Supplementary Information

Conventional vs. Direct vs. Electrochemical Lithium Extraction: A Holistic TEA-LCA of Lithium

Carbonate Production from Spodumene

Seyedmehdi Sharifian¹, Sima Nikfar¹,Chandima Subasinghe², Zohreh Iranmanesh¹, Mohammad Rezaee²,

Ehsan Vahidi^{1*}

¹Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, NV, 89557, United States

²John and Wille Leone Family Department of Energy and Mineral Engineering, Center for Critical Minerals, EMS Energy Institute, College of Earth and Mineral Sciences, The Pennsylvania State University, University Park, PA 16802, United States

E-mail address: evahidi@unr.edu

No. of Tables: 13

No. of Figures: 7

No. of Pages: 20

1- Life cycle assessment (LCA)

Table S1- Life Cycle Inventory: 1-ton LCE production through conventional method.

Input					
Properties	Amount Unit Ecoinvent Unit Process (TRACI 2008)				
	Materials/fuels				
Sulfuric acid	1.9	ton	Sulfuric acid {RoW} production APOS,U		
Calcium carbonate	390	kg	Calcium carbonate, precipitated {RoW} market for calcium carbonate, precipitated APOS, U		
Water	12.9	ton	Water, decarbonised {RoW} market for water, decarbonised APOS, U		
Lime milk	278	kg	Lime, hydrated, packed {RoW} market for lime, hydrated, packed APOS, U		
Soda ash	2.22	ton	Soda ash, dense {GLO} market for APOS, U		
Sulfuric acid- Purification	250	kg	Sulfuric acid {RoW} production APOS,U		
		Elec	ctricity/heat		
National gas	11.975	GJ	Heat, district or industrial, natural gas, GLO, market group, APOS		
Electricity- Extraction	10.59	GJ	Electricity, high voltage {RFC} market for APOS, U		
Electricity- Purification	46.746	.746 GJ Electricity, high voltage {RFC} market fo			
			Product		
LCE	1	ton			
		Em	ission to air		
Carbon dioxide- Extraction	850	kg	Carbon dioxide, Undefined		
Carbon dioxide- Purification	104	kg	Carbon dioxide, Undefined		

Table S2- Life Cycle Inventory: 1-ton LCE production through the DLE method.

	Input					
Properties	Amount	Unit	Ecoinvent Unit Process (TRACI 2008)			
	Materials/fuels					
Sodium hydroxide	800	kg	Neutralising agent, sodium hydroxide-equivalent {GLO} market for APOS, U			
Lithium carbonate	150	kg	Lithium carbonate {GLO} market for APOS, U			
Lime	520	kg	Quicklime, milled, loose {RoW} market for quicklime, milled, loose APOS, U			
Water	- · · · · · · · · · · · · · · · · · · ·		Water, decarbonised {RoW} market for water, decarbonised APOS, U			
Carbon dioxide	600	kg	Carbon dioxide, liquid {RoW} market for APOS, U			
		Elec	ctricity/heat			
National gas	11.782	GJ	Heat, district or industrial, natural gas, GLO, market group, APOS			
Electricity-	3.12 GJ		Electricity, high voltage {RFC} market for			
Extraction	3.12	ΟJ	APOS, U			
Electricity-	19.20	GJ	Electricity, high voltage {RFC} market for			
Purification	17.20	Oi	APOS, U			
Product						
LCE	1	ton				
		Em	ission to air			
Carbon dioxide- Extraction	670	kg	Carbon dioxide, Undefined			

Table S3- Life Cycle Inventory: 1-ton LCE production through the EDL method.

Input					
Properties	Amount	Unit	nit Ecoinvent Unit Process (TRACI 2008)		
Materials/fuels					
Soda ash	1.4	ton	Soda ash, dense {GLO} market for APOS, U		
Lithium carbonate	5	kg	Lithium carbonate {GLO} market for APOS, U		
Water	4.1	ton	Water, decarbonised {RoW} market for water, decarbonised APOS, U		
Calcium hydroxide	150	kg	Lime, hydrated, packed {RoW} market for lime, hydrated, packed APOS, U		
Hydrogen peroxide	150	kg	Hydrogen peroxide, without water, in 50% solution state {RoW} market for hydrogen peroxide, without water, in 50% solution state APOS, U		
Sulfuric acid	1.2	ton	Sulfuric acid {RoW} market for sulfuric acid APOS, U		
Electrode	0.05 kg Gold		Gold {GLO} market for APOS, U		
Electrode	7.54 kg Carbon		Carbon black {GLO} market for APOS, U		
		Elec	ctricity/heat		
Electricity-	1.19	GJ	Electricity, high voltage {RFC} market for		
Extraction	1.19	Oi	APOS, U		
Electricity-	2.06	GJ	Electricity, high voltage {RFC} market for		
Purification	2.00		APOS, U		
			Product		
LCE	1	ton			

Energy: In all methods illustrated in Fig. S1, we used laboratory-scale data to estimate the specifications of equipment necessary for industrial-scale operations, including reactor dimensions and insulation materials, to determine the heating energy requirements of the chemical processes. For example, glass fiber was selected as the reactor wall insulation to reduce heat loss. The total heating energy includes (i) the energy needed to elevate the temperature of the reaction mixture and (ii) the energy lost through heat transfer across the reactor walls. Eq. S1 was applied to calculate the heating energy required for the magnets recycling process.

$$Q = \frac{mCp\Delta T + A \frac{K_a}{S} \Delta Tt}{\eta_H}$$

S1

Where Cp is the specific heat capacity (J/kg.K) at room temperature, as assumed for the preliminary analysis in this study, m is the mass of the reaction mixture (kg), ΔT is the temperature difference between the target reaction temperature (K) and room temperature, and A represents the surface area of the furnace/reactor. K_a is the thermal conductivity of the insulation material, s is the insulation thickness, and t is the reaction time. The efficiency of the heating element, η_H , is assumed to be 75%. The rate of heat loss, calculated as AK_a/s , is estimated to be 3.3 W/K [1].

During the leaching stage, an agitator is required to ensure adequate mixing of chemical components, which involves energy consumption. For industrial-scale operations, agitation speed was estimated using a geometric scale-up method that maintains a constant power-to-volume ratio [2]. Cylindrical reactors or tanks were chosen for large-scale setups, with scaling based on the rotational speed observed in lab-scale experiments. The energy required for agitation was calculated using the following equation [1].

$$E = \frac{N_P \, \rho N^3 d^5 t}{\eta_S}$$

S2

Where E is the required energy (J), N_P is the dimensionless impeller power number derived from the theory of similarity. For this study, an axial flow impeller was assumed, with a power number of 0.79 1. ρ , represents the density of the mixture (kg/m³), and η_S is the stirring efficiency, which is assumed to be 80%.

In this paper, an average energy consumption of 5.5 kWh/ton of dry material [1] (i.e., material with all moisture content removed) was estimated for filtration in industrial-scale operations.

Drying of solids involves the evaporation of residual moisture that remains after upstream steps such as filtration. The energy efficiency of drying varies significantly depending on the type of dryer, its configuration, and whether heat recovery is implemented. Reported efficiencies can range from as low as 30% to over 100% in systems with effective heat recovery [3].

The dryer efficiency (η_d) is defined as the ratio of the heat needed to vaporize the removed liquid to the total heat input. Only the energy required to raise the liquid temperature is explicitly considered, as other losses are accounted for within the efficiency itself. For modeling purposes, a standard efficiency of 80% is assumed based on expert estimates. Heat required for drying is calculated based on the following equation:

$$Q_d = \frac{m_{liq}Cp_{liq}(T_{boil} - T_0) + \Delta H_{vap}m_{vap}}{\eta_d}$$

S3

Where, m_{liq} (kg), is mass of liquid present in the wet solid before drying, Cp_{liq} (j/kg.K), is specific heat capacity of the liquid to be evaporated, T_0 , reference temperature (K), T_{boil} (K), is boiling temperature of the liquid, ΔH_{vap} (j/kg), is latent heat of vaporization of the liquid at the boiling temperature, m_{vap} (kg), is mass of liquid actually evaporated during drying. Similarly, energy is required to raise the temperature of the liquid to the boiling temperature plus its enthalpy of evaporation (S3).

Equipment prices were initially estimated using the Matches [4]. These baseline costs (from 2014) were updated to 2025 prices using established cost-index inflation factors. Specifically, we adjusted each 2014 equipment cost by the ratio of the 2025 to 2014 from the CEPCI index value, following standard industry practice.

Table S4- Equipment list 1-ton LCE production from concentrated hard rock by conventional method.

Family and Rot	Name have	Price
Equipment list	Number	(k\$)
Rotary kiln, CS	1	776.07
Vessel Reactor, SS316	1	415.84
Stirring heated reactor, 1000	2	193.28
Filter press, SS316	1	200.75
Stirring reactor, 800 L	2	88.68
Filtration	1	84.76
Evaporator	1	108.64
Precipitation stirring jacket reactor	1	15.56
Tank, 1000 L	2	14.70
Filter press-3	1	84.76
Carbonate removal stirring jacket reactor, 500 L SS316	1	66.26
Tank, 500 L	4	11.39
Evaporator-2	1	64.92
Filter press-3	1	73.86
Stirring heated reactor, 250 L, SS316	1	45.93
Filter pree-4	1	51.57
Dryer	1	159.60

Table S5- Equipment list 1-ton LCE production from concentrated hard rock by the DLE method.

		-
Equipment list	Number	Price (k\$)
Rotary kiln	1	576.54
Agitated reactor	2	164.62
Storage tank (4k G)	4	199.41
Filterpress-1	1	119.06
Rotary kiln, CS	1	199.16
Agitated reactor	2	215.82
Filterpress-2	1	130.81
Nanofiltration	1	108.64
Precipitation stirring jacket reactor- CO ₂ bubble	2	52.30
Tank, 1000 L	2	14.70
Filterpress-3	1	73.86
Dryer	1	159.60
NaOH-recovery stirring jacket reactor	2	66.39
Filterpress-4	1	95.91

Table S6- Equipment list 1-ton LCE production from concentrated hard rock by the EDL method.

Equipment list	Number	Price (k\$)
Mixing tank	1	552.2
Electrochemical reactor	2	1,676.5
Storage tank	4	199.41
Filterpress-1	1	118.21
Clarification reactor	1	103.25

Precipitation reactor	1	112.07
Filterpress-2	1	130.81
Washing tank	1	46.05
Dryer	1	159.60
Evaporator	1	66.38
Filterpress-4	1	95.91

Table S7: Factors for estimation of fixed capital investment (FCI) for plant [5].

Capital investment	Value	
Equipment cost (EC)	Tables 3&4	
Installation cost (IC)	$0.70 \times EC$	
Instrumentation	0.18× EC	
Electrical	0.10×EC	
Buildings	0.28×EC	
Yard improvement	0.10×EC	
Auxiliary facilities	0.10×EC	
Other costs		
Contingency	0.05×EC	

The operating labor hours per ton for each processing step (Y) were estimated based on plant capacity (X, in tons per day) using the empirical correlation shown in Equation S1.

S4

$$\log_{10} Y = 0.783 \log_{10} X + 1.384$$

Y: The operating labor hours per ton per processing step

X: Plant capacity, tons per day

Table S8: Assumptions for estimation of indirect OPEX [5,6].

Cost category	Cost estimation method		
Maintenance	0.03×FCI		
Depreciation	Modified Accelerated Cost Recovery System (MACRS)		
Insurance	0.03×Total Capital Cost (CAPEX)		

Table S9- Chemicals and utility costs required to supply per ton/day or kWh/day production of 1-ton LCE through the conventional method from concentrated hard rock [7,8].

Item	Qty.	Unit price	Total price
		(\$/per unit)	(\$)
Acid, Sulfuric, 96%	2.12 t	327 (\$/t)	703.0
Water	12.9 m^3	1 (\$/m3)	12.9
Calcium carbonate	0.42 t	225 (\$/t)	94.5
Lime milk	0.278 t	220 (\$/t)	61.1
Soda ash	1.63 t	229	373.5
Natural Gas	311 m^3	0.381 \$/m3	118.4
Electricity	6377.6 kWh	0.1 (\$/kWh)	637.7

Table S10- Chemicals and utility costs required to supply per ton/day or kWh/day production of 1-ton LCE through the DLE method from concentrated hard rock [7,8].

Item	Qty.	Unit price	Total price
		(\$/per unit)	(\$)
NaOH	0.8 t	400 (\$/t)	320
Water	98.4 m^3	1 (\$/m3)	98.4
Lime	0.52 t	385 (\$/t)	200.2
Filter	68 m^2	$0.15 (\$/m^2)$	10.3
LCE	0.015 t	14000 (\$/t)	210
CO_2	0.6 t	305 (\$/t)	183
Natural Gas	308 m^3	0.381 \$/m3	117.3
Electricity	4534.9 kWh	0.1 (\$/kWh)	453.4

Table S11- Chemicals and utility costs required to supply per ton/day or kWh/day production of 1-ton LCE through the EDL method from concentrated hard rock [7,8].

Item	Qty.	Unit price	Total price
		(\$/per unit)	(\$)
H ₂ SO ₄	1.2 t	327 (\$/t)	392.4
Water	4.0 m^3	$1 (\$/m^3)$	4
Soda ash	1.43 m^2	229 (\$/t)	10.3
LCE	0.015 t	14000 (\$/t)	420
Electrode-makeup	5 kg	180 (\$/kg)	900
H2O2	0.1 t	900 \$/t	90
Electricity	3266.4 kWh	0.1 (\$/kWh)	326.6

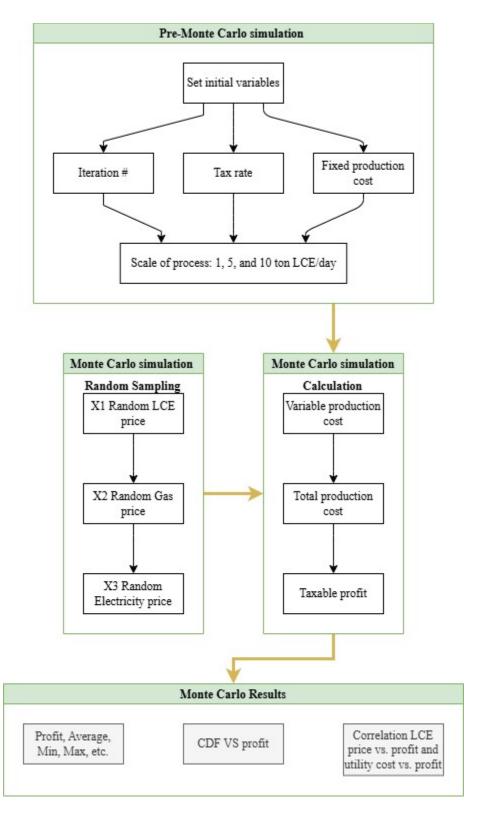


Fig. S1. Schematic workflow of the Monte Carlo simulation process.

LCA Results

Table S12- Impact categories associated with the conventional method, evaluated per 1 ton of LCE produced.

TRACI	Unit	Natural gas- Calcination	Sulfuric acid	Water	Direct Emission	Calcium Carbonate- Water leaching	Lime milk	Sulfuric acid	Direct Emission	Sodium carbonate- Total	Electricity- Total
Global warming	kg CO2 eq	9.22E+02	1.98E+02	1.04E+00	8.50E+02	1.52E+02	2.67E+02	2.80E+01	1.04E+02	2.71E+03	8.2E+03
Smog	kg O3 eq	1.47E+01	1.62E+01	6.64E-02	0.00E+00	1.30E+01	6.13E+00	1.73E+00	0.00E+00	1.70E+02	2.3E+02
Acidification	kg SO2	8.88E-01	1.56E+01	5.22E-03	0.00E+00	9.02E-01	3.74E-01	2.09E+00	0.00E+00	1.16E+01	2.7E+01
Eutrophication	kg N eq	2.45E-01	8.35E-01	3.14E-02	0.00E+00	3.64E-01	1.50E-01	1.09E-01	0.00E+00	1.33E+01	3.2E+01
Carcinogenics	CTUh	1.66E-05	4.57E-05	7.40E-07	0.00E+00	2.22E-05	2.70E-06	7.88E-06	0.00E+00	2.49E-04	5.0E-04
Non carcinogenics	CTUh	2.54E-05	7.28E-04	1.52E-06	0.00E+00	6.36E-05	9.48E-06	1.67E-05	0.00E+00	7.68E-04	1.5E-03
Respiratory effects	kg PM2.5 eq	1.13E-01	1.02E+00	7.72E-04	0.00E+00	1.36E-01	5.45E-02	1.46E-01	0.00E+00	2.11E+00	8.2E+00
Ecotoxicity	CTUe	1.96E+03	1.27E+04	2.33E+01	0.00E+00	4.55E+03	3.54E+02	1.57E+03	0.00E+00	5.07E+04	4.5E+04
Fossil fuel depletion	MJ surplus	2.40E+03	7.66E+02	1.47E+00	0.00E+00	2.56E+02	1.76E+02	1.81E+02	0.00E+00	3.21E+03	7.2E+03

Table S13- Impact categories associated with the DLE method, evaluated per 1 ton of LCE produced.

TRACI	Unit	NaOH	Natural gas-total	Direct Emission	Water	Lime	LCE	CO ₂ Reactor	Electricity- Total
Ozone depletion	kg CFC- 11 eq	5.6E-04	1.43E-04	0.00E+00	8.62E-07	9.5E-02	1.35E-04	1.94E-05	2.0E-04
Global warming	kg CO2 eq	9.4E+02	9.07E+02	6.70E+02	8.39E+00	6.0E+02	1.13E+03	4.94E+02	3.2E+03
Smog	kg O3 eq	6.2E+01	1.45E+01	0.00E+00	5.34E-01	9.2E+00	1.01E+02	7.14E+01	9.1E+01
Acidification	kg SO2 eq	5.1E+00	8.74E-01	0.00E+00	4.19E-02	6.3E-01	8.77E+00	1.43E+00	1.0E+01
Eutrophication	kg N eq	3.7E+00	2.41E-01	0.00E+00	2.53E-01	1.8E-01	1.24E+01	1.15E+00	1.2E+01
Carcinogenics	CTUh	9.7E-05	1.63E-05	0.00E+00	5.94E-06	4.8E-06	1.08E-04	4.73E-05	2.0E-04
Non carcinogenics	CTUh	3.4E-04	2.50E-05	0.00E+00	1.22E-05	3.3E-05	5.47E-04	1.08E-04	5.9E-04
Respiratory effects	kg PM2.5 eq	1.3E+00	1.11E-01	0.00E+00	6.20E-03	9.5E-02	1.45E+00	3.86E-01	3.2E+00
Ecotoxicity	CTUe	1.8E+04	1.93E+03	0.00E+00	1.87E+02	1.1E+03	2.83E+04	8.10E+03	1.8E+04
Fossil fuel depletion	MJ surplus	7.4E+02	2.36E+03	0.00E+00	1.18E+01	3.5E+02	1.35E+03	4.03E+02	2.8E+03

Table S14- Impact categories associated with the EDL method, evaluated per 1 ton of LCE produced.

TRACI	Unit	Soda ash	Water	Lime hydrate	LCE	Sulfuric acid	Hydrogen peroxide	Electrode	Electricity- Total
Ozone depletion	kg CFC-11 eq	1.1E-04	3.4E-08	9.4E-06	4.5E-06	2.3E-05	1.9E-05	2.7E-04	1.0E-04
Global warming	kg CO2 eq	1.7E+03	3.3E-01	1.4E+02	3.8E+01	1.9E+02	2.2E+02	4.0E+03	1.7E+03
Smog	kg O3 eq	1.1E+02	2.1E-02	3.3E+00	3.4E+00	2.9E+01	1.1E+01	2.0E+02	4.8E+01
Acidification	kg SO2 eq	7.4E+00	1.7E-03	2.0E-01	2.9E-01	9.3E+00	8.7E-01	2.4E+01	5.5E+00
Eutrophication	kg N eq	8.6E+00	1.0E-02	8.1E-02	4.1E-01	2.7E+00	6.8E-01	1.9E+01	6.6E+00
Carcinogenics	CTUh	1.6E-04	2.4E-07	1.5E-06	3.6E-06	7.2E-05	5.9E-05	4.0E-04	1.0E-04
Non carcinogenics	CTUh	4.9E-04	4.8E-07	5.1E-06	1.8E-05	1.3E-03	7.2E-05	2.2E-03	3.1E-04
Respiratory effects	kg PM2.5 eq	1.4E+00	2.5E-04	2.9E-02	4.8E-02	7.8E-01	2.0E-01	4.1E+00	1.7E+00
Ecotoxicity	CTUe	3.3E+04	7.4E+00	1.9E+02	9.4E+02	8.3E+04	4.4E+03	1.3E+05	9.2E+03
Fossil fuel depletion	MJ surplus	2.1E+03	4.7E-01	9.5E+01	4.5E+01	4.1E+02	3.5E+02	4.4E+03	1.5E+03

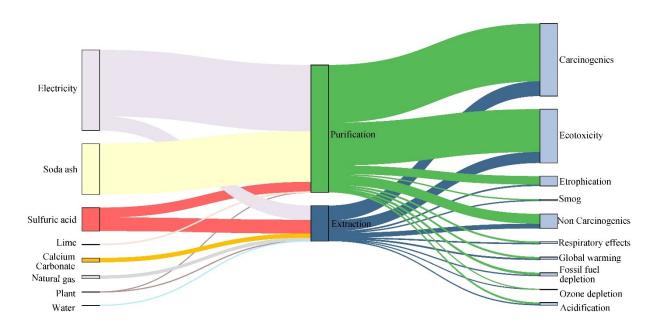


Fig S2. Normalized LCA results based on TRACI impact categories for 1-ton LCE production from the conventional method from hard rock.

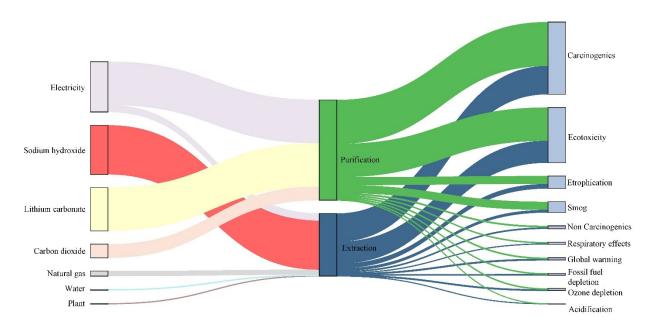


Fig S3. Normalized LCA results based on TRACI impact categories for 1-ton LCE production from the DLE method from hard rock.

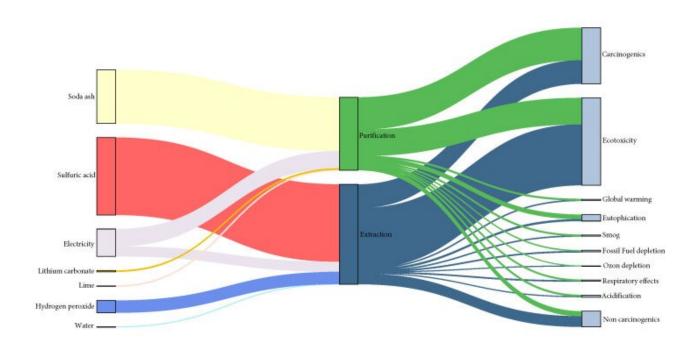


Fig S4. Normalized LCA results based on TRACI impact categories for 1-ton LCE production from the EDL method from hard rock.

TEA Results:

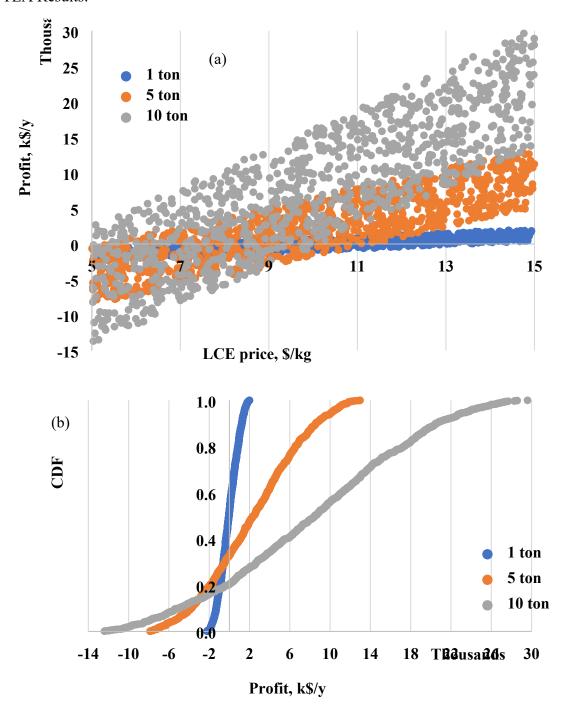


Fig. S5. Profit vs. LCE price for different production scales (a), and CDFs of annual profit for 1, 5, and 10 tons/day LCE production for the conventional method.

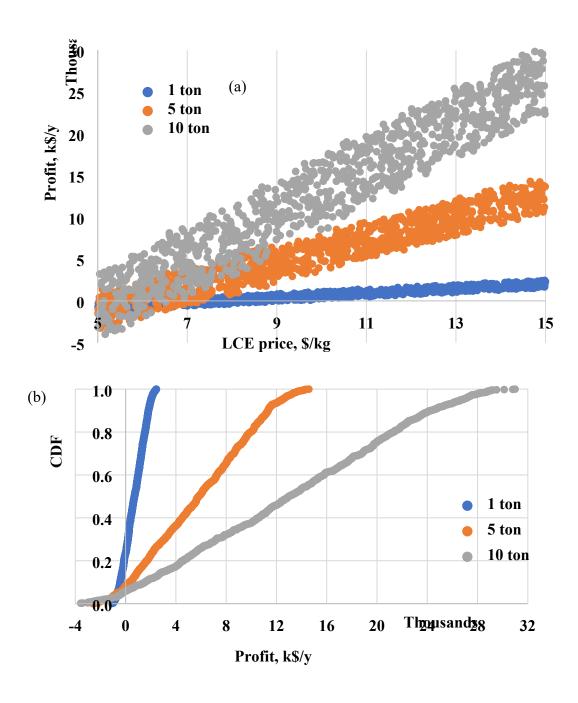


Fig. S6. Profit vs. LCE price for different production scales (a), and CDFs of annual profit for 1, 5, and 10 tons/day LCE production for the DLE method.

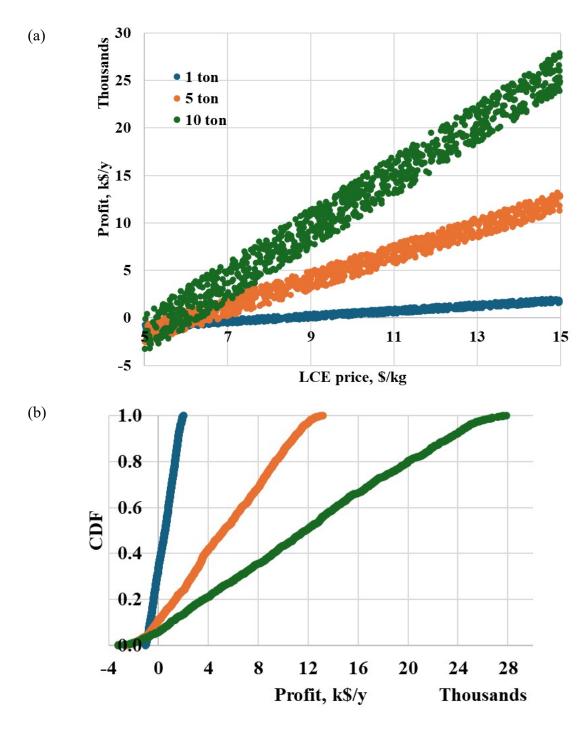


Fig. S7. Profit vs. LCE price for different production scales (a), and CDFs of annual profit for 1, 5, and 10 tons/day LCE production for the EDL method.

References:

- [1] Piccinno, F., Hischier, R., Seeger, S. and Som, C., 2016. From laboratory to industrial scale: a scale-up framework for chemical processes in life cycle assessment studies. Journal of Cleaner Production, 135, pp.1085-1097.
- [2] Coker, A.K., 2001. Modeling of chemical kinetics and reactor design. Gulf Professional Publishing.
- [3] Grant, C.D., 2000. Energy management in chemical industry. Ullmann's Encyclopedia of Industrial Chemistry.
- [4] Matche. "Cost of Equipment: Preliminary Cost Estimates." Accessed [4, 2025]. https://www.matche.com/equipcost/.
- [5] Silla, H., 2003. Chemical process engineering: design and economics. CRC Press.
- [6] Turton, R., Bailie, R.C., Whiting, W.B. and Shaeiwitz, J.A., 2008. Analysis, synthesis and design of chemical processes. Pearson Education.
- [7] Ulrich, G.D. and Vasudevan, P.T., 2006. How to estimate utility costs. Chem. Eng, 113(4), pp.66-69.
- [8] Cornell University, NY. Chemistry Storeroom Chemical Inventory Price List 2024. Internal document. (Access 6/2025).