

ECFP + MACCS fingerprints were used as molecular representations. Single-task: a separate model was trained for each toxicity endpoint. Multi-task: a single model was used to simultaneously predict all endpoints. Selected indicators: to leverage potential inter-task correlations, a subset of related endpoints (C, M, R) was selected for multi-task prediction.

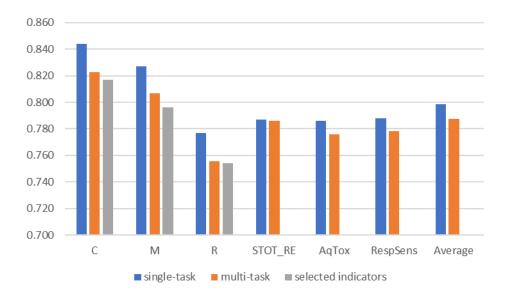


Figure S5. Comparison of multi-task learning and single-task learning performance.

3.4 Results of random hyperparameter optimization

ECFP/MACCS/RDKFP: whether the corresponding molecular fingerprint is used; ECFP_n: length of the generated ECFP fingerprint; ECFP_r: ECFP radius; betas1/betas2: β₁ and β₂ parameters of the Adam optimizer; dp: dropout rate; fps: choice of molecular representation (fingerprints or features generated by GROVER-base or GROVER-large); gamma: γ parameter of the learning rate scheduler; h1/h2: dimensions of the two hidden layers; lr: learning rate; momentum: momentum parameter for the SGD optimizer; op: selected optimizer; schedule: whether to apply a learning rate schedule; step_size: step size parameter of the learning rate scheduler.

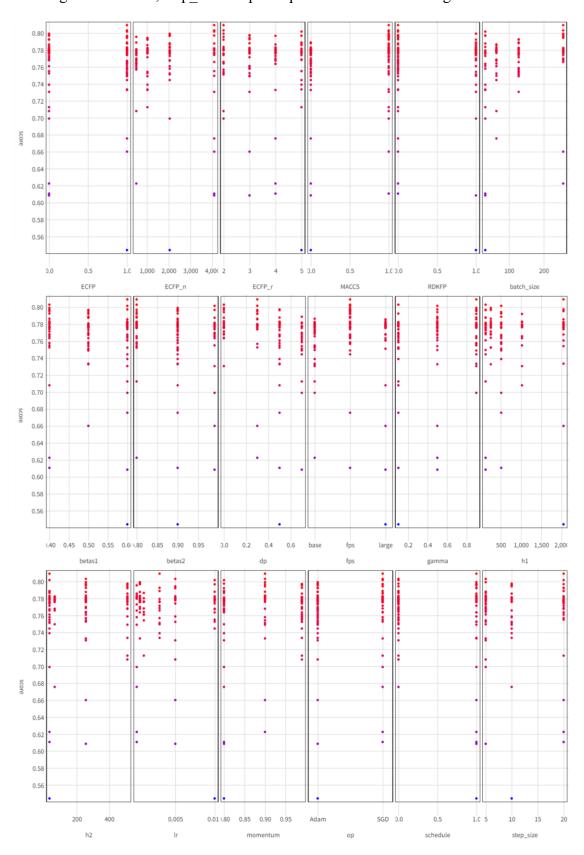


Figure S6. Results of random hyperparameter optimization.

3.5 Results of predictive performance of ML models

The classification accuracies of ML models under different training strategies are summarized below.

Table S8. Toxicity prediction results using different molecular representations.

	CMR	C	M	R	STOT RE	AqTox	RespS	Avera	
					KE		ens	ge	
ECFP+R									
DKFP+	0.792	0.852	0.825	0.784	0.792	0.787	0.789	0.803	
MACCS	0.792	0.832	0.823	0.704	0.792	0.767	0.769	0.803	
+PCA									
ECFP+R									
DKFP+	0.788	0.849	0.822	0.775	0.796	0.790	0.786	0.801	
MACCS									
ECFP+	0.781	0.844	0.827	0.777	0.787	0.786	0.788	0.799	
MACCS	0.781	0.844	0.827	0.777	0.787	0.780	0.788	0.799	
RDKFP+	0.784	0.844	0.819	0.783	0.790	0.781	0.779	0.797	
MACCS	0.784	0.044	0.819	0.783	0.790	0.761	0.779	0.797	
MACCS	0.772	0.831	0.827	0.768	0.792	0.791	0.777	0.794	
ECFP	0.751	0.815	0.800	0.752	0.767	0.761	0.764	0.773	
RDKFP	0.773	0.823	0.799	0.769	0.779	0.757	0.766	0.781	
GROVE	0.770	0.819	0.798	0.756	0.778	0.783	0.770	0.792	
R-base	0.770	0.819	0.798	0.730	0.778	0.783	0.770	0.782	
GROVE	0.771	0.826	0.797	0.763	0.787	0.790	0.791	0.796	
R-large	0.//1	0.020	0./9/	0.703	0.787	0.780	0.781	0.786	
MolCLR	0.764	0.825	0.807	0.760	0.772	0.778	0.787	0.785	
-finetune	0.704	0.023	0.807	0.700	0.772	U. / /8	0.787	0.785	
MolCLR	0.597	0.664	0.615	0.596	0.649	0.625	0.667	0.630	
-feature	0.337	0.004	0.013	0.590	U.U 1 ∄	0.023	0.007	0.050	

The following summarizes the validation results of the ML model.

Table S9. Model performance on the final train/validation/test split.

	CMR	C	M	R	STOT	AqTox	RespS	Avera
		C			_RE	Aqıox	ens	ge
Valid	0.790	0.852	0.821	0.796	0.795	0.780	0.783	0.802

AUC								
Test AUC	0.762	0.842	0.784	0.729	0.783	0.775	0.840	0.788

3.6 Substructure-level enrichment analysis

In each enrichment plot, the x-axis represents log10(OR), which reflects the strength and direction of the association between a substructure and toxicity (values greater than zero indicate positive enrichment, whereas values below zero indicate negative enrichment). The y-axis denotes the frequency of the substructure in the dataset. For clarity, only substructures exhibiting high-confidence associations are displayed, defined as those with q-values (false discovery rate-adjusted p-value, using the Benjamini-Hochberg correction) below 0.05 and odds ratios greater than 2. To highlight the most informative patterns, four representative substructures are emphasized in each panel by visually marking their occurrences on example molecules. These include the two substructures with the highest odds ratios, which likely represent the strongest toxicity-associated features, as well as the two most frequently occurring substructures among those with odds ratios above 2, which signify commonly appearing features that may contribute to potential toxicity risks. Together, these highlighted substructures provide meaningful mechanistic clues for future toxicological investigations.

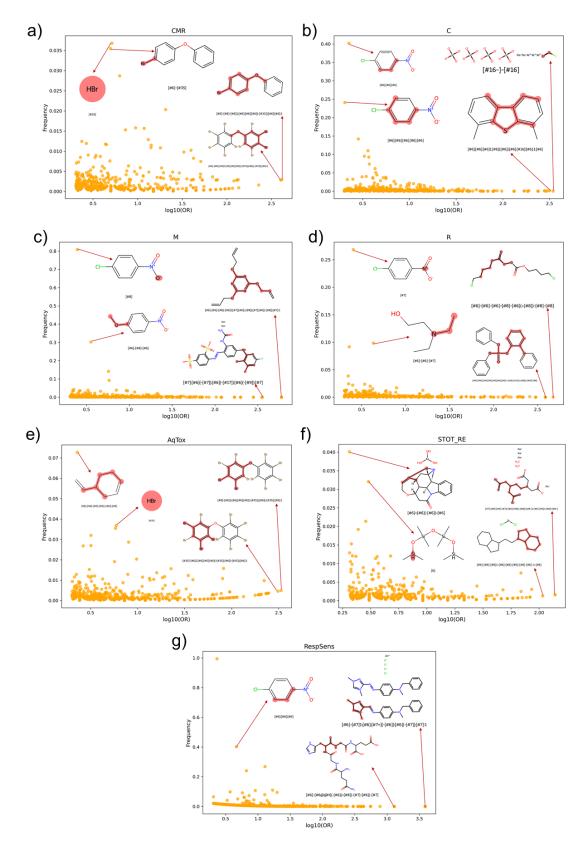


Figure S7. Results of substructure-level enrichment analysis.

3.7 Linking molecular structure-based results to the AOP framework and OECD test guidelines

According to the AOP framework, toxic action can be abstracted as a sequence of molecular structure – molecular initiating event (MIE) – key events (KEs) – adverse outcome (AO) ^[9,10,30]. We summarize below the AOP knowledge relevant to the seven toxicity endpoints used in this study, based on the information curated in the AOP-Wiki ^[11-19]

Table S10. MIE, KE, and AO information of toxicity endpoint (C).

Type	
MIE	Increase, Oxidative DNA damage
KE	Inadequate DNA repair
KE	Increase, DNA strand breaks
AO	Increase, Mutations
AO	Increase, Chromosomal aberrations
	Table S11. MIE, KE, and AO information of toxicity endpoint (M).
Туре	
MIE	Alkylation, DNA
KE	Inadequate DNA repair
KE	Increase, Mutations
AO	Increase, Heritable mutations in offspring
	Table S12. MIE, KE, and AO information of toxicity endpoint (R).
Type	
	45 / 100

MIE	Estrogen receptor activation in mammary gland stromal/epithelial cells
KE	Altered transcription in mammary cells
KE	Epigenetic alterations in mammary tissue
KE	Altered cellular differentiation of mammary epithelial cells
KE	Increased collagen deposition in mammary stroma
KE	Increased proliferation of mammary epithelial cells
KE	Altered apoptosis of mammary cells
KE	Altered progesterone receptor signaling
KE	Dedifferentiation of mammary epithelial cells
KE	Disrupted tensional homeostasis in mammary tissue
KE	Desmoplasia in mammary gland stroma
KE	Altered fat pad maturation in the mammary gland
KE	Chronic inflammation in mammary tissue
KE	Increased migration of mammary epithelial/stromal cells
KE	Increased invasion of mammary epithelial cells
KE	Increased mammary gland/breast density
KE	Altered morphogenesis of the mammary gland
KE	Altered hormone sensitivity of the mammary gland
KE	Hyperplasia of mammary epithelium
AO	Enhanced risk for cancer in mammary gland (breast cancer)
Table S1	3. MIE, KE, and AO information of toxicity endpoint (STOT_RE, OECD Test
No. 407)).
Type	
MIE	Alkylation, Protein
KE	Increase, Cell injury/death

Tissue resident cell activation

KE

KE	Increased Pro-inflammatory mediators
KE	Activation, Stellate cells
KE	Accumulation, Collagen
AO	N/A, Liver fibrosis
Table S1	4. MIE, KE, and AO information of toxicity endpoint (STOT_RE, OECD Test
No. 408).
Type	
MIE	Inhibition, Bile Salt Export Pump (ABCB11)
KE	Activation of specific nuclear receptors, Transcriptional change
KE	Bile accumulation, Pathological condition
KE	Release, Cytokine
KE	Increase, Inflammation
KE	Increase, Reactive oxygen species
KE	Peptide Oxidation
AO	Cholestasis, Pathology
Table S1	5. MIE, KE, and AO information of toxicity endpoint (AqTox, AOP312).
Type	
MIE	Acetylcholinesterase (AchE) Inhibition
KE	Acetylcholine accumulation in synapses
KE	Increased Cholinergic Signaling
KE	Impaired coordination and movement
AO	Increased Mortality
AO	Decrease, Population growth rate
Table S1	6. MIE, KE, and AO information of toxicity endpoint (AqTox, AOP312).
Type	

MIE	Binding of plastoquinone B (QB), PSII antagonism
KE	Decrease, Photosynthesis
KE	Decrease, Coupling of oxidative phosphorylation
KE	Decrease, Adenosine triphosphate pool
KE	Decrease, Cell proliferation
AO	Decrease, Growth

Table S17. MIE, KE, and AO information of toxicity endpoint (RespSens).

Type	
MIE	Covalent Binding, Protein
KE	Increased, secretion of proinflammatory mediators
KE	Activation, Dendritic Cells
KE	Activation/Proliferation, T-cells
AO	Increase, Allergic Respiratory Hypersensitivity Response

Each model endpoint can be mapped to specific traditional toxicological tests. Carcinogenicity corresponds to 18–24 month chronic feeding carcinogenicity studies in rats or mice, in which tumour formation is monitored ^[20]. Mutagenicity corresponds to in vitro mammalian cell micronucleus tests that detect chromosomal aberrations ^[21]. Reproductive toxicity corresponds to short-term reproductive/developmental toxicity screening studies in rats, where animals are dosed from pre-mating through mating, gestation and early lactation, and parental reproductive performance and early offspring development are observed ^[22]. STOT_RE_Toxicity_Prediction corresponds to 28-day and 90-day repeated-dose oral toxicity studies in rodents, which jointly evaluate multiple organ systems including liver, kidney, haematology, nervous and immune systems, body weight and pathology ^[23,24]. AqTox Toxicity Prediction corresponds to

classical aquatic toxicity tests: 96-h acute fish toxicity tests (e.g. with zebrafish or rainbow trout, recording mortality at 24/48/72/96 h and determining the LC₅₀), 24–48 h Daphnia acute immobilisation tests to determine the EC₅₀ for impaired mobility, and 72-h freshwater algae and cyanobacteria growth inhibition tests to determine EC₅₀ values ^[25-27].RespSens_Toxicity_Prediction is informed by air—liquid interface (ALI) models of human bronchial/airway epithelial cells: cells are grown to confluence on porous membranes, the apical medium is removed so that the apical surface is exposed to air while the basolateral surface remains in contact with culture medium, and test substances are applied as aerosols or gases directly onto the cells, followed by determination of IC₅₀ values or related cytotoxicity/inflammation endpoints ^[28,29].

4. Details of fuzzy search method for predicting functional labels

4.1 Results of "conserved sequences"

Among the manually labeled data, only one entry could not be assigned a third-level functional property label suitable for conserved sequence calculation. In addition, major categories without defined subcategories typically exhibit mixed structural features and were therefore excluded from conserved sequence analysis. The conserved sequence results for the remaining third-level functional labels are summarized below.

Table S18. Common sequence of third-level functional labels.

MACCS common sequence

- 1 Non
- 2 Non

- $4 \quad 0010010110010000010100000110000111101011000100 \\$

1 8 Non 001001010000000101011000010010001110101100010000100101100100000100000001101000111010110001000010010110010000001000000110100101101011000100 6 000000000000000001000000000000010100000100

- 2 00000000000000000000000000000000000100011000100
- 3 1111001011111000111111011001111001011101110110111

3 Non

5

9 Non

5

6

0 Non

- $1 \quad 000001011001000001000000010100010101001000100$

- $5 \quad 000100000111000101100000011100001010001000100$

6 Non 6 Non 0 Non Non 1100000110010000110010000011110110111101100110 7 Non 5 Non Non

4.2 Similarity scores for third-level functional property labels

Figure S4 displays the structural similarity distribution map for each functional subcategory. Each bubble represents a specific chemical subclass, with the y-axis indicating the consistency in shared structures with existing functional categories (Jaccard similarity). The size of each bubble corresponds to the number of chemicals in that subclass with high structural consistency. For example, classes such as itaconic acid esters, organic secondary stabilizers, and hindered phenolics are concentrated in the similarity range of 0.92–0.98, indicating high similarity with the conserved sequences of known functional labels. In contrast, subclasses with more diverse structures or ambiguous functional boundaries, such as thioether and fatty acid derivatives, show relatively lower similarity and are more widely dispersed.

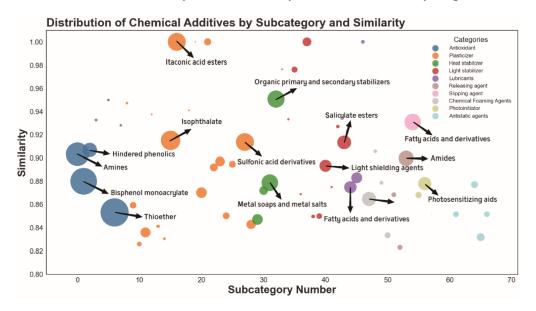


Figure S8. Bubble plot of the distribution of similarity scores among third-level functional labels.

4.3 Manual validation of fuzzy-search functional predictions

In the manual verification results of the fuzzy search, 15 samples were scored 1, 6 samples were scored 0.5, and 19 samples were scored 0.

Table S19. Sampling manual verification results of fuzzy search.

Num	CAS	Name	Predicted	Predicted	Score	Evidence source
	0110	T (WITTO	category	subcategory	20010	summary
						Databases such as
						PubChem/HSDB
						describe 1-
		Дандана		amides	0	chloro-4-
0	100-	Benzene, 1-chloro-	Releasing agent			nitrobenzene as
U	00-5	4-nitro-				an intermediate
		4-IIIII'0-				for dyes,
						pesticides, rubber
						chemicals and
						pharmaceuticals.
						PubChem/HSDB
					0	list 4-nitroaniline
1	100-	Benzenam	Releasing	. ,		as an
1	01-6	ine, 4-	agent	amides		intermediate for
		nitro-				dyes,
						pharmaceuticals

Num	CAS	Name	Predicted category	Predicted subcategory	Score	Evidence source summary
						and pesticides. PubChem and catalogues
		1,4-				identify
3	100-	Benzenedi	Antioxida	Phosphite	0	terephthaloyl
3	20-9	carbonyl	nt		U	chloride as a
		dichloride				monomer for
						polyesters and
						aramids.
						PubChem and
						industrial
						catalogues
						mainly list
	100	Danwaldah		4 - m - m h 4 - 1 - 4		benzaldehyde as
7	100-	Benzaldeh	Plasticizer	terephthalat	0	a fragrance and
	52-7	yde		es		chemical
						intermediate,
						with occasional
						mention as
						solvent/plasticizi

N T	CAS	Name	Predicted	Predicted	C	Evidence source
Num	CAS	Name	category	subcategory	Score	summary
						ng aid.
						PubChem/Wikip
		_				edia: 2,4-
0	100-	Benzenam	Antioxida	Aromatic		dichloroaniline is
9	68-5	ine, 2,4-	nt	amines	0	a dye and
		dichloro-				agrochemical
						intermediate.
						Literature and
		Benzene,				handbooks: 4,4'-
		1,1'-				methylenedianili
20	101-	methylene	Crosslinki ng agent	isocyanates	0	ne is used to
	77-9	bis[4-				produce MDI and
		isocyanato				curing agents for
		-]				polyurethanes.
						PubChem/HSDB
						describe diphenyl
	101-	Diphenyl	Heat	metallic		ether as solvent,
28	84-8	ether	stabilizer	soaps	0	heat-transfer
				-		fluid and
						fragrance carrier.

Num	CAS	Name	Predicted	Predicted	Score	Evidence source
Nulli	CAS	Ivaille	category	subcategory	Score	summary
						PubChem/chemi
						cal handbooks: 1-
		Benzene,				chloro-2,4-
•	102-	1-chloro-	Antimicro		o •	dinitrobenzene is
36	50-1	2,4-	bial	organic	0.5	mainly an
		dinitro-				intermediate for
						dyes and
						pesticides.
						PubChem/Wikip
	104-		Antioxida nt	Hindered phenolics	0	edia: CAS 104-
		Benzaldeh				31-4 corresponds
55	31-4	yde, 4-				to benzonatate, a
		methyl-				cough
						suppressant.
						PubChem/Wikip
						edia: 4-
73	106-	Benzenam			0	chloroaniline is
	47-8	ine, 4-	Colorants	azo dyes		used as an
		chloro-				intermediate for
						dyes,

Num	CAS	Name	Predicted		Score	Evidence source
			category	subcategory		summary
						pharmaceuticals
						and pesticides.
						PubChem lists
					0	N,N-
	108-	Propanami	Antı-			dimethylpropana
82	03-2	de, N,N-	sticking	amides		mide as solvent
	03-2	dimethyl-	agent			
						and organic
						intermediate.
						PubChem: 2,4-
		Benzenam				dimethylaniline
91	108-	ine, 2,4-	Slipping	fatty acids	0	is a dye and
	44-1	dimethyl-	agent			pesticide
		difficulty				-
						intermediate.
						PubChem: 2-
	100	2-	Polymeriz			cyanopyridine is
103	109-	Pyridineca	ation	phenols	0	used to produce
00	00-2	rbonitrile	inhibitor			nicotinamide and
						other compounds.
	115-	Pentaeryth	Curing			PubChem and
156	77-5	ritol	agents and	polyols	1	coating/resin

Num	CAS	Name	Predicted category curing accelerator s	Predicted subcategory	Score	Evidence source summary literature describe pentaerythritol as
						a typical polyol for alkyd and polyurethane
						resins. PubChem/pharm acopoeia: phloroglucinol is
172		Benzene- 1,3,5-triol	Antioxida nt	polyphenols	1	a polyhydroxybenz ene with antioxidant and pharmacological activity.
203	123- 33-1	2,4- Pentanedi one	Acid binding agent	chelating	1	PubChem/produc t sheets: 2,4- pentanedione and analogues are

			Predicted	Predicted	~	Evidence source
Num	CAS	Name	category	subcategory	Score	summary
						widely used as
						metal chelating
						agents and
						catalyst ligands.
						PubChem/handb
						ooks: diethyl (or
		Phthalic				dimethyl)
337	131-	acid,	Plasticizer	terephthalat es	1	phthalate is a
337	11-3	diethyl				phthalate
		ester				plasticizer for
						cellulose esters
						etc.
						PubChem: 1-
		2-				chloro-2-
	122		Light	hanzanhana		naphthol is
356	133-	_	Light	benzopheno	0	recorded as an
	14-2	nol, 1-	stabilizer	nes		intermediate for
		chloro-				dyes and other
						fine chemicals.
368	133-	9H-	Photoinitia	thioxanthon	1	PubChem/photoi

N	CAC	N	Predicted	Predicted	C	Evidence source
Num	CAS	Name	category	subcategory	Score	summary
	70-4	Thioxanth	tor	es		nitiator literature:
		en-9-one				thioxanthone is
						widely used as a
						UV-curing
						photoinitiator.
						PubChem/SDS:
						ethanolamine is
	141-	Ethanolam	coupling			used as
487				silanes	0	absorbent, pH
	43-5	ine	agent			adjuster and
						surfactant raw
						material.
						PubChem/pigme
		Common				nt handbooks:
514	147-	Copper	0.1	phthalocyan	1	copper
514	14-8	phthalocya	Colorants	ines	1	phthalocyanine is
		nine				a common blue
						pigment.
(00	1975	Benzoic	Antioxida	Aromatic	0	Product
689	-78-	acid, 2-	nt	amines	0	information: 2-

Num	CAS	Name	Predicted	Predicted	Score	Evidence source
NuIII	CAS	Name	category	subcategory	Score	summary
	6	ethoxy-				ethoxybenzoic
						acid is sold as an
						organic
						intermediate.
						Silane supplier
						datasheets:
	2024	G'1	coupling	silanes	1	methyltrimethox
	2034	,				ysilane is listed as
703	-26-	methyltri	agent			organofunctional
	6	methoxy-				silane used as
						coupling/crosslin
						king agent.
						Technical
						datasheets: 3-
		3-				glycidoxypropylt
	2530	Glycidoxy	oou n ling			
903	-85-	propyltrim	coupling	silanes	1	rimethoxysilane
	0	ethoxysila	agent			(GPTMS) is a
		ne				typical epoxy-
						functional silane
						coupling agent.

-						
Num	CAS	Name	Predicted	Predicted	Score	Evidence source
Nulli	CAS	Ivaille	category	subcategory	Score	summary
						Limited
		1,4-				information: 1,4-
	2991	Benzenedi				benzenediol
1102	-28-	ol,	Heat	metallic	0.5	monoacetate is
	6	monoaceta	stabilizer	soaps		listed as an
		te				organic
						intermediate.
						Product
	4316	Propanami	Anti-			catalogues list N-
1766	-66-	de, N-	sticking	amides	0	butylpropanamid
	3	butyl-	agent			e as an organic
						intermediate.
						Product
	5528	Benzamid	Anti-			catalogues sell N-
2205	-86-	e, N-	sticking	amides	0	methylbenzamid
	1	methyl-	agent			e as organic
						intermediate.
		Formaldeh				Information on
3100	6/5/	yde	Impact	methacrylat ers es	0	this
3100	9011	polymer	Modifiers			"formaldehyde

Num	CAS	Name	Predicted category	Predicted subcategory	Score	Evidence source
3210	91- 68-9	Anthracen e, 9-nitro-	Photoinitia tor	benzopheno	0.5	polymer" entry is scarce and unspecific. Literature and product data: 9-nitroanthracene can be used as photosensitizer or intermediate.
4330	1222 -98- 6	Bis(hydro xymethyl) propionic acid	Curing agents and curing accelerator s	polyols	1	Resin/coating literature: bis(hydroxymeth yl)propionic acid is widely used as branching polyol for polyurethanes
6050	6855 5- 77-1	Fatty acids, tall- oil,	Heat stabilizer	metallic soaps	1	and polyesters. Product datasheets: tall- oil fatty acids,

N	CAG	AS Name	Predicted	Predicted	C	Evidence source
Num	CAS		category	subcategory	Score	summary
		magnesiu				magnesium salts
		m salts				are considered
						metallic soaps
						used for
						lubrication/stabili
						zation.
						Surfactant
						references: C12-
	6861	Alaahala	Clinning			14 alcohols are
6112	0-	Alcohols,	Slipping	fatty acids	1	fatty alcohols
	51-5	C12-14	agent			used in
						surfactants and
						lubricating aids.
						Antioxidant
		Dhaanhara				product
	1256	Phosphoro	Antioxida			information:
7151	43-	us acid,		Phosphite	1	phosphorous acid
	61-0		nt			mixed esters are
		esters				commonly used
						as phosphite

Num	CAS	Name	Predicted category	Predicted subcategory	Score	Evidence source
7230	1269 51- 57-7	Triazine derivative	Ultraviolet	triazines	1	secondary antioxidants. UV absorber datasheets: triazine-type UV absorbers are widely used for polymer light stabilization.
11120	2585 2- 47-5	Acrylic acid polymer	Impact Modifiers	methacrylat es	1	Polymer literature: poly(acrylic acid) and its esters can act as tackifiers and toughening modifiers.
14020	9003 -29- 6	Polybuten e	Plasticizer	aliphatic esters	0.5	Supplier datasheets: polybutene is often used as

Num	CAS	Name	Predicted category	Predicted subcategory	Score	Evidence source summary
15440	9002 -88- 4	Polyethyle	Nucleator	talc	0	plasticizer, viscosity modifier and tackifier. Polymer handbooks: polyethylene is one of the most common commodity plastics.
17533 18952	1315 45- 97-2	Polyamide resin	Releasing agent Chemical	amides	0.5	Resin supplier information: polyamide resins are typically used as film-forming resins or binders in coatings and inks. Polyurethane
18952	7732	Water	Chemical	water-based	1	Polyurethane

			Predicted	Predicted		Evidence source
Num	CAS	Name	category	subcategory	Score	summary
	-18-		Foaming			foaming
	5		Agents			literature: water
						reacts with
						isocyanates to
						generate CO ₂ and
						acts as chemical
						blowing agent.
						Rubber/plastics
						handbooks:
						styrene-
	9003	Styrene-	Anti-			butadiene
19300	-55-	butadiene	sticking	elastomers	0.5	copolymer is an
	8	copolymer	agent			elastomer used in
						tyres and
						modified
						asphalts.

5. Details of exact search method for predicting functional labels

5.1 Details of SMARTS pattern

The SMARTS patterns applied to each plasticizer subclass supported by exact search is provided below.

1) Phthalate:

First. the **SMARTS** pattern for phthalates defined is as clcc(C(=O)O*)c(C(=O)O*)cc1, which represents a benzene ring with two ester groups $(C(=O)O)^*$ attached to the carbon atoms of the ring, consistent with the characteristic structure of phthalates. Then, the function uses the 'Chem.MolFromSmarts()' method to convert the SMARTS pattern into a molecular pattern object and checks whether the input molecule contains the feature structure using 'mol.HasSubstructMatch()'. If a match is found, it returns True; otherwise, it returns False. If an error occurs during execution, the function catches the exception and returns False, ensuring the stability of the program.

2) Terephthalate:

First, the function checks whether the input molecule is a trimellitate ester (by calling the is_Trimellitate_ester function). If it is, the function returns False, excluding this structure. Then, a SMARTS pattern "c1cc(C(=O)O*)ccc1C(=O)O*" is defined to match the terephthalate ester structure (1,4-benzenedicarboxylate diester). This pattern represents a benzene ring where two ester groups (C(=O)O*) are attached at the 1,4 positions, replacing the hydrogen atoms of the benzene ring. The function checks whether the input molecule matches this terephthalate ester

structure. If a match is found, it returns True; otherwise, it returns False. If any errors occur during execution, the function returns False.

3) Isophthalate:

First, the function checks whether the input molecule is a trimellitate ester (by calling the is_Trimellitate_ester function). If it is, the function returns False, excluding this structure. Then, a SMARTS pattern "c1ccc(C(=O)O*)cc1C(=O)O*" is defined to match the isophthalate ester structure (1,3-benzenedicarboxylate diester). This pattern represents a benzene ring where two ester groups (C(=O)O*) are attached at the 1,3 positions, replacing the hydrogen atoms of the benzene ring. The function checks whether the input molecule matches this isophthalate ester structure. If a match is found, it returns True; otherwise, it returns False. If any errors occur during execution, the function returns False.

4) Adipic Acid Esters:

First, a SMARTS pattern "O=C(O*)CCCC(=O)O*" is defined to match the adipate backbone structure. This pattern represents a molecular structure with two ester groups (C(=O)O) attached to a five-carbon chain. The function then checks if the input molecule matches this basic structure. If it does not match, it returns False. Next, the function further excludes molecules containing closed-ring ester structures. A SMARTS pattern "C(=O)O" is defined to match ester groups, and the function checks whether the ester carbon is involved in a ring structure. If the ester carbon is part of a ring, it returns False. The function then continues by matching the ester groups and counting the number of ester groups attached to the ring. If at

least two ester groups are attached to the ring, the function returns False. Finally, if all conditions are met, the function returns True, indicating that the molecule is a valid adipic acid ester. If any errors occur during the process, the function returns False.

5) Azelaic Acid Esters:

First, a SMARTS pattern "O=C(O*)CCCCCC(=O)O*" is defined to match the structure of azelaic acid esters. This pattern represents a molecular structure with two ester groups (C(=O)O) attached to an eight-carbon chain. The function then checks if the input molecule matches this structure. If it does not match, it returns False. Next, the function excludes molecules containing cyclic esters or alicyclic backbones. It checks for the presence of ring atoms in the molecule, and if a ring structure is detected, it returns False. If the input molecule matches the basic structure of azelaic acid esters and does not contain a ring structure, the function returns True, indicating that the molecule is a valid azelaic acid ester. If any errors occur during the process, the function returns False.

6) Fumaric Acid Esters:

First, the function checks if the input molecule contains more than 8 atoms, as the basic structure of fumaric acid involves 8 atoms. If the number of atoms is less than or equal to 8, the function immediately returns False. Next, a SMARTS pattern $"OC(=O)\C=C\C(=O)O"$ is defined to match the structure of fumaric acid esters. This pattern represents a structure with two ester groups (C(=O)O) and a cis double bond (C=C) characteristic of fumaric acid. The function uses useChirality=True

to enforce consideration of stereochemistry, including cis/trans isomerism of the double bond, and checks whether the input molecule matches the fumaric acid ester structure. If the molecule matches this structure, it returns True; otherwise, it returns False. If any errors occur during execution, the function returns False.

7) Citric Acid Esters:

First, a SMARTS pattern "OC(=O)CC(O)(C(=O)O*)C(C(=O)O*)" is defined to match the structure of citric acid esters or partially esterified structures. This pattern represents a citric acid molecule with three ester groups (C(=O)O) and one hydroxyl group (OH). The function then checks if the input molecule matches this basic structure. If it matches, the function returns True, indicating that the molecule is a citric acid ester. If it does not match, the function returns False. If any errors occur during execution, the function returns False.

8) Trimellitate:

First, a SMARTS pattern "c1c(C(=O)O*)ccc(C(=O)O*)c1C(=O)O*" is defined to match the structure of trimellitate esters. This pattern represents a benzene ring with three ester groups (C(=O)O*) attached at the 1, 2, and 4 positions, replacing the hydrogen atoms of the benzene ring, which is characteristic of trimellitate esters. The function then checks whether the input molecule contains this structure. If a match is found, it returns True, indicating that the molecule is a trimellitate ester. If no match is found, the function returns False. If any errors occur during execution, the function returns False.

9) Itaconic Acid Esters:

First, a SMARTS pattern "O=C(O*)CC(=C)(C(=O)O*)" is defined to match the structure of itaconic acid esters. This pattern represents an itaconic acid ester molecule containing two ester groups (C(=O)O) and a double bond (C=C). The function then checks whether the input molecule matches this structure. If a match is found, it returns True, indicating that the molecule is an itaconic acid ester. If no match is found, the function returns False. If any errors occur during execution, the function returns False.

10) Maleic Acid Esters:

First, the function checks whether the input molecule contains more than 8 atoms. If the number of atoms is less than or equal to 8, it directly returns False. Next, a SMARTS pattern "OC(=O)\\C=C/C(=O)O" is defined to strictly match the structure of cis-maleic acid esters. This pattern represents a maleic acid structure with two ester groups (C(=O)O) and a cis double bond (\C=C). The function uses useChirality=True to enforce consideration of stereochemistry, including cis/trans isomerism of the double bond, and checks whether the input molecule matches this cis-maleic acid ester structure. If the molecule matches the structure, it returns True; otherwise, it returns False. If any errors occur during execution, the function returns False.

11) Oleate:

First, a SMARTS pattern "CCCCCCCC/C=C\CCCCCCC(=O)O*" is defined to match the esterified form of the oleic acid group. This pattern represents a structure containing 18 carbon atoms, a double bond (C9=C10), and an ester group

(C(=O)O*) that is characteristic of oleic acid. The function then checks whether the input molecule matches this structure. The useChirality=True option ensures that the chirality of the molecule is considered. If the molecule contains this oleate ester structure, it returns True; otherwise, it returns False. If any errors occur during execution, the function returns False.

12) Sebacic Acid Esters,

First, a SMARTS pattern "O=C(O*)CCCCCCC(=O)O*" is defined to match the structure of sebacic acid esters. This pattern represents a molecule containing two ester groups (C(=O)O) attached to a nine-carbon chain. The function then checks whether the input molecule matches this basic structure. If it does not match, it returns False. Next, the function excludes molecules containing cyclic esters or alicyclic backbones. It checks for the presence of ring atoms in the molecule, and if a ring structure is detected, it returns False. If the input molecule matches the basic structure of sebacic acid esters and does not contain a ring structure, the function returns True, indicating that the molecule is a valid sebacic acid ester. If any errors occur during execution, the function returns False.

13) Epoxy Derivatives

First, a SMARTS pattern "C1OC1" is defined to match the epoxide ring structure, which represents a three-membered ring containing an oxygen atom. The function checks if the input molecule contains this epoxide group structure. If it does, the function returns True. Next, another SMARTS pattern "CCCC(=O)O" is defined to match long-chain ester groups, representing a structure with an ester group

(C(=O)O) attached to a long carbon chain. The function checks if the input molecule contains this ester group structure. If it does, the function returns True, as the long carbon chain increases the molecular volume, weakens intermolecular forces, reduces material hardness, and improves flexibility. Finally, the function checks if the molecule contains both the epoxide group and the long-chain ester group. If both are present, the function returns True, indicating that the molecule is an epoxy derivative. If either structure is missing, it returns False. If any errors occur during execution, the function returns False.

5.2 Results of the exact search method

The summary of the number of manually labeled data for plasticizers supported by the exact search method and the number of chemicals matched is as follows:

Table S20. Toxicity prediction results using different molecular representations.

Subcategories	Manually labeled data	Matched data
Plasticizer_Phthalate	33	111
Plasticizer_Terephthalate	1	52
Plasticizer_Isophthalate	1	20
Plasticizer_Adipic acid esters	12	53
Plasticizer_Azelaic acid esters	2	8
Plasticizer_Fumaric acid esters	2	17
Plasticizer_Citric acid esters	5	11
Plasticizer_Trimellitate	4	13

Subcategories	Manually labeled data	Matched data
Plasticizer_Itaconic acid esters	2	3
Plasticizer_Maleic acid esters	4	22
Plasticizer_Oleate	5	55
Plasticizer_Sebacic acid esters	7	6
Plasticizer_Epoxy derivatives	5	24

The exact search results for each plasticizer subclass supported by the exact search method, showing the top 50 matched molecules per category, are presented below.

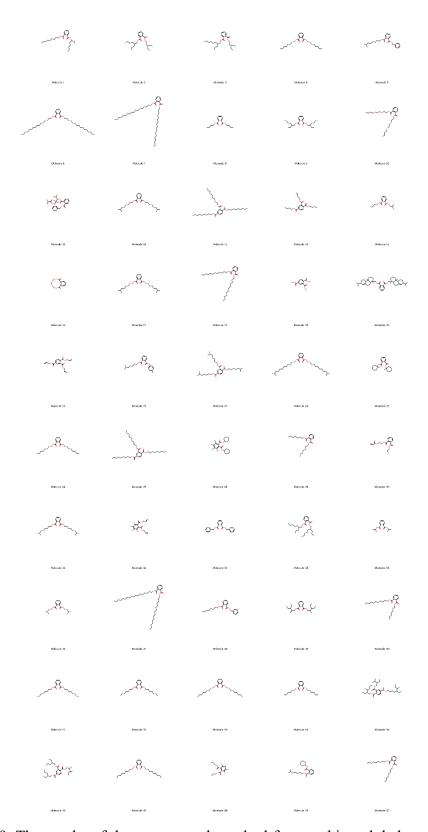


Figure S9. The results of the exact search method for matching phthalate plasticizers are presented below.

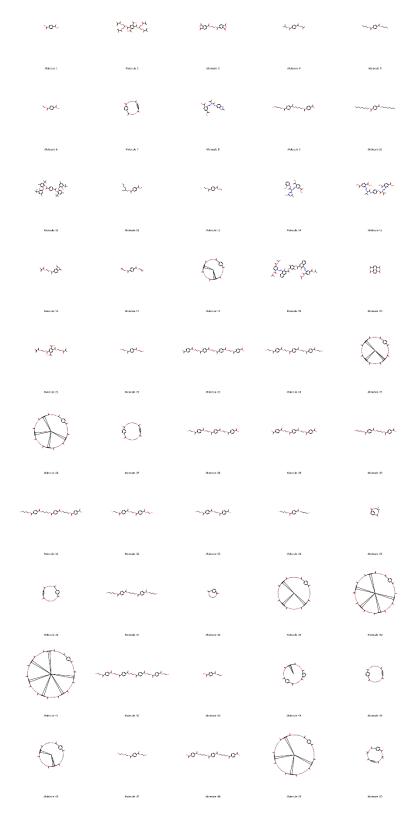


Figure S10. The results of the exact search method for matching terephthalate plasticizers are presented below.

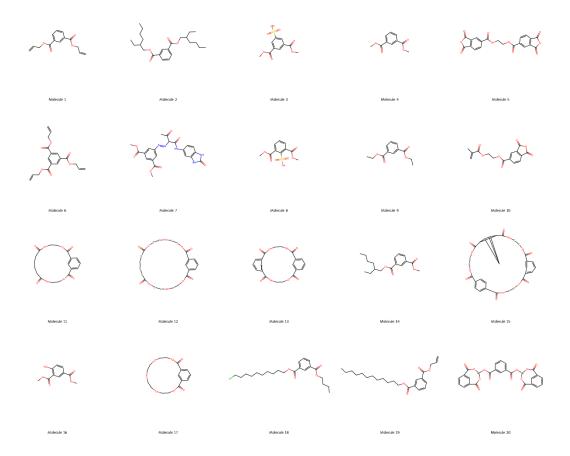


Figure S11. The results of the exact search method for matching isophthalate plasticizers are presented below.

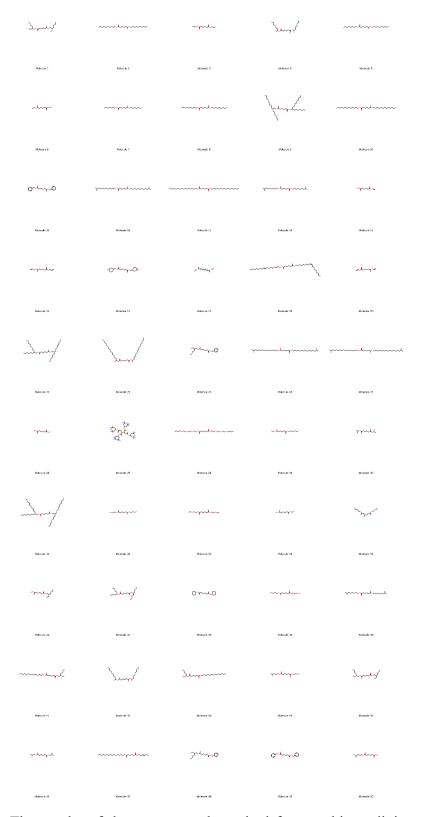


Figure S12. The results of the exact search method for matching adipic acid esters plasticizers are presented below.

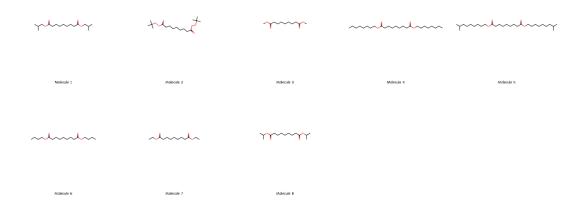


Figure S13. The results of the exact search method for matching azelaic acid esters plasticizers are presented below.

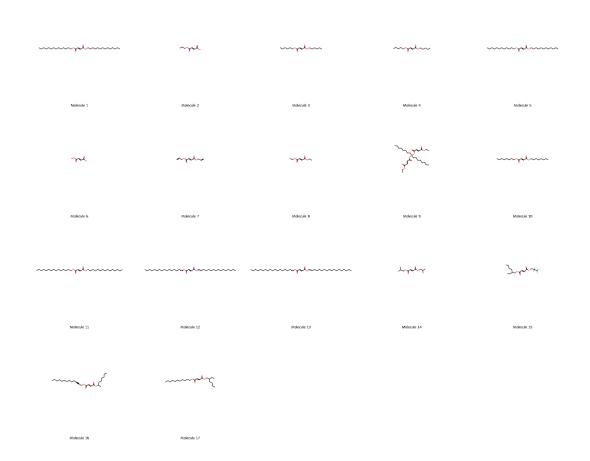


Figure S14. The results of the exact search method for matching fumaric acid esters plasticizers are presented below.

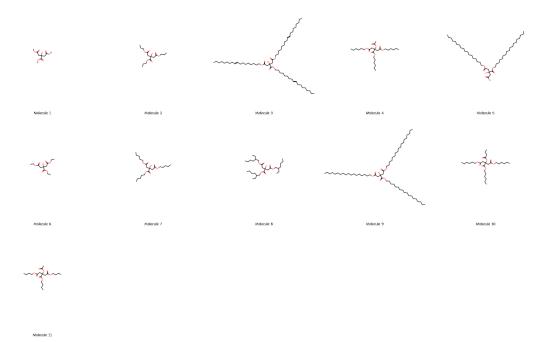


Figure S15. The results of the exact search method for matching citric acid esters plasticizers are presented below.

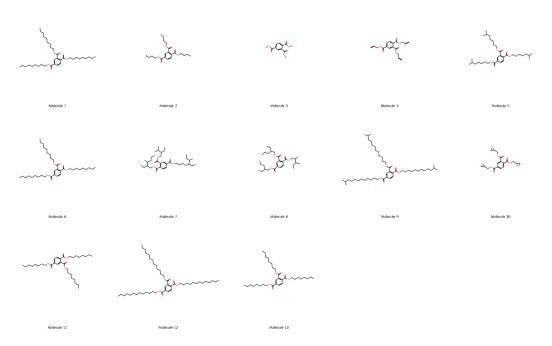


Figure S16. The results of the exact search method for matching trimellitate plasticizers are presented below.

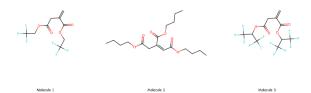


Figure S17. The results of the exact search method for matching itaconic acid esters plasticizers are presented below.

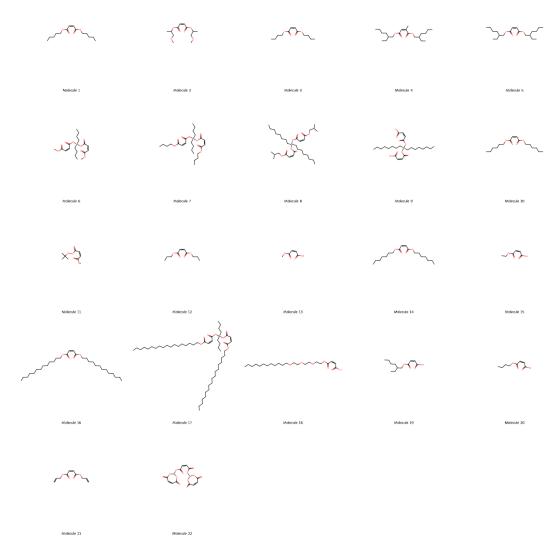


Figure S18. The results of the exact search method for matching maleic acid esters plasticizers are presented below.

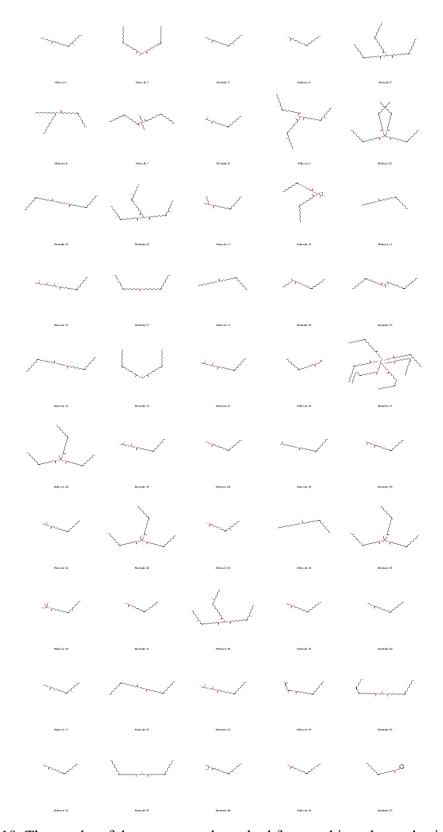
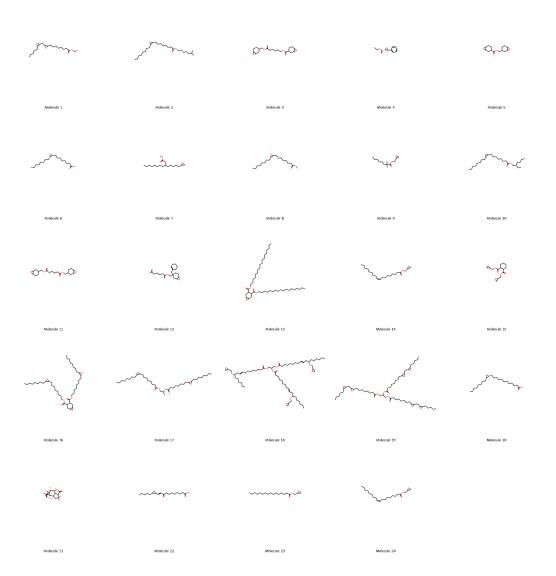



Figure S19. The results of the exact search method for matching oleate plasticizers are presented below.

Figure S20. The results of the exact search method for matching sebacic acid esters plasticizers are presented below.

90 / 108

Figure S21. The results of the exact search method for matching epoxy derivatives plasticizers are presented below.

5.3 Results of the exact search method

In the manual validation results of the exact search, the structure scores of 25 samples are 1, the plasticizer classification scores of 13 samples are 1. In the comprehensive scores, 12 samples are scored 1, 13 samples are scored 0.5, and 1 sample is scored 0.

Table S21. Sampling manual verification results of exact search.

Sub-	CAC	None	Structural	Plasticizer	C	
category	CAS	Name	Score	Function Score	Score	
Phthalate	13988	Cyclic DEG-PA	1	1	1	
Phthalate	16883 -83-3	1,2- Benzenedicarboxylic acid, 1-[2,2-dimethyl-1- (1-methylethyl)-3-(2- methyl-1- oxopropoxy)propyl] 2-	1	1	1	
		(phenylmethyl) ester				

Adipic acid esters	4074- 90-2	Hexanedioic acid, 1,6-diethenyl ester	1	0	0.5
Adipic acid esters	_	Adipic acid, di(2-decyl) ester	1	1	1
Sebacic acid esters	10340 -41-7	Decanedioic acid, 1,10-bis(1-methylheptyl) ester	1	0	0.5
Sebacic acid esters	12440 3-19- 6	Decanedioic acid, 1-decyl 10-octyl ester	1	0	0.5
Citric acid esters	4552- 00-5	Ethyl citrate	1	1	1
Citric acid esters	1587- 20-8	2-hydroxy-1,2,3- propanetricarboxylic acid, 1,2,3-trimethyl ester	1	1	1

Epoxy	26761	Neodecanoic acid, 2-			
derivativ	-45-5	oxiranylmethyl ester	1	0	0.5
es					
Epoxy	67860	2-Oxiraneoctanoic acid,			
derivativ		3-octyl-, 2,2'-(1-methyl-	1	0	0.5
es	-05-3	1,2-ethanediyl) ester			
Olasta	57675		1	0	0.5
Oleate	-44-2		1	0	0.5
	12625				
Oleate	7-84-	2-decyltetradecyl oleate	1	0	0.5
	9				
		1,2,4-			
Trimellit	94109	1,2,4- Benzenetricarboxylic			
Trimellit ate	94109		1	1	1
		Benzenetricarboxylic	1	1	1
		Benzenetricarboxylic acid, 1,2,4-tritridecyl	1	1	1
	-09-8	Benzenetricarboxylic acid, 1,2,4-tritridecyl ester			
ate	-09-8	Benzenetricarboxylic acid, 1,2,4-tritridecyl ester 1,2,4-	1	0	0.5
ate Trimellit	-09-8 7237-	Benzenetricarboxylic acid, 1,2,4-tritridecyl ester 1,2,4- Benzenetricarboxylic			
ate Trimellit	-09-8 7237- 83-4	Benzenetricarboxylic acid, 1,2,4-tritridecyl ester 1,2,4- Benzenetricarboxylic acid, 1,2,4-tris(2- oxiranylmethyl) ester			
ate Trimellit ate	-09-8 7237-	Benzenetricarboxylic acid, 1,2,4-tritridecyl ester 1,2,4- Benzenetricarboxylic acid, 1,2,4-tris(2-			
ate Trimellit ate Maleic	-09-8 7237- 83-4 10099	Benzenetricarboxylic acid, 1,2,4-tritridecyl ester 1,2,4- Benzenetricarboxylic acid, 1,2,4-tris(2- oxiranylmethyl) ester	1	0	0.5

Maleic acid esters	31983	HEPTYL MALEATE	1	1	1
Azelaic acid esters	16580 -06-6	Nonanediperoxoic acid, bis(1,1-dimethylethyl) ester	1	0	0.5
Azelaic acid esters	2917- 73-9	Nonanedioic acid, 1,9-dibutyl ester	1	1	1
Fumaric acid esters	10341	2-Butenedioic acid (2E)-, 1,4-ditetradecyl ester	1	1	1
Fumaric acid esters	14595 -35-8	PROPYL FUMARATE	1	0	0.5
Itaconic acid esters	10453 4-96- 5	Butanedioic acid, 2-methylene-, 1,4-bis(2,2,2-trifluoroethyl) ester	1	1	0.5

Itaconic	7569	1-Propene-1,2,3-			
acid	7568- 58-3	tricarboxylic acid, 1,2,3-	1	1	1
esters		tributyl ester			
		1,3-			
Isophthal	1087-	Benzenedicarboxylic	1	1	1
ate	21-4	acid, 1,3-di-2-propen-1-	1	1	1
		yl ester			
Isophthal		Isophthalic acid, butyl	1	0	0.5
ate		10-chlorodecyl ester	1	U	0.5
Terephth	81-	[2]Benzopyrano[6,5,4-			
alate	30-1	def][2]benzopyran-	0	0	0
arate	30-1	1,3,6,8-tetrone			
Terephth	34298	I ITDA±EC1±EC	1	0	0.5
alate	-51-6	L[TPA+EG] ₄ +EG	1	U	0.5

6. Details of Discussion

6.1 Results of functional-toxicological relationship

1) Direct statistics results

The average toxicity statistics for all chemicals under each third-level functional label (considering only manually labeled chemicals) are presented below.

Table S22. The average toxicity of chemicals corresponding to each third-level functional label

Num.	Sum	CMR	STOT_RE	AqTox	RespSens
C00	0.94	0.00	0.03	0.91	0.00
C01	0.00	0.00	0.00	0.00	0.00
C02	0.00	0.00	0.00	0.00	0.00
C03	0.08	0.00	0.00	0.00	0.00
C04	0.00	0.00	0.00	0.00	0.00
C05	0.00	0.00	0.00	0.00	0.00
C06	0.00	0.00	0.00	0.00	0.00
C07	0.25	0.00	0.00	0.25	0.00
C08	0.50	0.50	0.00	0.00	0.00
C09	0.00	0.00	0.00	0.00	0.00
C10	0.50	0.25	0.00	0.00	0.00
C11	0.00	0.00	0.00	0.00	0.00

Num.	Sum	CMR	STOT_RE	AqTox	RespSens
C12	0.00	0.00	0.00	0.00	0.00
C13	0.00	0.00	0.00	0.00	0.00
C14	0.67	0.00	0.00	0.67	0.00
C15	0.12	0.00	0.00	0.12	0.00
C16	0.60	0.20	0.20	0.20	0.00
C17	0.50	0.42	0.00	0.00	0.00
C18	1.00	0.00	0.00	1.00	0.00
C19	0.50	0.00	0.50	0.00	0.00
C20	0.46	0.13	0.21	0.13	0.00
C21	0.40	0.00	0.13	0.00	0.13
C22	0.00	0.00	0.00	0.00	0.00
C23	0.07	0.00	0.00	0.07	0.00
C24	0.00	0.00	0.00	0.00	0.00
C25	0.36	0.07	0.00	0.21	0.00
C26	0.20	0.00	0.10	0.10	0.00
C27	0.17	0.00	0.00	0.17	0.00
C28	0.00	0.00	0.00	0.00	0.00
C29	0.00	0.00	0.00	0.00	0.00

Num.	Sum	CMR	STOT_RE	AqTox	RespSens
C30	0.15	0.15	0.00	0.00	0.00
C31	0.57	0.00	0.00	0.57	0.00
C32	0.00	0.00	0.00	0.00	0.00
C33	0.10	0.05	0.00	0.05	0.00
C34	1.67	0.33	0.67	0.33	0.00
C35	3.50	1.00	1.00	1.00	0.00
C36	0.50	0.00	0.00	0.50	0.00
C37	0.00	0.00	0.00	0.00	0.00
C38	0.50	0.25	0.00	0.25	0.00
C39	0.65	0.09	0.07	0.40	0.00
C40	2.55	0.73	0.64	0.55	0.00
C41	0.57	0.33	0.05	0.10	0.00
C42	0.25	0.00	0.00	0.00	0.00
C43	0.10	0.00	0.00	0.10	0.00
C44	1.58	0.36	0.24	0.70	0.00
C45	3.22	0.67	0.67	0.89	0.00
C46	1.00	0.00	0.40	0.60	0.00
C47	0.33	0.00	0.00	0.33	0.00

Num.	Sum	CMR	STOT_RE	AqTox	RespSens
C48	0.00	0.00	0.00	0.00	0.00
C49	0.30	0.20	0.00	0.10	0.00
C50	0.25	0.13	0.13	0.00	0.00
C51	1.57	0.21	0.64	0.43	0.00
C52	0.14	0.07	0.04	0.00	0.00
C53	0.00	0.00	0.00	0.00	0.00
C54	0.92	0.03	0.33	0.50	0.00
C55	0.27	0.00	0.18	0.09	0.00
C56	0.25	0.00	0.08	0.00	0.00
C57	0.18	0.14	0.00	0.05	0.00
C58	3.00	0.50	1.00	1.00	0.00
C59	0.71	0.06	0.35	0.24	0.00
C60	0.93	0.27	0.07	0.20	0.07
C61	0.50	0.25	0.25	0.00	0.00
C62	0.50	0.00	0.00	0.50	0.00
C63	0.00	0.00	0.00	0.00	0.00
C64	1.40	0.60	0.40	0.40	0.00
C65	1.67	0.00	0.67	0.33	0.00

Num.	Sum	CMR	STOT_RE	AqTox	RespSens
C66	3.00	1.00	1.00	0.00	0.00
C67	0.00	0.00	0.00	0.00	0.00
C68	0.00	0.00	0.00	0.00	0.00
C69	0.00	0.00	0.00	0.00	0.00
C70	0.00	0.00	0.00	0.00	0.00
C71	0.08	0.00	0.00	0.08	0.00
C72	0.00	0.00	0.00	0.00	0.00
C73	0.44	0.00	0.22	0.22	0.00
C74	0.30	0.00	0.20	0.10	0.00
C75	0.00	0.00	0.00	0.00	0.00
C76	0.80	0.20	0.20	0.40	0.00
C77	2.00	0.33	0.67	0.67	0.00
C78	2.00	0.00	1.00	1.00	0.00
C79	0.00	0.00	0.00	0.00	0.00
C80	1.50	0.50	1.00	0.00	0.00
C81	0.00	0.00	0.00	0.00	0.00
C82	0.00	0.00	0.00	0.00	0.00

toxicity endpoint, the proportion of additives with a positive prediction. Since the toxicity labels are binary, this proportion equals the mean of the 0 or 1 values within each functional class. We arranged these proportions into an 83 by 7 matrix and visualized it as a heatmap.

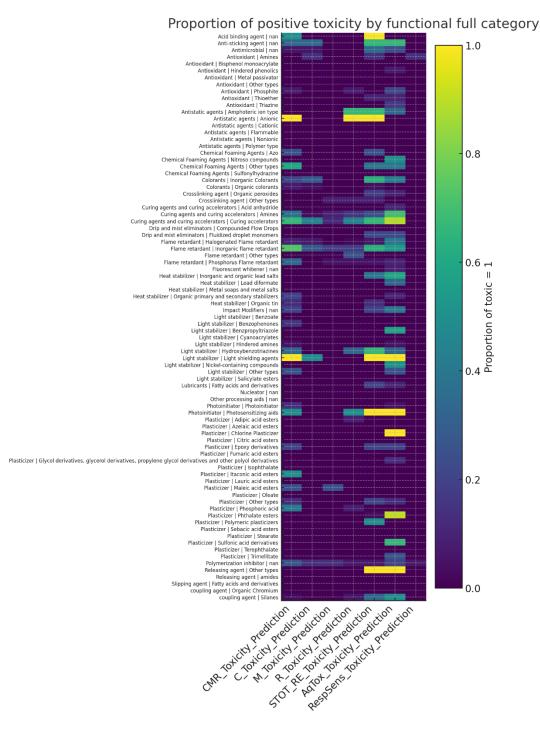


Figure S22. The heatmap of the 83 third-level functional labels and 7 toxicity indicators.

2) Method of Pearson's chi-square test

To test whether the distribution of toxicity labels differs across functional classes, we constructed, for each toxicity endpoint, a contingency table with 83 rows (functional classes) and 2 columns (negative and positive labels). Let O_{ij} denote the observed count in row i and column j of a given contingency table, and let

$$E_{ij} = \frac{(\text{row sum}_i) \times (\text{column sum}_j)}{N}$$

be the expected count under the null hypothesis that functional class and toxicity endpoint are independent, where N is the total number of additives. The Pearson chi square statistic is calculated as

$$\chi^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

with r=83 and c=2. The degrees of freedom are df=(r-1)(c-1)=82. For each endpoint, we obtained a p value by comparing the observed χ^2 to a chi square distribution with 82 degrees of freedom. A small p value indicates that the observed contingency table is unlikely under the independence assumption and therefore provides evidence of an association between functional class and the toxicity endpoint. In this work we regard p < 0.05 as statistically significant.

Because p values depend on sample size, we additionally quantified the strength of association using Cramer's V, which is a standard effect size for contingency tables. For an $r \times c$ table with chi square statistic χ^2 and sample size N, Cramer's V is defined as

$$V = \sqrt{\frac{\chi^2}{N \times \min{(r-1,c-1)}}}.$$

Cramer's V ranges from 0 (no association) to 1 (perfect association). Interpretation thresholds are context dependent, but values around 0.1 are often considered small, around 0.3 moderate and above 0.5 relatively strong.

3) Results of Pearson's chi-square test

Table S23. Results of Pearson's chi-square test.

Toxicity endpoint	χ^2	df	p-value	Cramer's V	
CMR_Toxicity_Prediction	223.3297	82	4.999984e-15	0.5442	
C_Toxicity_Prediction	160.2123	82	5.445130e-07	0.4610	
M_Toxicity_Prediction	85.8802	82	3.630830e-01	0.3375	
R_Toxicity_Prediction	179.8895	82	2.715783e-09	0.4884	
STOT_RE_Toxicity_Prediction	260.1241	82	2.121680e-20	0.5874	
AqTox_Toxicity_Prediction	310.9374	82	2.305561e-28	0.6422	
RespSens_Toxicity_Prediction	81.1005	82	5.073262e-01	0.3280	

6.2 Illustrative cases of plastic formulation

The formulations of five agricultural plastic films are presented in the following case studies.

Table S24. Different PVC agricultural films use various additives choices in their formulations, calculated using the mass parts counting method ^[2-8].

Additives	Formula -tion 1	Formula -tion 2	Formula -tion 3	Formula -tion 4	Formula -tion 5
PVC	100	100	100	100	100
Calcium Carbonate	0	0.5	0	0	0
Carbon Black	0	0	0	0.4	0
Di(2-ethylhexyl) Phthalate	40	25	20	45	40
Di(n-butyl) Phthalate	0	10	10	0	0
Di(2-ethylhexyl) Adipate	7	5	0	0	0
Epoxidized Soybean Oil	3	3	3.5	0	0
Other Plasticizer	0	0	3	5.5	0
Tribasic Lead Sulfate	0	0	2.25	0	0
Glyceryl Monostearate	0	3	0	0	0
Cadmium/Barium Stearate	3	2.5	0	1	1
Dibutyltin Laurate	0	0.5	0	0	0

Ref.

- [1] Ertl, P.; Rohde, B.; Selzer, P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-Based Contributions and Its Application to the Prediction of Drug Transport Properties. Journal of Medicinal Chemistry 2000, 43 (20), 3714-3717. DOI: 10.1021/jm000942e.
- [2] Bing,J.L.;Zhao,J.S.;Bao,Y.Z. Polyvinyl chloride resins and their applications; Chemical Industry Press: China, 2012.
- [3] Wang, X.W.; Wang, W.; Liu, Q. Plastic additives and formulation design technologies; Chemical Industry Press: China, 2017.
- [4] Lei, C.H.; Xu, R.J.; Dong, Z.H.; Chen, D.H. Plastic materials and additives; China Light Industry Press: China, 2021.
- [5] Zuo,J.D.;Luo,C.Y.;Wang,W.G. Plastic Additives and Formulation; Chemical Industry Press: China, 2018.
- [6] Li,J.J. Formulation Design of Plastics (3rd Edition); China Light Industry Press:China, 2019.
- [7] Gong,L.C.;Zheng,D.;Li,J. Polyvinyl chloride plastic additives and formulation design technology; China Light Industry Press:China, 2006.
- [8] Wang, W.G.; Yan, Y.F. Plastic Formulas; Chemical Industry Press: China, 2008.
- [9] Cronin, M. T. D.; Richarz, A.-N. Relationship Between Adverse Outcome Pathways and Chemistry-Based In Silico Models to Predict Toxicity. Applied In Vitro Toxicology 2017, 3, 286–297.

- [10] Escher, B. I.; Hackermüller, J.; Polte, T.; Scholz, S.; Aigner, A.; Altenburger, R.; et al. From the Exposome to Mechanistic Understanding of Chemical-Induced Adverse Effects. Environment International 2017, 99, 97–106.
- [11] AOP-Wiki. Collaborative Adverse Outcome Pathway Wiki; https://aopwiki.org (accessed November 2025).
- [12] Cho, E.; Allemang, A.; Audebert, M.; Chauhan, V.; Dertinger, S.; Hendriks, G.; et al. AOP Report: Development of an Adverse Outcome Pathway for Oxidative DNA Damage Leading to Mutations and Chromosomal Aberrations. OECD Series on Adverse Outcome Pathways, No. 29; OECD Publishing: Paris, 2022.
- [13] Yauk, C.; Lambert, I.; Marchetti, F.; Douglas, G. Adverse Outcome Pathway on Alkylation of DNA in Male Pre-Meiotic Germ Cells Leading to Heritable Mutations.

 OECD Series on Adverse Outcome Pathways, No. 3; OECD Publishing: Paris, 2016.
- [14] AOP-Wiki. AOP 295: Early-Life Stromal Estrogen Receptor Activation by Endocrine Disrupting Chemicals in the Mammary Gland Leading to Enhanced Cancer Risk; https://aopwiki.org/aops/295 (accessed November 2025).
- [15] Landesmann, B. Adverse Outcome Pathway on Protein Alkylation Leading to Liver Fibrosis. OECD Series on Adverse Outcome Pathways, No. 2; OECD Publishing: Paris, 2016.
- [16] AOP-Wiki. AOP 27: Bile Salt Export Pump Inhibition Leading to Cholestatic Liver Injury; AOP-Wiki (accessed November 2025).
- [17] AOP-Wiki. AOP 312: Acetylcholinesterase Inhibition Leading to Acute Mortality via Impaired Coordination and Movement; AOP-Wiki (accessed November 2025).

- [18] AOP-Wiki. AOP 370: Photosystem II Antagonism Leading to Growth Inhibition via Suppression of Photosynthesis; AOP-Wiki (OECD AOP Knowledge Base), https://aopwiki.org/aops/370 (accessed November 2025).
- [19] AOP-Wiki. AOP 39: Sensitization of the Respiratory Tract by Low-Molecular-Weight Organic Chemicals; AOP-Wiki (accessed November 2025).
- [20] OECD. Guidance Document 116 on the Conduct and Design of Chronic Toxicity and Carcinogenicity Studies, Supporting Test Guidelines 451, 452 and 453, 2nd ed.; OECD Publishing: Paris, 2012.
- [21] OECD. Test No. 487: In Vitro Mammalian Cell Micronucleus Test. OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, 2010.
- [22] OECD. Test No. 421: Reproduction/Developmental Toxicity Screening Test. OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, 2015.
- [23] OECD. Test No. 407: Repeated Dose 28-Day Oral Toxicity Study in Rodents. OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, 2008.
- [24] OECD. Test No. 408: Repeated Dose 90-Day Oral Toxicity Study in Rodents. OECD Guidelines for the Testing of Chemicals, Section 4; OECD Publishing: Paris, 2018.
- [25] OECD. Test No. 203: Fish, Acute Toxicity Test. OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, 2019.
- [26] OECD. Test No. 202: Daphnia sp. Acute Immobilisation Test. OECD Guidelines

for the Testing of Chemicals, Section 2; OECD Publishing: Paris, 2004.

[27] OECD. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. OECD Guidelines for the Testing of Chemicals, Section 2; OECD Publishing: Paris, 2011.

[28] Sullivan, K. M.; Enoch, S. J.; Ezendam, J.; Roggen, E. L.; Aleksic, M.; Aspinall, A.; et al. An Adverse Outcome Pathway for Sensitization of the Respiratory Tract by Low-Molecular-Weight Organic Chemicals. Applied In Vitro Toxicology 2017, 3, 213–226.

[29] Upadhyay, S.; Palmberg, L. Air–Liquid Interface: Relevant In Vitro Models for Investigating Air Pollutant-Induced Pulmonary Toxicity. Toxicological Sciences 2018, 164, 21–30.

[30] OECD. OECD QSAR Toolbox; https://qsartoolbox.org (accessed November 2025).